
ILLINOIS JOURNAL OF MATHEMATICS
Volume 24, Number 1, Spring 1980

EXTENSION TO STRICTLY PSEUDOCONVEX DOMAINS OF
FUNCTIONS HOLOMORPHIC IN A SUBMANIFOLD IN GENERAL

POSITION AND G= UP TO THE BOUNDARY

MANUEL ELGUETA

0. Introduction and notation

Let D be a domain in C and M a complex manifold in D. Denote by
H(D) (resp. H(M)) the space of holomorphic functions in D (resp. M).
A classical consequence of Cartan’s "Theorem B" asserts that the restric-

tion map H(D) H(M) is surjective in the case that D is a domain of
holomorphy. This type of extension problem has been studied for different
classes of functions and different kind of domains by several authors; see
Rudin [11], Bungart [5] and in the most relevant case to this work, Henkin
[7]. In this last paper Henkin proved that if D is a bounded strictly
pseudoconvex domain in C with C2 boundary and M’ is a k-dimensional
complex manifold in a neighborhood D’ of D that intersects the boundary
of D transversally then for M=D fqM’ there exists a continuous linear
extension operator

L" H(M) H(D)

so that Lf A(D) H(D) f"l C(D) whenever f A(M) H(M) f"l C(M).
The purpose of this note is to show that under the same assumptions

above stated (but we shall assume D to have C boundary) every function

f e A(M) H(M) CI C(M)

is the restriction to M of some function F A(D). It is stated in Henkin’s
paper that the local version of this extension problem is the case when D is
strictly convex and M is a plane section. For this particular case he gives an
explicit integral formula for the extension operator. In the first part of this
work we use the above mentioned formula plus an integration by parts
argument to show that Henkin’s extension of any function in A(M) is in
A(D). In the second part of the paper we use the local result of the first
part to obtain the result in the global case. This is done by standard sheaf
theory arguments and the main tool we use is an analogue of Cartan’s
"Theorem B" which is proved in Nagel [10]. We note that in passing from
the local to the global case we loose the operator character of our extension.

Finally as an application of our main result we prove an approximation
theorem (uniform approximation in all partial derivatives up to a finite order)
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for functions f Aoo(D) by functions in H(f) where l) is a suitable neighbor-
hood of D. This uses an embedding result of Fornaess [4] and the idea of the
proof (embedding-extending-approximating) is classical.
We now fix some notation. We denote by

the complex n-dimensional Euclidean space. As usual if zj =xj + iy with
x, yi R we put

Oz 2
and +i

02j 2

d 0 + 0 will denote the usual splitting of the exterior differentiation on C".
If ct (p, q)Z"Z" is any multiindex we set

and

OZ P -q -q."’’3zh.Oz

In R" {(xl,..., x,)lx, eli} let

for any multiindex a Z".
For Zo C" and r > 0 we define B(zo, r) {z C"/Iz Zol < r}.
Let U be a bounded open set in C" (or R"). A function fCs(U)

(l<_s-<) will be said to be a C function on U if all of its partial
derivatives up to the order s in U admit a continuous extension to U. We
denote by C (U) the space of all C complex valued functions on U.
For 1 s < we provide C (U) with the topology induced by the norm

Ilulls sup lD, u(z)l
Il<s zU

and we give to Coo(U) the topology induced by the family of semi-norms
(actually norms) {11 II}o-<z<oo

If M is a compact Coo real manifold in C" we consider the topology
induced in C(M) (1--< s <) by the norm

where {U, s}l<_z is a C finite atlas for M and {X}a_<i_< is a C partition of
the unity subordinated to the covering { U}x_<i_< of M. These topologies are
independent of the choice of the finite atlas and of the partition of the unity.
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In C(M) we consider the topology induced by the family of semi-norms
{11 I[sMls<oo" If u C (M) we will say that all the s-order derivatives of u
satisfy a Holder condition with exponent tz, 0< Ix--< 1, if, for some atlas
{U, sj}l_<j_<z of M and some partition of the unity {X}Ij< subordinated to
{U-}Ij, all the functions D,[(u X) sj], lal s, satisfy a Holder condition
with exponent t in their domain of definition.

If M is now a complex manifold in C" and U is a relatively compact open
subset of M we define A (U) H(U) fq C (U); where H(U) stands for the
space of holomorphic functions on U. The topologies on the spaces A(U)
will be the ones inherited from the spaces Cs(U).

1. The local case

Throughout this section we let D be a strictly convex domain in C" with
C boundary. More precisely D ={z 6 D’/p(z)<O} where p is a C real
valued function defined on a neighborhood D’ of D and the real Hessian of
p is strictly positive definite at every point z 6 D’. We further assume that
0 6 D and/3 is compact. If 1 _< k-< n we identify Cg with

c {0} -.. {0} C"

and we put M’=Cz fqD’; M=C (3D. Setting 5= p/M’ we have that
M {z M’/(z) < 0} is a strictly convex domain with C boundary. We also
observe that 0M {z M’/(z) < 0} is a C compact manifold of real dimen-
sion 2k- 1.

1.1. Henkin’s extension formula. We denote by

grad 5()= 05 (),..., Oz- ()
the complex gradient of 5 at and we note that, because of the strict
convexity, grad 5() 0 for all e OM. Following Henkin [7] we consider the
differential forms

O:(q0)-- E (--1)-q0q01A’’" Aq0j A’’" Aq0k
=1

and

for q =(ql q)where 41 (9k are C complex valued functions.
For 0M and z D we define

(1.1)
p

(, z)
=

(). (
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In Henkin [7] it is shown that for f A(M) the equation

(1.2) Lf(z) (k-(2ri)-------1)! Ie,oM f() o[(grad((,t5()/xo()z))k

defines a bounded linear extension operator L: A(M)--, A(D) where A(M)
and A(D) are provided with the topology of the uniform convergence. (The
extension property of the operator L follows from the fact that when

z =(zx,..., z,0 ,0)M,

formula (1.2) reduced to the Cauchy-Frantappie integral formula for the
domain M on C [see Aizenberg [1] or Koppelman [9]].

1.2. Statement of the local results. Our main result in 1 is:

THEOREM 1. Relation (1.2) defines a continuous linear operator

L: Cs+ OM) --- AS(/)), 0--<s--<oo.

Moreover if f Cs+(0M) and all the (s+ 1)-order partial derivatives of f
satisfy a Holder condition with exponent , 0<_ I <-1, then LfAS+X().
Remark. (i) For this theorem it is enough to assume that D has C/

boundary.
(ii) If we take M D in the above theorem we obtain, for strictly convex

domains in C", an analogue to a well-known result about the Cauchy
integral in one complex variable (see for example Vekua [13, Theorem 1.10,
page 21]). The idea of our proof is based on the proof of this theorem.

An immediate consequence of Theorem 1 is:

COROLLARY 1. Relation (1.2) defines a continuous linear extension
operator

L: A(M) A(D).

An application of Corollary 1 gives:

TIqEORE 2. If f A(D) and f/M=-O then there exist functions

hk+x, h, A(D)

so that f(z)= Zk+l" h+(z)+... + z, h,(z) for all z D.

This last result will be used later to make an identification of sheaves that
allows us to pass from the local case to the global case.

1.3. Some necessary estimates. In this section we state some results that
will be used in the integration by parts. The proofs are very similar to the
proofs of the corresponding lemmas in [7] and [8] and they will be omitted
here.
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Then

Let C, h and Ix be constants satisfying 0 < c <- 1, 0 < h <- 1,

I Io (c + tz+"" + tzk)/2

,+...+,, ((c + tz+"" + tk) + tz)/2 dt dt.

(1.3) I<-- A---. h i[ k >_2,

(1.4) I <-- A---! (C/2 + h/2) if k 1,

where the constants Ak 1, 2,... depend on k only.
We now introduce the following notation: For tr > 0

(OM) {z e Did(z, OM) < }.

Using Lemma 1.1 and a change of variables due to Henkins one can show"

L 1.2. ere exist constants , B >0, < 1, so that for any <,
I- zl B ,

o, I(, z)l
m(a)-- for all z e (OM)

where 0< g 1 and m(d) is the measure induced by Lebesgue measure on
C.
Lemma 1.2 and the compactness of D x D imply:

LEnA 1.3. ere exists a constant C>0 so that

I(z) I- zl
OM [dO(l, z)l m(d)< C for all z D.

Finally Lemma 1.3 and Henkin’s result about extension of holomorphic
functions continuous up to the boundary imply via standard arguments.

LEMMA 1.4. Let (0" D x D---> 12 be a continuous function that satisfies a
Holder condition of the form

Iq(, z)- q (!’, zl <- K I!- ’l
]’or some 0 < Ix <-- 1. Then the [unction

F(z)

i[ zeD\OM

o(z, z)+(k- 1)! I(27ri)k
(q(, z)- q(z, z)

sOM

to,(grad (d))/x
(4,( t))’

if
is continuous on D.

zeOM
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1.4 The integration by parts.
matrix,

We denote by H(!) the complex Hessian

of t5 at the point . Since M is strictly convex H() is a strictly positive
definite (k k)-matrix over C. Lemma 1.5 below can be implicitly found in
Aizenberg [1].

LEMA 1.5.

Then

Let Uc Ck be open and assume that, for some 1 <- m <- k,

015 (j)O forall !ieOMn U.
c3Z,

o[(grad 15 ())/x ok()
K()

as differential forms over OM and where

(1.5) K() =det

H()

Proof. The proof is just algebra and uses the fact that in OM the equation

Oz
() d+... +Oz () d, +Oe () dx +." +c35, () dk 0

holds. We now show:

LEMMA 1.6. If K(I) is defined as in (1.5), then K():p 0 for all t aM.

Proof. Expanding the right side of (1.5) by minors of order (k-1)x
(k- 1) with respect to the first row and the first column we obtain

K()- (grad 5()r) H(). (grad 5())

which is not 0 because H() is strictly positive definite and

grad 5() : 0 for all 1 e OM.

So the lemma is proved.
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We need now the following observation" Let z* OM and assume

we can find tr, c > 0 so that

K(j) 0 and

0Zl
() + h(, z)

Now we can show"

>c>0

3p
>c>0,

for all (l, z) B(z*, o-) B(z*, o’).

LEMMA 1.7 (integration by parts). Let q(!i, z)" b if) - C and let z*
3M. Assume that

ao (z*) # 0

We can find cro, c > 0 so that

10zPx(5) >2c forall 5B(z*,ro).

Since the relation

Op Op OpOO (t) dea +""+()d + () da +...+()d 0
Oz OZk

holds in OM we have, for OM B(z*, o),

[ 1 ](’6 a ((, z)) ((, z)lTM

(modd dk, d,..., d)

as differential forms over OM, where

21.7) h, z)= ) )
)

We observe that h(, z)=O(-z]) for , z near z*. Consequently, under
the assumption
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and

(i) rpCS+l(/)x/)) (l_<s_<),
(ii) supp q(, z) is compactly contained in B(z*,

0 is constructed as in the previous observation.

Define

(1.8) G(z) (k- 1)!
(2ri) , ((, z))

Then for every first order complex partial derivative

-...D Oz Oz.’
we have

(1.9) D,,,G(z)
(k-
(2ri)

1)! IeOMqO. (, Z)
0(grad

(b(,
5(:))/xo()

z))

where qD. C (D x D) satisfies (ii). Moreover there exist constants Kt, 0 <- <, independent of % so that

(1.10) I1o.(, z)ll, <- K, I1(, z)ll,+ for 0 <- <- s.

In addition if all the partial derivatives of q of order s + 1 satisfy a Holder
condition with exponent Ix, 0 < Ix <-1, then the same holds ]’or all the partial
derivatives of order s of

Proof. Since the case D 0/0i (1 --< --< n) is immediate we assume
D,,, O/Ozj.

Differentiating formula (1.8) under the integral and using Lemma 1.5 we
get

(1.11)
OG

(z)= Gl(z)+G2(z)

where

(1.12)

and

Gl(Z)
(k- 1)! Ie 0q role(grad
(2ri)k oM OZj

(’ Z)
(b(, z))

(1.13)

with

k f d2A" Ad AdlA- Ad
j g(:, z)G2(z)

(2’rri)‘ oM (4(, z)):+1

g(, z)

Op
q,(, z).=- (0" K()

oz
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that extended as the zero function outside B(z*, tr)B(z*, tr) belongs to
cs+(D x5).
Using relation (1.6) and Stoke’s theorem on the C manifold aM we get,

from (1.13),

(- 1)k-k! f dG(z)
(27ri)k Jeo (g(, z) d/x-../x dk A da^""/x dk A

(b(, z))k+

(-1)k(k 1)! f g(, z)
(2ri)k Jeo 0___p ()+ h(, z)

c3z

x d2 Ix" ,d A d2A’’’ A d,/x d (dO(, k))

where

(-1)+(k- 1)! f de(k(, z))
(2ri) JeOM (b(, z))

k(. z)
g(. z) C./,(De

0_2_0
Oz,

(0 + h(. z)

(1.14) O(z) (k- 1)!I(2ri)OM 0(, z) o(grad/5(0)
Ao(0(q(,Z)k

where

belongs to CS(D D) and satisfies (ii). Now (1.9) follows from (1.11), (1.12),
and (1.13) and relation (1.10) can be obtained from the explicit expression
for PD(, Z). The lemma is proved.

So using Lemma 1.5 and Lemma 1.6 we get

Ok Ok
de(k(id, z))=- (, z) d+(, z) d

O__p Ok OO Ok

3p

(mod d,..., d, d,..., d).

and (ii) is satisfied.
But for (, z) e B(z*, or) x B(z*, (r) with e OM we have



10 MANUEL ELGUETA

We now use induction and Lemma 1.7 to obtain:

LEMMA 1.8. With the same hypothesis and definitions of Lemma 1.7 we
have G(z) C (D) and there exist constants K, 0 <- s <% independent of q so
that

(1.15) IDoG(z)l<--Ksllq(, z)[ts+l forall zeD andall Il<_s.
Moreover if all the partial derivatives of q of order s + 1, satisfy a Holder
condition with exponent 0 < Ix <- 1, then G(z) CS+l(/)).

Proof. An induction based on Lemma 1.7 allows us to construct, for
every Il_<s/ 1, a function qo.(, z)e CS+-Il(/)x/3) and a constant K’s,
independent of q, so that

(.k=- 1)! I to(grad 15())/x
DoG(z) (2,rt./ o

CD.(, z)
(b(j, z))k

and

IlqVD(, z)l[l K’s Ilc#(, z)l[+l for I1 s.

Moreover if all the partial derivatives of order s + 1 of cp satisfy a Holder
condition with exponent O< Ix <--1, so do all the o(, z) with [al s + 1.
For z D we set

h(z) =(k-1)! Ia 1
to(grad t5())/x tok()

(27ri)k oM (q(, z))k

and, by Henkin’s result [7], we note that h A(D). Now we can write

DoG(z)
(k- 1)! Ie (o.(, z) qo. (z, z))

to(grad 5())/x tok ()
(27ri)k .M (6(, z))k

+o(z, z). h(z).
Thus

IDG(z)I C lifo. (, z)lll
oM [(, z)Ig

m(dt;) +C IlCo. (, z)llo

or, using Lemma 1.3,

IDoG(z)l <-- C3 IlqD. (, z)ll,-< Ks II(, z)lls+l.
This proves 1.15. The fact that G(z)e C-(]D) follows immediately from

1.15 and since all the qD.(, Z) with lal= s satisfy a Holder condition with
exponent 1 we get G(z) CS(D) as a consequence of Lemma 1.4. The last
assertion of the statement also follows from Lemma 1.4.

1.5 Proof of Theorem 1. We are to show that

(1.3) Lf(z) (k-(2ri)kl)! IeM f()
tO(grad

(4(,
5())/x t0k()z))k
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defines a continuous linear operator L’C+I(OM)-->AS()) and Lf
A+(/)) whenever all the partial derivatives of order s+ 1 of f satisfy a
Holder condition with exponent , 0< < 1.

Let z* be any point in OM. Since grad 5(z*) 0, we can assume without
loss of the generality that

00 (z*) 0.

Let r> 0 be chosen as.in Lemma 1.7. Define

C+(B(z*, r)) {f C+l(Ck)/supp fB(z*, r)}.

We first show"

LEMMA 1.9. (1.3) defines a continuous linear operator

L" C;+(B(z*, r/3))-- AS(D).
Moreover Lf A+(D) whenever all the partial derivatives of order s + 1 of f
satisfy a Holder condition with exponent tx, 0 < <- 1.

Proof. It is easy to check that LfeH(D). It remains to show that
Lf e C (D) and that L is continuous. To do this fix a C function X so that
X 1 in B(z*, r) and X--0 off B(z*, or). Put X2 l-X1.
Now we can write

(1.16)

where

Lf(z) Lff(z) + L2f(z)

Lf(z)
(k- 1)! Ie(2ri)------- f(). X(z)

of(grad fi())/x o()
for 1, 2

((, z))

Since Xu 0 on B(z*, 2/3a) and (, z) is bounded away from zero for
eB(z*, /3) and zB(z*, 2/3) (z e D) we can check, by differentiating
under the integral that Lef C(D) and that L2 is a continuous operator.
As for the operator L1; we observe that the map

f() (, z) f() X(z)

is continuous and so the result follows from Lemma 1.8. .In order to finish the proof of Theorem 1 we pick z, zq aM in such
a way that OM=B(z, /6) where is chosen so small that Lemma
1.9 holds and for each 1, 2,..., q there exists a C change of variables

n," B(z,) Ra"

so that (B(z, )0M)= VR-.
Let {X}= be a C partition of the unity for OM subordinated to

{B(z, /6)}7=1; let p- Ra" R- be the canonical projection and let {s}=
be C functions on C" so that s 1 on B(z, /6) and supp si B(z, /3).
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We define operators Hi" C+x(igM)-- C+X(B(z.*,, r/3)) by

[(X. f) rl- p rli(z)]" si(z) ifdefined
H.df(z)

otherwise.

Then the operators /-/, 1 _<i_< q, are continuous and if all of the partial
derivatives of order s + 1 of f satisfy a Holder condition with exponent tz
then the same holds for Hf. Moreover for any f C+(OM) we have
f= E,= (H.(f)/OM.

Finally since Lf % L (f), Theorem 1 is proved.

1.5. Proof of Theorem 2. We split the proof into two cases.
Case k n- 1. We are to show that if f &(D) and f/M =--0 then there

exists h A(D) so that f(z)= z,. h(z) for all z D. A well known conse-
quence of Cartan’s "Theorem B" [6, Theorem 18, page 245] shows that
there exists h, holomorphic in D, so that f(z)- z, h(z). Our task now is to
show that h is C on D. Since f &(D) it can be easily seen that h is C in
a relative neighborhood of z in D for all z D-OM. So we only have to
show that for every z* OM, h is C in a relative neighborhood of z*. To do
this let

z* (z*,.. z,_x,* O)c3M.

Since grad fi(z*)#0 we can assume, without loss of generality, that, for
some ro> O,

OzO(z) >c>0 forall zB(z*,o’o).

Extend 0 to a C function on C" and consider the map F: C" x C-- C
defined by

p p
F(z, l) (l- z) z (i, z2, z,_, 0)- z,, (1, z2, z,,_x, 0).

Then F is a C function, F(z*, z*)= 0 and

D,F(z*, z*)=-z (z*) dl

is a linear homeomorphism C--> C. Thus by the implicit function theorem
there exists (r > 0 and a C map *(.)" B(z*, (r)--> C so that *(z*)= z* and
F(z, *(z))= 0 for all z B(z*, o’). Setting

n(z) 0)

and making r smaller if necessary, we have

>c>0
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and

(1.17)
,= z (n(z))" (n,(z)-z) 0 for z B(z*, or).

Relation (1.17) means that z lies in the complex tangent plane at rl(z) to
the corresponding level curve of O. This together with the strict convexity of
O implies that rl (z) M whenever z D qB(z*, or).
Now for z B(z*, or) fq D we consider the map

(.): t--t, z+(1-t)rl(z) for 0_<t_<l.

By the convexity of D we have (t)e D for 0--< t--< 1. Consequently we can
write

f(z) f(z)- f(rl(z))

(z- *(z)) z (X(t)) dt + z," (A(t)) dt.

So setting

g,(z) ()t(t)) dt

and using (1.17) we get

f(z) z, h(z) for all

where

for 1, n

z D f"l B(z*, o’)

c3p

h(z) a.(z) G-z.
o_2_0

Since f e A(D) and *(z) is C in B(z*, or) we can show, by differentiat-
ing under the integral, that g,(z) is a C function on D CIB(z*, r/2) for
i= 1, n; and moreover all of its partial derivatives are bounded in D
B(z*, r/2). Therefore the same holds for h. It is well known that this
implies h is C on DCIB(z*, cr]2). Finally, since for z eDCIB(z*, r]2) with
z,#0 we have h(z)= h(z), we get h(z)= h(z) for all z e DCIB(z*, o-/2)
because of the continuity of h and h. This ends the proof of the case
k =n-1.

General case. The proof is done by reverse induction on k. We first
introduce the notation M C f3D for k 1,..., n-1. M is strictly
convex with C boundary. Assume that the conclusion holds for k + 1. We
are to show it for k. Let f A(D) be so that f/M =0. Define the auxiliary
function

l(zx Zk+)= f(z, Zk+l, 0,..., 0) on Mk+l;
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then lA=(Mk+l) and l/Mk =-0. So by the preceding case there exists
g A=(Mk/I) so that

l(zl, z+)= z+ g(za,..., z+).

By Corollary 1 there exists h.+ e A(D) so that h+/M+ g. Now the
function f(z)-z+h+(z) defined on D belongs to A(D) and vanishes on
Mk+l. So by the induction hypothesis we can write

f(z)-z+, h+(z)=z+:z, h+:z(z)+."+z," h,(z) forall zD

with hk+, h+a,..., h, A(D) as we wanted to show.

2. The general situation

Through all of this section D will be a bounded strictly pseudoconvex
domain in C" with C boundary; that is D {z e D’/p(z)<O} where p is a
C real valued strictly plurisubharmonic function on a neighborhood D’ of
D and grad p 4:0 on OD. We let M’ be a k-dimensional complex manifold in
D’ that intersects OD transversally; this means at every point z e 0D fqM’

the intersection of the complex tangent planes to OD and M’ has complex
dimension k- 1. We set M M’ N D.

2.1. Statement of the results of this section. Our main result is"

THEOREM 3. If f A(M) then there exists F A(D) so that F/M f.
Theorem 3 is proved as follows" In 2.2 we give (without a proof) a slight

modification of Lemma 1.1 in Henkin [7] which expresses the fact that the
local version of Theorem 3 is the case when D is strictly convex domain and
M is a plane section. In 2.3 we use this localization lemma and the results of
Section i to identify certain sheaves we use in 2.4 together with an analogue
of Cartan’s "Theorem B" to finish the proof of Theorem 3.

Finally in 2.5 we use an embedding result of Fornaess [4] Theorem 9 and
Theorem 3 above to obtain the following approximation result.

THEOREM 4. Let D be a bounded strictly pseudoconvex domain in C with
C boundary. Then there exist a neighborhood 12 of D and functions
ql, tO,, H(I)) so that given f A(D), e > 0 and 0 <- <o there exists a
polynomial h in the functions Pl,..., P so that Ill-hll’ < e where

IIf-hll’= sup_lDj(z)-D,h(z)l.
la [l .D

We note that the fact that functions in A(D) can be approximated in the
above sense by functions in H(12) for a suitable neighborhood 12 of D can be
obtained as a consequence of Lemma 2’ of Cirka [3] which is proved by
different methods.
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2.2. Localization. For z* OM let

,)
1 O2P (z*) (z, z)(z z)

If U is an open set in D’ we denote by 0u the space of holomorphic
functions on U and we set :u(M’)= {f e 0t Ills, 0}.
We can state now:

LEMMA 2.1. Let z*e OM. Then for any e > 0 there exist constants 0
o- < e, functions

F, F,_ e -3*,,)(M’)
and numbers n,..., n_{1 n} so that the map

* * F(z, z*), F(z),..., F,_(z))Z (Zn Znl Znk_l Znk_

is a biholomorphic change of variables from the ball B(z*, or) onto a neigh-
borhood U. of 0 in the space of complex variables a=(o)x,...,
Moreover; the preimage G* of some strictly convex subdomain, V of U* with
C boundary and with . U*, satisfies

D fqB(z*, 8) G,D.

For the proof we refer to Lemma 1.11 in Henkin [7].

2.3. Identification of sheaves. We denote by 0 the sheaf of germs of
holomorphic functions on D’ and by W the sheaf of germs of C functions
on D which are holomorphic in D. We set

’(M’) (f O/tiM’ =-- O} and -W(M) { e W Io[ M-- 0}.

We define MW= W/W(M); it follows from Lemma 2.1 and Corolla_ry 1 that
MW can be identified with the sheaf of germs of C functions on M that are
holomorphic when restricted to M.
The stalk over z e D’ of the sheaf 0 will be denoted by Oz and similarly for

the other sheaves considered. We can state now"

LEMMA 2.2. If z b then the map (R)o -" (o induces an isomorphism
$- (M’) (R) oz W tiff(M).

Proof. If z )-OM there is nothing to show; so we assume z z* OM.
Since Wz is a flat 0z-module (see [10, Theorems 5.1 and 5.2]), tensoring
the inclusion O--5"z(M’)--Oz with Wz, the above map is injective. The
fact that it is onto follows from Theorem 2 via Lemma 2.1. The lemma is
proved.

2.4. Proof of Theorem 3. The sequence O--->W(M)-->W--->MW--->O is
an exact sequence of sheaves. Since $(M’) is a coherent sheaf in D’ [6,
Theorem 2, page 138] using Theorem 5.4 in Nagel [10] we get
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Hq(D, ff(M’)@ 0 W)= 0 for all q >-1. So, via Lemma 2.2, we obtain

Hq (/3, yW(M)) 0 for all q _> 1.

Now Theorem 3 can be obtained by passing to long exact cohomology
sequences.

2.5. Proof of Theorem 4. We first need:

LEMMA 2.3. Let C be a bounded strictly convex domain in C" with C
boundary and let f A(C). Then giv_en any e > 0 and 0 <- <o them exists a
polynomial p over C" so that lif-pll <-e.

Proof. Without loss of generality we assume 0 C. For 0 < r < 1 we put

C={zC"/r. zeC} =1- C.
r

Then Cr is strictly convex and we set L(z)=/(r. z). Now L A(C,) and
since [ A(C) we can find 0 < rl < 1 so that IlY-LII < /2. Pick r2 so that
rl < r2 < 1. Then C c C2 c C2 c Cr, and 5, H(C2). Via integral formulas we
can find a constant K so that

Ilhll-< K. Ilhllff= for all h H(Cr)
Finally since C is convex and hence polynomially convex, there exists a

polynomial p over 12" so that

Then we have

Ill- pIIF-< IlY-/,11+ I1,- plIF"= <- e/2 +K e/2K e.

This ends the proof of the lemma.

In order to finish the proof of Theorem 4 we use Corollary 9 on page 276
of [6] to find a domain of holomorphy so that D f and D is holomor-
phically convex in f. The embedding theorem for complex manifolds
guarantees the hypothesis we need in order to apply Fornaess’s result [4,
Theorem 9]. Therefore we can find an embedding " f 12" and a strictly
convex domain C on C" with C boundary so that:

(i) -I onto M’

is biholomorphic; where M’ is a closed submanifold in

(ii) (D) c C and (f-D) 12" C,
(iii) M’ intersects 0C transversally.

Let -" M’--- f be the inverse of and put g=[ -. Set M=
C f3 M’. Then g A(M) and by Theorem 3 we can find G A(C) so that
G/M=g.
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There exist constants Kt, 0_< < 0% depending on the derivatives of the
components of W, so that IIs ’I’llf’-< K,. Ilsll for all S A(C).

Finally use Lemma 2.3 to find a polynomial p over C so that lip- GII
e/Kt and put h p W H(I). Then we have Ill- hll< as desired.
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