# A DENSITY THEOREM FOR A CLASS OF DIRICHLET SERIES 

BY

## Don Redmond

## I. Introduction and statement of results

Let $f(s)=\sum_{n=1}^{\infty} a(n) n^{-s}, a(1) \neq 0$, be a Dirichlet series that converges absolutely for $\operatorname{Re}(s)>1$ and that can be continued to a function analytic on $\operatorname{Re}(s)>-1$, except for a finite number of poles in the strip $0<\operatorname{Re}(s) \leq 1$. Let $N(\sigma, T)$ be the number of zeros, $\rho$, of $f(s)$ with $1 \geq \operatorname{Re}(\rho) \geq \sigma$ and $|\operatorname{Im}(\rho)| \leq T$, where $\sigma \geq 1 / 2$ and $T \geq 1$. The purpose of this paper is to give estimates for $N(\sigma, T)$.

Let $g(s)=\sum_{n=1}^{\infty} b(n) n^{-s}$ be a Dirichlet series that also converges absolutely for $\operatorname{Re}(s)>1$. Let $\Delta(s)=\prod_{j=1}^{N} \Gamma\left(\alpha_{j} s+\beta_{j}\right)$, where $\alpha_{j}>0$ and $\beta_{j}$ are complex, $1 \leq j \leq N$. We assume that there exist real numbers $C$ and $\theta$, with $C>0$, and a complex number $\delta$ such that $f(s)$ and $g(s)$ satisfy the functional equation

$$
\begin{equation*}
\Delta(s) f(s)=C^{\theta s+\delta} \Delta(1-s) g(1-s) \tag{1.1}
\end{equation*}
$$

We shall assume the following estimates on the coefficients of $f(s)$ and $g(s)$ :

$$
\begin{equation*}
\sum_{n \leq x}|a(n)|^{2} \ll x \log ^{M_{1}} x \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x}|b(n)|^{2} \ll x \log ^{M_{2}} x \tag{1.3}
\end{equation*}
$$

Let $a^{*-1}(n)$ be the Dirichlet convolution inverse of $a(n)$, i.e.,

$$
\left(a^{*} a^{*-1}\right)(n)=\sum_{d \mid n} a(d) a^{*-1}(n / d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

This exists since $a(1) \neq 0$. We assume

$$
\begin{equation*}
x \log ^{M_{3}} x \ll \sum_{n \leq x}\left|a^{*-1}(n)\right|^{2} \ll x \log ^{M_{3}} x \tag{1.4}
\end{equation*}
$$

Note that if $a(n) \geq 0$, then $\left|a^{*-1}(n)\right| \leq a(n)$ and so the upper estimate follows from (1.2) with $M_{3}=M_{1}$. Let $W \geq 1$ and

$$
c(n)=c(n, W)=\sum_{\substack{d \mid n, d \leq W}} a(d) a^{*^{-1}}(n / d)
$$

Received May 1, 1978.

Then $c(1, W)=1$ and $c(n, W)=0$ for $1<n \leq W$. We assume

$$
\begin{equation*}
\sum_{n \leq x}|c(n)|^{2} \ll x \log ^{M_{4}} x \tag{1.5}
\end{equation*}
$$

Note that (1.5) is independent of $W$. We cannot prove this in general, but when $a(n) \geq 0$, it is easy to see that the estimate is independent of $W$, since in that case $|c(n)| \leq\left(a^{*} a\right)(n)$. In general the best we can do is an estimate involving the first powers of $x$ and $W$, which is obtained by using the Cauchy-Schwarz inequality.

We shall prove the following results.
Theorem 1. Let $1 / 2 \leq \sigma \leq 1$ and let $k \geq 2$ be an integer. If we assume (1.4), (1.5) and that there exist constants $\mu(k)$ and $v(k)$ such that

$$
\begin{equation*}
\int_{-T}^{T}|f(1 / 2+i t)|^{k} d t \ll T^{\mu(k)} \log ^{v(k)} T \tag{1.6}
\end{equation*}
$$

as $T \rightarrow+\infty$, then, as $T \rightarrow+\infty$,

$$
N(\sigma, T) \ll\left(T^{2(1-\sigma)}+T^{2(k+2 \mu(k))(1-\sigma)(k+4-4 \sigma)}\right) \log ^{M_{1}(k)} T,
$$

where $M_{1}(k)=\max \left(M_{4}+10,3+\left(2 v(k)+\left(M_{3}+5\right) k\right) /(k+2)\right)$.
Theorem 2. If we assume (1.4), (1.5) and (1.6), then for

$$
\sigma \geq(8 \mu(k)+3 k-4) /(8 \mu(k)+4 k-4)
$$

we have

$$
N(\sigma, T) \ll T^{(4 \mu(k)+k)(1-\sigma) /(4-k+(2 k-4) \sigma)} \log ^{M_{2}(k)} T,
$$

as $T \rightarrow+\infty$, where $M_{2}(k)=\max \left(M_{4}+6, v(k)+3, M_{3}+6\right)$.
Corollary. Uniformly on $1 / 2 \leq \sigma \leq 1$ we have, as $T \rightarrow+\infty$,

$$
N(\sigma, T) \ll T^{(k+2 \mu(k))(8 \mu(k)+4 k-4)(1-\sigma)\left(4 k \mu(k)+2 k^{2}\right)} \log ^{M_{3}(k)} T,
$$

where $M_{3}(k)=\max \left(M_{1}(k), M_{2}(k)\right)$.
In most applications we take either $k=2$ or $k=4$, which is the reason for Theorem 3 below.

Theorem 3. Let $A=\sum_{j=1}^{N} \alpha_{j}$. If we assume (1.2) and (1.3), then we may take

$$
\mu(2)=\max (1,2 A-1) \quad \text { and } \quad v(2)=\max \left(M_{1}+1, M_{2}\right) .
$$

If we further assume that

$$
\sum_{n \leq x}\left|\left(a^{*} a\right)(n)\right|^{2} \ll x \log ^{M_{5}} x \quad \text { and } \quad \sum_{n \leq x}\left|\left(b^{*} b\right)(n)\right|^{2} \ll x \log ^{M_{6}} x
$$

then we may take $\mu(4)=\max (1,4 A-1)$ and $v(4)=\max \left(M_{5}+1, M_{6}\right)$.

In the proofs of Theorems 1 and 2 we adapt the method of Montgomery [13] and in the proof of Theorem 3 we adapt the method of Ramachandra [15].

In [16] Sokolovskii used Ingham's method of convexity theorems to give estimates for $N(\sigma, T)$ for the same class of Dirichlet series as we are concerned with here. He assumes (1.2), (1.4) and (1.5) and the essential tool for him is an estimate for $f(1 / 2+i t)$. We have replaced this by the estimate (1.6). He uses the functional equation (1.1) to derive his estimate for $f(1 / 2+i t)$, while we use the functional equation in the proof of Theorem 3 and in the proof of Theorem 1 to guarantee certain behavior of the function $f(s)$.

One could also improve Theorem 2 and its corollary by using further improvements in large value theorems for Dirichlet polynomials. See, for example, Huxley and Jutila [8] or Jutila [10]. We hope to return to this in a latter paper.

In the sequel the $c_{j}, j=1,2, \ldots$, will denote positive absolute constants. We use $\int_{(a)}$ to denote the integral $\int_{a-i \infty}^{a+i \infty}$ and $\int_{(a, T)}$ to denote the integral $\int_{a-i T}^{a+i T}$.

## 2. Proof of Theorem 1

We state a lemma that we need for the proof of Theorem 1. This is a version of Theorem 2 of [12].

Lemma 1. Let $M$ be given and $\left\{a_{n}\right\}, 1 \leq n \leq M$, be complex numbers. For $1 \leq r \leq R$, let $s_{r}=\sigma_{r}+i t_{r}$ be arbitrary complex numbers. Let

$$
\begin{aligned}
\tau & =\min \left\{t_{a}-t_{b}: 1 \leq a<b \leq R\right\} \\
S & =1+\max \left\{t_{r}: 1 \leq r \leq R\right\}-\min \left\{t_{r}: 1 \leq r \leq R\right\} \\
\omega & =\min \left\{\sigma_{r}: 1 \leq r \leq R\right\}
\end{aligned}
$$

Then

$$
\sum_{r=1}^{R}\left|\sum_{n=1}^{M} a_{n} n^{-s_{r}}\right|^{2} \ll(S+M)\left(1+\tau^{-1} \log ^{2} M\right) \log ^{4} M \sum_{n=1}^{M} \frac{\left|a_{n}\right|^{2}}{n^{2}}
$$

To begin the proof of Theorem 1 let

$$
\begin{equation*}
M(s)=M(s, W)=\sum_{n \leq W} a^{*-1}(n) n^{-s} \tag{2.1}
\end{equation*}
$$

Then $f(s) M(s)=\sum_{n=1}^{\infty} c(n, W) n^{-s}$. If $r_{1}>1$, then by a standard integration formula we have, if $U>1$,

$$
\begin{align*}
e^{-1 / U}+\sum_{n>W} c(n) n^{-s} e^{-n / U} & =\sum_{n=1}^{\infty} c(n) n^{-s} e^{-n / U} \\
& =\frac{1}{2 \pi i} \int_{\left(r_{1}\right)} f(s+z) M(s+z) U^{z} \Gamma(z) d z \tag{2.2}
\end{align*}
$$

We assume $W \leq U \leq T^{c_{1}}$.

Let $s=\sigma+i t$, where $1 / 2<\sigma \leq 1$, and move the contour to $\operatorname{Re}(z)=$ $1 / 2-\sigma$. Then we pick up the poles of the integrand, by the residue theorem, which are the poles of $f(s+z)$ in $0<\sigma \leq 1$ and the pole at $z=0$ of $\Gamma(z)$. Since $f(s)$ satisfies the functional equation and both $f(s)$ and $g(s)$ are absolutely convergent for $\sigma>1$, it follows by a standard Phragmen-Lindelöf argument that, if $Q$ is sufficiently small,

$$
\begin{aligned}
\sum_{n=1}^{\infty} c(n) n^{-s} e^{-n / U}= & \frac{1}{2 \pi i} \int_{(1 / 2-\sigma)} f(s+z) M(s+z) U^{z} \Gamma(z) d z \\
& +\sum_{\lambda} \frac{1}{2 \pi i} \int_{|z-(\lambda-s)|=Q} f(s+z) M(s+z) U^{z} \Gamma(z) d z \\
= & \frac{1}{2 \pi i} \int_{(1 / 2-\sigma)} f(s+z) M(s+z) U^{z} \Gamma(z) d z+f(s) M(s) \\
& +\sum_{\lambda \neq 0} \frac{1}{2 \pi i} \int_{|z-(\lambda-s)|=Q} f(s+z) M(s+z) U^{z} \Gamma(z) d z
\end{aligned}
$$

where the sum over $\lambda$ denotes a sum over the poles of the integrand.
If $\lambda-s$ is a pole of $f(s+z)$, let $n(\lambda)$ be its order and let $a_{-j}(\lambda), 1 \leq j \leq n(\lambda)$, be the coefficients of the principal part of the Laurent expansion of $f(s+z)$ about $z=\lambda-s$. Then we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{|z-(\lambda-s)|=Q} f(s+z) M(s+z) U^{z} \Gamma(z) d z \\
&= U^{\lambda-s} \Gamma(\lambda-s) \sum_{j=1}^{n(\lambda)} a_{-j}(\lambda) \\
& \times \sum_{e+f+g=j-1} \frac{\left(\Gamma^{(e)} / \Gamma\right)(\lambda-s) M^{(f)}(\lambda-s) \log ^{g} U}{e!f!g!}
\end{aligned}
$$

Suppose $1 / 2+1 / \log T \leq \sigma \leq 1$ and $\rho=\beta+i \gamma, \beta \geq \sigma$, is a zero of $f(s)$. If $\lambda=u+i v$, let $u^{*}=\max \{u: \lambda\}$ and $n^{*}=\max \{n(\lambda): \lambda\}$. If $|\gamma| \geq \log ^{2} T$, then the sum of the residue terms is, by Stirling's formula,

$$
\begin{align*}
& \ll \sum_{\lambda \neq 0} U^{u-\beta}|v-\gamma|^{u-\beta-1 / 2} e^{-\pi|v-\gamma| / 2} \log ^{n(\lambda)-1} U \\
& \ll U^{u^{*}-\beta}|\gamma|^{u^{*}-\beta-1 / 2} e^{-\pi|\gamma| / 2} \log ^{n^{*-1}} U  \tag{2.4}\\
& \ll U^{u^{*}-\beta}|\gamma|^{u^{*}-\beta-1 / 2} e^{-(\pi / 2) \log ^{2} T} \log ^{n^{*}-1} U \\
& =o(1)
\end{align*}
$$

as $T \rightarrow+\infty$, since $U \leq T^{c_{1}}$.
In [1, Theorem 10] it is shown that $f(s)$ has $\ll T \log T$ zeros in the rectangle $0 \leq \operatorname{Re}(s) \leq 1,|\operatorname{Im}(s)| \leq T$. Thus there are $\ll \log ^{3} T$ zeros with $|\gamma| \leq$ $\log ^{2} T$. Thus, if we add to the final estimate an $O\left(\log ^{3} T\right)$ term to account for
the neglected zeros, we can assume $|\gamma| \geq \log ^{2} T$. Thus, by (2.3) and (2.4), we have

$$
\begin{align*}
\sum_{n=1}^{\infty} & c(n) n^{-s} e^{-n / U} \\
= & \frac{1}{2 \pi} \int_{-\infty}^{+\infty} f\left(\frac{1}{2}+i(t+u)\right) M\left(\frac{1}{2}+i(t+u)\right) U^{1 / 2-\sigma+i u} \Gamma\left(\frac{1}{2}-\sigma+i u\right) d u  \tag{2.5}\\
& +f(s) M(s)+o(1)
\end{align*}
$$

as $T \rightarrow+\infty$.
Since $f(s)$ satisfies the functional equation (1.1) and is absolutely convergent for $\operatorname{Re}(s)>1$ we know that $|f(\sigma+i t)|$ is bounded by a power of $|t|$ for $\sigma$ in any finite fixed vertical strip. Also, by (1.5), we know that $|c(n)| \leq c_{2} n^{c_{3}}$. Thus we have
$\int_{ \pm\left(\log ^{2} T\right) / 2}^{ \pm \infty} f\left(\frac{1}{2}+i(t+u)\right) M\left(\frac{1}{2}+i(t+u)\right) U^{1 / 2-\sigma+i u} \Gamma\left(\frac{1}{2}-\sigma+i u\right) d u$

$$
\begin{align*}
& \ll T^{c_{4}} \int_{\left(\log ^{2} T\right) / 2}^{+\infty} u^{c_{5}} e^{-c_{6} u} d u \\
& \ll T^{c_{4}} e^{-\left(c_{6} / 2\right) \log ^{2} T} \int_{1}^{+\infty} u^{c_{s}} e^{-c_{6} u / 2} d u  \tag{2.6}\\
& =o(1),
\end{align*}
$$

as $T \rightarrow+\infty$, and, if $s=\sigma+i t, 1 / 2<\sigma \leq 1$, then

$$
\begin{aligned}
\sum_{n>u^{2}} c(n) n^{-s} e^{-n / U} & \ll \sum_{n>U^{2}} n^{c 7} e^{-n / U} \\
& \ll \int_{U^{2}}^{+\infty} t^{c>} e^{-t / U} d t \\
& \ll e^{-U 2 / 2 U} \int_{1}^{+\infty} t^{c 7} e^{-t / 2 U} d t \\
& \ll e^{-U / 2} \\
& =o(1)
\end{aligned}
$$

as $T \rightarrow+\infty$, if $U$ tends to $+\infty$ with $T$.
Thus, by (2.5)-(2.7), we have, since $c(n, W)=0$ for $1<n \leq W$,

$$
\begin{aligned}
& e^{-1 / U}+\sum_{W<n \leq U^{2}} c(n) n^{-s} e^{-n / U} \\
&=f(s) M(s)+\frac{1}{2 \pi i} \int_{\left(1 / 2-\sigma,\left(\log ^{2} T\right) / 2\right)} f(s+z) M(s+z) U^{z} \Gamma(z) d z+o(1)
\end{aligned}
$$

as $T \rightarrow+\infty$.

Let $\rho=\beta+i \gamma$ be a zero of $f(s)$. Then we have either

$$
\begin{gather*}
\left|\sum_{W<n \leq U 2} c(n) n^{-\rho} e^{-n / U}\right| \gg 1  \tag{2.8}\\
\left|\int_{(1 / 2-\sigma,(\log 2 T) / 2)} f(\rho+z) M(\rho+z) U^{z} \Gamma(z) d z\right| \gg 1 \tag{2.9}
\end{gather*}
$$

or both. Of the zeros $\rho$ with $\beta \geq \sigma,|\gamma| \leq T$ we take a subset $R$ of them so that if $\rho_{1}, \rho_{2}$ are two zeros, then

$$
\begin{equation*}
\left|\gamma_{1}-\gamma_{2}\right| \geq 2 \log ^{2} T \tag{2.10}
\end{equation*}
$$

By Theorem 3 of [1], we have $N(T+1)-N(T) \ll \log T$, where $N(T)$ is the total number of zeros of $f(s)$ in the rectangle $0 \leq \operatorname{Re}(s) \leq 1,|\operatorname{Im}(s)| \leq T$, and so

$$
N(1 / 2, t+1)-N(1 / 2, t) \ll \log T
$$

for $|t| \leq T$. Thus we may choose the subset of $R$ zeros so that

$$
N(\sigma, T) \ll(R+1) \log ^{3} T .
$$

Finally, let $R_{1}$ and $R_{2}$ be the number of the $R$ zeros such that (2.8) and (2.9), respectively, hold. Then $R \leq R_{1}+R_{2}$.

If (2.8) holds, then there is a $Y$ such that $W \leq Y \leq U^{2}$ and

$$
\left|\sum_{n=Y}^{2 Y} c(n) n^{-\rho} e^{-n / U}\right| \gg \log ^{-1} U
$$

for $\gg R_{1} \log ^{-1} U$ zeros for which (2.8) holds. If $\rho_{j}, 1 \leq j \leq R_{1}$, are the zeros under consideration, then, by Lemma 1 ,

$$
\begin{aligned}
R_{1} \log ^{-3} U & \ll \sum_{j=1}^{R_{1}}\left|\sum_{n=Y}^{2 Y} c(n) n^{-\rho_{j}} e^{-n / U}\right|^{2} \\
& \ll(T+2 Y)\left(1+\tau^{-1} \log ^{2} 2 Y\right) \log ^{4} 2 Y \sum_{n=Y}^{2 Y}|c(n)|^{2} n^{-2 \sigma} e^{-Y / U}
\end{aligned}
$$

where $\tau=\min \left|\gamma_{i}-\gamma_{j}\right| \geq 2 \log ^{2} T$, by (2.10). Thus, by (1.5), we have

$$
\begin{equation*}
R_{1} \ll(T+Y) e^{-Y / U} Y^{1-2 \sigma} \log ^{M_{3}+7} T . \tag{2.11}
\end{equation*}
$$

Let $F(Y)=Y^{p} e^{-Y / U}$ for $Y>0$. Then

$$
F^{\prime}(Y)=Y^{p-1}(p-Y / U) e^{-Y / U}
$$

and

$$
F^{\prime \prime}(Y)=Y^{p-2}\left(p(p-1)-2 p Y / U+Y^{2} / U^{2}\right) e^{-Y / U}
$$

Now $F^{\prime}(Y)=0$ implies $Y=p U$ and $F^{\prime \prime}(p U)=-p(p U)^{p-2} e^{-Y / U}<0$. Thus $p U$ yields the maximum for $F$. Thus, from (2.11), we have

$$
\begin{equation*}
R_{1} \ll\left(T W^{1-2 \sigma}+U^{2-2 \sigma}\right) \log ^{M_{3}+7} T . \tag{2.12}
\end{equation*}
$$

Suppose (2.9) holds and let $\rho_{j}, 1 \leq j \leq R_{2}$, be the zeros under consideration. For these values let $t_{j}$ be such that $\left|t_{j}-\gamma_{j}\right| \leq\left(\log ^{2} T\right) / 2$ and $\left|f\left(1 / 2+i t_{j}\right) M\left(1 / 2+i t_{j}\right)\right|$ is maximal. Assume that $\beta \geq \sigma \geq 1 / 2+1 / \log T$. Then

$$
\int_{-\infty}^{+\infty}|\Gamma(1 / 2-\beta+i u)| d u \ll \log T
$$

Thus

$$
\begin{equation*}
\left|f\left(1 / 2+i t_{j}\right) M\left(1 / 2+i t_{j}\right)\right| \gg U^{\sigma-1 / 2} \log ^{-1} T \tag{2.13}
\end{equation*}
$$

If $\rho_{a}$ and $\rho_{b}$ are zeros with $1 \leq a<b \leq R_{2}$ and $t_{a}$ and $t_{b}$ are the corresponding values of $t$, then, by the triangle inequality, the definition of $t_{j}$ and (2.10), we have $\left|t_{a}-t_{b}\right| \geq \log ^{2} T$.

For any integer $k \geq 2$ we have

$$
\sum_{j=1}^{R_{2}}\left|f\left(1 / 2+i t_{j}\right)\right|^{k} \ll \int_{-T}^{T}|f(1 / 2+i t)|^{k} d t
$$

Then, by Lemma 1, (1.4) and (2.13), we have

$$
R_{2} U^{2 k \sigma /(k+2)-k /(k+2)} \log ^{-2 k /(k+2)} T
$$

$$
\begin{aligned}
& \ll \sum_{j=1}^{R_{2}}\left|f\left(1 / 2+i t_{j}\right) M\left(1 / 2+i t_{j}\right)\right|^{2 k /(k+2)} \\
& \ll\left(\sum_{j=1}^{R_{2}}\left|f\left(1 / 2+i t_{j}\right)\right|^{k}\right)^{2 /(k+2)}\left(\sum_{j=1}^{R_{2}}\left|M\left(1 / 2+i t_{j}\right)\right|^{2}\right)^{k /(k+2)} \\
& \ll\left(T^{2 \mu(k) /(k+2)} \log ^{2 v(k) /(k+2)} T\right)\left((T+W) \log ^{4} W \log ^{M_{3}+1} W\right)^{k /(k+2)} .
\end{aligned}
$$

Thus

$$
\begin{align*}
R_{2} \ll & T^{2 \mu(k) /(k+2)}(T+W)^{k /(k+2)} U^{(k-2 k \sigma) /(k+2)}  \tag{2.14}\\
& \times \log ^{\left(2 v(k)+\left(M_{3}+5\right) k\right) /(k+2)} T
\end{align*}
$$

Thus, by (2.12) and (2.16), we have

$$
\begin{aligned}
N(\sigma, T)< & (R+1) \log ^{3} T \\
< & \left(T W^{1-2 \sigma}+U^{2-2 \sigma}\right) \log ^{M_{4}+10} T \\
& +(T+W)^{k /(k+2)} T^{2 \mu(k) /(k+2)} U^{(1-2 \sigma) k /(k+2)} \\
& \times \log ^{3+\left(2 v(k)+\left(M_{3}+5\right) k\right) /(k+2)} T .
\end{aligned}
$$

If we choose $W=T$ and $U=T^{(k+2 \mu(k)) /(k+4-4 \sigma)}$, we have

$$
N(\sigma, T) \ll\left(T^{2(1-\sigma)}+T^{2(k+2 \mu(k))(1-\sigma) /(k+4-4 \sigma)}\right) \log ^{M_{1}(k)} T
$$

which completes the proof of Theorem 1.

## 3. Proof of Theorem 2 and its corollary

We first state a lemma that we shall need.
Lemma 2. Under the hypotheses of Lemma 1, if $V$ satisfies

$$
V^{2} \gtrdot S^{1 / 2}\left(\log ^{3 / 2} S\right)(\log \log M) \sum_{n=1}^{M}\left|a_{n}\right|^{2 n-2 \omega}
$$

then the number of $r, 1 \leq r \leq R$, such that $\left|\sum_{n=1}^{M} a_{n} n^{-s_{r}}\right| \geq V$ is

$$
\ll M V^{-2}\left(1+\tau^{-1} \log M\right) \sum_{n=1}^{M}\left|a_{n}\right|^{2} n^{-2 \omega}
$$

This is Theorem 3 of [12].
Throughout the proof of Theorem 2 we assume that

$$
\sigma \geq(8 \mu(k)+3 k-4) /(8 \mu(k)+4 k-4)
$$

We take $V=\log ^{-1} U$ in Lemma 2. The hypotheses of the lemma will be satisfied if

$$
\begin{equation*}
W^{2 \sigma-1} \gg V^{-2} T^{1 / 2} \log ^{M_{4}+2} T \gg T^{1 / 2} \log ^{M_{4}+4} T . \tag{3.1}
\end{equation*}
$$

Thus, subject to (3.1), we have, by Lemma 2 and (1.5),

$$
\begin{aligned}
R_{1} \log ^{-1} U & \ll Y V^{-2}\left(1+\tau^{-1} \log Y\right) \sum_{n=Y}^{2 Y}|c(n)|^{2} n^{-2 \sigma} \\
& \ll Y\left(\log ^{2} U\right) Y^{1-2 \sigma}\left(\log ^{M_{4}} Y\right) e^{-Y / U}
\end{aligned}
$$

Thus

$$
\begin{equation*}
R_{1} \ll U^{2-2 \sigma} \log ^{M_{4}+3} T \tag{3.2}
\end{equation*}
$$

Let $V_{1}$ be a positive quantity. Then the number of $r$ for which $\left|f\left(1 / 2+i t_{r}\right)\right| \geq V_{1}$ is

$$
\begin{equation*}
\ll V_{1}^{-k} T^{\mu(k)} \log ^{\nu(k)} T \tag{3.3}
\end{equation*}
$$

By (2.13), we have for the remaining $r$,

$$
\left|M\left(1 / 2+i t_{r}\right)\right| \geq U^{\sigma-1 / 2} V_{1}^{-1} \log ^{-1} T
$$

We now take $V=U^{\sigma-1 / 2} V_{1}^{-1} \log ^{-1} T$ in Lemma 2. The hypotheses of Lemma 2 will be satisfied if

$$
\begin{align*}
U^{2 \sigma-1} & >U_{1}^{2} T^{1 / 2} \log ^{4} T \sum_{n \leq W}\left|a^{*-1}(n)\right|^{2} n^{-1} \\
& \gg V_{1}^{2} T^{1 / 2} \log ^{M_{3}+5} T \tag{3.4}
\end{align*}
$$

by (1.4), since $W \leq T^{c_{1}}$. Thus, by Lemma 2 and (1.4), the number of such $r$ is

$$
\begin{align*}
& \ll W\left(U^{\sigma-1 / 2} V_{1}^{-1} \log ^{-1} T\right)^{-2} \sum_{n \leq W}\left|a^{*-1}(n)\right|^{2} n^{-1} \\
& <W U^{1-2 \sigma} V_{1}^{2} \log ^{3+M_{3}} T . \tag{3.5}
\end{align*}
$$

Thus, by (3.3) and (3.5), we have

$$
\begin{equation*}
R_{2} \ll V_{1}^{-k} T^{\mu(k)} \log ^{v(k)} T+W U^{1-2 \sigma} V_{1}^{2} \log ^{3+M_{3}} T \tag{3.6}
\end{equation*}
$$

Thus, by (3.2) and (3.6) we have

$$
N(\sigma, T) \ll\left(U^{2-2 \sigma}+V_{1}^{-k} T^{\mu(k)}+W U^{1-2 \sigma} V_{1}^{2}\right) \log ^{M_{2}(k)} T .
$$

Choose $W$ so that we have equality in (3.1) and $U$ so that we have equality in (3.4). Choosing

$$
V_{1}=T^{(2 \mu(k)+1) \sigma-(1+\mu(k)) /(4-k+(2 k-4) \sigma)}
$$

gives the result and completes the proof of Theorem 2.
To prove the corollary to Theorem 2 we need only note that the function (of $\sigma) 2(k+2 \mu(k)) /(k+4-4 \sigma)$ is increasing, whereas the function (of $\sigma)(4 \mu(k)+$ $k) /(4-k+(2 k-4) \sigma)$ is decreasing for $k \geq 2$. Since these two functions are equal at

$$
\sigma=(8 \mu(k)+3 k-4) /(8 \mu(k)+4 k-4)
$$

the result of the corollary follows.

## 4. Proof of Theorem 3

We state two lemmas that we need for the proof of Theorem 3.
Lemma 3 (Montgomery-Vaughn). Let $\left\{a_{n}\right\}$ be a sequence of complex numbers such that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}$ and $\sum_{n=1}^{\infty} n\left|a_{n}\right|^{2}$ both converge. Then, as $T \rightarrow+\infty$,

$$
\int_{-T}^{T}\left|\sum_{n=1}^{\infty} a_{n} n^{-i t}\right|^{2} d t \ll \sum_{n=1}^{\infty}(T+n)\left|a_{n}\right|^{2} .
$$

This is Corollary 2 of [14].
Lemma 4. Let $\left\{c_{n}\right\}$ be a sequence of nonnegative numbers such that

$$
\sum_{n \leq x} c_{n} \ll x^{c} \log ^{d} x
$$

as $x \rightarrow+\infty$. If $a>0$, then as $U \rightarrow+\infty$,

$$
\sum_{n=1}^{\infty} c_{n} n^{-1} e^{-a n / U} \ll\left\{\begin{array}{cc}
\log ^{d+1} U & \text { if } l=c \\
U^{c-1} \log ^{d} U & \text { if } l \neq c .
\end{array}\right.
$$

This is easily proved by partial summation.
Let $\varepsilon>0$. Then we have, if $s=1 / 2+i t$,

$$
\sum_{n=1}^{\infty} a(n) n^{-s} e^{-n / U}=\frac{1}{2 \pi i} \int_{(1+\varepsilon)} f(s+z) U^{z} \Gamma(z) d z
$$

Let $-1<\eta<0$ and let $\lambda$ denote a pole of the integrand. Then, since all the poles of $f(w)$ are in the strip $0<\operatorname{Re}(w) \leq 1$, we have, for $Q$ sufficiently small,

$$
\begin{aligned}
\sum_{n=1}^{\infty} a(n) n^{-s} e^{-n / U}= & \sum_{0 \leq \operatorname{Re}(\lambda)<1 / 2} \frac{1}{2 \pi i} \int_{|z-(\lambda-s)|=Q} f(s+z) U^{2} \Gamma(z) d z \\
& +\frac{1}{2 \pi i} \int_{(\eta)} f(s+z) U^{z} \Gamma(z) d z \\
= & f(s)+\sum_{0<\operatorname{Re}(\lambda)<1 / 2} \frac{1}{2 \pi i} \int_{|z-(\lambda-s)|=Q} f(s+z) U^{z} \Gamma(z) d z \\
& +\frac{1}{2 \pi i} \int_{(\eta)} f(s+z) U^{z} \Gamma(z) d z,
\end{aligned}
$$

which can be rewritten as

$$
\begin{align*}
f(s)= & \sum_{n=1}^{\infty} a(n) n^{-s} e^{-n / U}-\frac{1}{2 \pi i} \int_{(\eta)} f(s+z) U^{z} \Gamma(z) d z \\
& -\sum_{0<\operatorname{Re}(\lambda)<1 / 2} \frac{1}{2 \pi i} \int_{|z-(\lambda-s)|=Q} f(s+z) U^{z} \Gamma(z) d z . \tag{4.1}
\end{align*}
$$

Let $H(s)=C^{\theta s+\delta} \Delta(1-s) / \Delta(s)$ and assume $H(s)$ has no poles in $[-1,0)$. Then, by the functional equation (1.1), we have

$$
f(s+z)=H(s+z) g(1-s-z) .
$$

Thus, if $-1<\eta<-1 / 2$ and $-1<\eta_{1}<0$, we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{(\eta)} f(s+z) U^{z} \Gamma(z) d z \\
&= \frac{1}{2 \pi i} \int_{(\eta)} H(s+z) g(1-s-z) U^{z} \Gamma(z) d z \\
&= \frac{1}{2 \pi i} \int_{(\eta)} H(s+z)\left(\sum_{n>u} b(n) n^{s+z-1}\right) U^{z} \Gamma(z) d z \\
&+\frac{1}{2 \pi i} \int_{\left(\eta_{1}\right)} H(s+z)\left(\sum_{n \leq U} b(n) n^{s+z-1}\right) U^{z} \Gamma(z) d z .
\end{aligned}
$$

By Stirling's formula we have

$$
\begin{aligned}
\left|H(s+z) U^{z}\right| & =\left|C^{\theta(s+z)+\delta} \Delta(1-s-z) U^{z} / \Delta(s+z)\right| \\
& =C^{\theta \operatorname{Re}(s+z)+\operatorname{Re}(\delta)} U^{\operatorname{Re}(z)}|\Delta(1-s-z) / \Delta(s+z)| \\
& \ll C^{\theta \operatorname{Re}(s+z)} U^{\operatorname{Re}(z)} D^{-2 \operatorname{Re}(s+z)} T^{A(1-2 \operatorname{Re}(s+z))},
\end{aligned}
$$

where

$$
D=\exp \left\{\sum_{j=1}^{N} \alpha_{j} \log \alpha_{j}\right\} .
$$

Choose $\eta=-1 / 2-1 / \log T, \eta_{1}=-1 / \log T$ and $U=T$. Then on $\operatorname{Re}(z)=\eta$ we have

$$
\left|H(s+z) U^{z}\right| \ll C^{-\theta / \log T} T^{-1 / 2-1 / \log T} D^{-2 / \log T} T^{A(1-2 / \log T)} \ll T^{A-1 / 2}
$$

and on $\operatorname{Re}(z)=\eta_{1}$ we have

$$
\left|H(s+z) U^{z}\right| \ll C^{\theta(1 / 2-1 / \log T)} T^{-1 / \log T} D^{-2(1 / 2-1 / \log T)} T^{-A / \log T} \ll 1
$$

With the notation as in the proof of Theorem 1 we have

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{|z-(\lambda-s)|=Q} f(s+z) U^{z} \Gamma(z) d z \\
& =U^{\lambda-s} \Gamma(\lambda-s) \sum_{j=1}^{n(\lambda)} a_{-j}(\lambda) \sum_{e+f=j-1} \frac{\left(\Gamma^{(e)} / \Gamma\right)(\lambda-s) \log ^{f} U}{e!f!}  \tag{4.3}\\
& \ll U^{\operatorname{Re}(\lambda-s)}|\Gamma(\lambda-s)| \log ^{n(\lambda)-1} U
\end{align*}
$$

Thus, by (4.1)-(4.3),

$$
\begin{aligned}
f\left(\frac{1}{2}+i t\right)= & \sum_{n=1}^{\infty} a(n) n^{-1 / 2-i t} e^{-n / T} \\
& +O\left\{\sum_{0<\operatorname{Re}(\lambda)<1 / 2} T^{\operatorname{Re}(\lambda)-1 / 2}\left|\Gamma\left(\lambda-\frac{1}{2}-i t\right)\right| \log ^{n(\lambda)-1} T\right\} \\
& -\frac{1}{2 \pi i} \int_{(\eta)} H(s+z)\left(\sum_{n>T} b(n) n^{s+z-1}\right) T^{z} \Gamma(z) d z \\
& -\frac{1}{2 \pi i} \int_{\left(\eta_{1}\right)} H(s+z)\left(\sum_{n \leq T} b(n) n^{s+z-1}\right) T^{z} \Gamma(z) d z
\end{aligned}
$$

Thus

$$
\begin{align*}
\int_{-T}^{T} \mid & \left.f(1 / 2+i t)\right|^{2} d t \\
\ll & \int_{-T}^{T}\left|\sum_{n=1}^{\infty} a(n) n^{-1 / 2-i t} e^{-n / T}\right|^{2} d t \\
& +\int_{-T}^{T}\left(\sum_{0<\operatorname{Re}(\lambda)<1 / 2} T^{\operatorname{Re}(\lambda)-1 / 2}\left|\Gamma\left(\lambda-\frac{1}{2}-i t\right)\right| \log ^{n(\lambda)-1} T\right)^{2} d t \\
& +\int_{-T}^{T} T^{2 A-1}\left(\int_{-\infty}^{+\infty}\left|\sum_{n>T} b(n) n^{-1-1 / \log T+i(t+v)} \Gamma(\eta+i v)\right| d v\right)^{2} d t  \tag{4.4}\\
& +\int_{-T}^{T}\left(\int_{-\infty}^{+\infty}\left|\sum_{n \leq T} b(n) n^{-1 / 2-1 / \log T+i(t+v)} \Gamma\left(\eta_{1}+i v\right)\right| d v\right)^{2} d t \\
= & I_{1}+I_{2}+I_{3}+I_{4},
\end{align*}
$$

say.

By Lemmas 3 and 4 and (1.2), we have

$$
\begin{align*}
I_{1} & \ll \sum_{n=1}^{\infty}\left|a(n) n^{-1 / 2} e^{-n / T}\right|^{2}(T+n) \\
& =\sum_{n=1}^{\infty}|a(n)|^{2} e^{-2 n / T}+T \sum_{n=1}^{\infty}|a(n)|^{2} n^{-1} e^{-2 n / T}  \tag{4.5}\\
& \ll T \log ^{M_{1}} T+T \log ^{M_{1}+1} T \\
& \ll T \log ^{M_{1}+1} T .
\end{align*}
$$

Let $n^{*}=\max \{n(\lambda): 0<\operatorname{Re}(\lambda) \leq 1 / 2\}$. Then, by the Cauchy-Schwarz inequality,

$$
\begin{align*}
I_{2} & \ll \sum_{0<\operatorname{Re}(\lambda)<1 / 2} T^{2 \operatorname{Re}(\lambda)-1} \log ^{2 n(\lambda)-2} T \int_{-T}^{T} \sum_{0<\operatorname{Re}(\lambda)<1 / 2}\left|\Gamma\left(\lambda-\frac{1}{2}-i t\right)\right|^{2} d t  \tag{4.6}\\
& \ll \log ^{2 n \mathrm{~A}-2} T \int_{1}^{T} \sum_{0<\operatorname{Re}(\lambda)<1 / 2} t^{2 \operatorname{Re}(\lambda)-2-t} d t \\
& \ll \log ^{2 n \mathrm{~A}-2} T,
\end{align*}
$$

since $\operatorname{Re}(\lambda)<1 / 2$.
We have, by Lemmas 3 and 4, (1.3) and the Cauchy-Schwarz inequality,

$$
\begin{align*}
I_{3} & < \\
& T^{2 A-1} \int_{-T}^{T} \int_{-\infty}^{+\infty}\left|\sum_{n>T} b(n) n^{-1-1 / \log T+i(t+v)}\right|^{2}|\Gamma(\eta+i v)| d v \\
& \times \int_{-\infty}^{+\infty}|\Gamma(\eta+i v)| d v d t  \tag{4.7}\\
< & T^{2 A-1} \sum_{n>T}|b(n)|^{2} n^{-2-2 / \log T}(n+T) \\
\ll & T^{2 A-1}\left(T^{-2 / \log T} \log ^{M_{2}} T+T \cdot T^{-1-2 / \log T} \log ^{M_{2}} T\right) \\
< & T^{2 A-1} \log ^{M_{2}} T .
\end{align*}
$$

Finally, as for the estimate of $I_{3}$, we have

$$
\begin{equation*}
I_{4} \ll \sum_{n \leq T}|b(n)|^{2} n^{-1-1 / \log T}(n+T) \ll T \log ^{M_{2}} T . \tag{4.8}
\end{equation*}
$$

Thus, by (4.4)-(4.8), we have

$$
\begin{aligned}
\int_{-T}^{T}|f(1 / 2+i t)|^{2} d t & \ll T \log ^{M_{1}+1} T+\log ^{2 n^{*-2}} T+T^{2 A-1} \log ^{M_{2}} T+T \log ^{M_{2}} T \\
& \ll T^{\mu(2)} \log ^{g(2)} T
\end{aligned}
$$

where $\mu(2)=\max (1,2 A-1)$ and $v(2)=\max \left(1+M_{1}, M_{2}\right)$, which proves the first part of Theorem 3.

The second part follows easily from the first part if we note that

$$
f^{2}(s)=\sum_{n=1}^{\infty}\left(a^{*} a\right)(n) n^{-s}, \quad g^{2}(s)=\sum_{n=1}^{\infty}\left(b^{*} b\right)(n) n^{-s}
$$

and

$$
\Delta^{2}(s) f^{2}(s)=C^{2 \theta s+2 \delta} \Delta^{2}(1-s) g^{2}(1-s)
$$

This completes the proof of Theorem 3.

## 5. Examples

Example 1. The Riemann zeta function. Here $f(s)=g(s)=\zeta(s), a(n)=$ $b(n)=1, \Delta(s)=\Gamma(s / 2), C=\pi, \theta=1$ and $\delta=-1 / 2$. Also $a^{*-1}(n)=\mu(n)$, the Möbius function. Thus we can take $M_{1}=M_{2}=M_{3}=0$. By the remark of (1.5) we see that $|c(n)| \leq d(n)$ and so we have $M_{4}=3$. By Theorem 3 we have $\mu(2)=\mu(4)=v(2)=1$ and $v(4)=4$.

Thus, for $k=2$, we have from Theorem 1,

$$
N(\sigma, T) \ll T^{4(1-\sigma) /(3-2 \sigma)} \log ^{13} T
$$

and for $k=4$ we have

$$
N(\sigma, T) \ll T^{3(1-\sigma) /(2-\sigma)} \log ^{13} T
$$

The first result is due to Titchmarsh [17] and the second is due to Ingham [9].
By the corollary to Theorem 2 these results may be improved to

$$
N(\sigma, T) \ll T^{3(1-\sigma)} \log ^{13} T \quad \text { and } \quad N(\sigma, T) \ll T^{5(1-\sigma) / 2} \log ^{13} T
$$

respectively, for $\frac{1}{2} \leq \sigma \leq 1$. The second result is due to Montgomery [13].
Example 2. Cusp forms of weight $k$ with Euler product. Let

$$
f(s)=\sum_{n=1}^{\infty} a(n) n^{-s}
$$

be a cusp form of weight $k$ with Euler product. Then it is known [6] that

$$
\Gamma(s) f(s)=(2 \pi)^{2 s-k} \Gamma(k-s) f(k-s)
$$

and that $f(s)$ is absolutely convergent for $\operatorname{Re}(s)>(k+1) / 2$.
Let $a_{1}(n)=a(n) n^{-(k-1) / 2}$ and

$$
F(s)=\sum_{n=1}^{\infty} a_{1}(n) n^{-s}=\sum_{n=1}^{\infty} a(n) n^{-(k-1) / 2-s}=f(s+(k-1) / 2) .
$$

Then we see that $F(s)$ is absolutely convergent for $\operatorname{Re}(s)>1$ and satisfies the functional equation

$$
\Gamma(s+(k-1) / 2) F(s)=(2 \pi)^{2 s-1} \Gamma(1-s+(k-1) / 2) F(1-s) .
$$

Here we have $a(n)=b(n)=a_{1}(n), \Delta(s)=\Gamma(s+(k-1) / 2), C=2 \pi, \theta=2$ and $\delta=-1$.

By a result of Hecke [7] we know that $\sum_{n \leq x}|a(n)|^{2} \ll x^{k}$ and so

$$
\sum_{n \leq x}\left|a_{1}(n)\right|^{2} \ll x
$$

Thus we have $M_{1}=M_{2}=0$.
Goldstein [4] has shown that, for every prime $p$,

$$
a^{*-1}\left(p^{j}\right)= \begin{cases}1, & j=0 \\ -a(p), & j=1 \\ p^{k-1}, & j=2 \\ 0, & j>3\end{cases}
$$

and is defined on the integers by multiplicativity. From this it is easy to show that $x^{k} \ll \sum_{n \leq x}\left|a^{*-1}(n)\right|^{2} \ll x^{k}$ and so

$$
x \ll \sum_{n \leq x}\left|a_{1}^{*-1}(n)\right|^{2} \ll x .
$$

Thus $M_{3}=0$.
By the Ramanujan-Petersson conjecture (see Deligne [3])

$$
|a(n)| \leq d(n) n^{(k-1) / 2}
$$

From this it is easy to show that $|c(n)| \leq d_{4}(n) n^{(k-1) / 2}$. Thus

$$
\sum_{n \leq x}|c(n)|^{2} \ll x^{k} \log ^{15} x
$$

and so

$$
\sum_{n \leq x}\left|c_{1}(n)\right|^{2} \ll x \log ^{15} x .
$$

Thus we have $M_{4}=15$.
By Theorem 3 we have $\mu(2)=v(2)=1$. This gives, by Theorem 1 ,

$$
N(\sigma, T) \ll T^{4(1-\sigma) /(3-2 \sigma)} \log ^{25} T
$$

which improves the result obtainable from the theorem of Sokolovskii [16, Theorem 2]. By the corollary to Theorem 2 we have

$$
\begin{equation*}
N(\sigma, T) \ll T^{3(1-\sigma)} \log ^{25} T \tag{5.1}
\end{equation*}
$$

for $\frac{1}{2} \leq \sigma \leq 1$, which we believe to be new.
One can use part (2) of Theorem 3 to show that $\mu(4)=3$ and $v(4)=16$, but this does not lead to a better result than (5.1).

If we translate (5.1) back to the cusp form $f(s)$ we have

$$
N(\sigma, T) \ll T^{3((k+1) / 2-\sigma)} \log ^{25} T .
$$

Example 3. The Dedekind zeta function. Let $K$ be an algebraic number field of degree $n \geq 2$ over the rationals and let $\zeta_{K}(s)$ be the associated Dedekind zeta function. For $\operatorname{Re}(s)>1$ we have $\zeta_{K}(s)=\sum_{m=1}^{\infty} a_{K}(m) m^{-s}$ where $a_{K}(m)$ is the number of integral ideals of $K$ with norm exactly $m$. Then it is known [11, p. 75] that $\zeta_{K}(s)$ satisfies the functional equation

$$
\Gamma^{r_{1}}(s / 2) \Gamma^{r_{2}}(s) \zeta_{K}(s)=B^{2 s+1} \Gamma^{r_{1}}((1-s) / 2) \Gamma^{r_{2}}(1-s) \zeta_{K}(1-s)
$$

where $B$ is a constant depending on the field $K, r_{1}$ is the number of real conjugates and $r_{2}$ is the number of imaginary conjugates of $K$ so that $r_{1}+2 r_{2}=n$.

In [2] it is shown that

$$
\int_{-T}^{T}\left|\zeta_{K}(1 / 2+i t)\right|^{2} d t \ll T^{n / 2} \log ^{n} T, \quad \sum_{m \leq x}\left|a_{K}(m)\right|^{2} \ll x \log ^{n-1} x
$$

and $a_{K}(m) \leq d_{n}(m)$.
Since $a_{K}(m) \geq 0$ we see that $\left|a_{K}^{*-1}(m)\right| \leq a_{K}(m)$. Thus

$$
x \log ^{n-1} x \ll \sum_{m \leq x}\left|a_{K}^{*-1}(m)\right|^{2} \ll x \log ^{n-1} x .
$$

We have

$$
\begin{aligned}
|c(m)| & \leq \sum_{\substack{d \leq W \\
d \mid m}}\left|a_{K}(d)\right|^{*}\left|a_{K}^{*-1}(m / d)\right| \\
& \leq\left(a_{K} * a_{K}\right)(m) \\
& \leq d_{2 n}(m)
\end{aligned}
$$

Thus

$$
\sum_{m \leq x}|c(m)|^{2} \leq \sum_{m \leq x} d_{2 n}^{2}(m) \ll x \log ^{4 n^{2}-1} x
$$

Thus, here, we have $M_{1}=M_{2}=M_{3}=n-1, M_{4}=4 n^{2}-1, \mu(2)=n / 2$ and $v(2)=n$.

Thus by Theorem 1 and the corollary to Theorem 2 we have

$$
N(\sigma, T) \ll T^{(n+2)(1-\sigma) /(3-2 \sigma)} \log ^{4 n^{2}+9} T
$$

and

$$
N(\sigma, T) \ll T^{(n+1)(1-\sigma)} \log ^{4 n^{2}+9} T
$$

respectively, for $\frac{1}{2} \leq \sigma \leq 1$. Both of these results better those of Sokolovskii [16, corollary to Theorem 2]. In [5] Heath-Brown has improved these results even more by showing that if $n \geq 3$, then, for any $\varepsilon>0, N(\sigma, T) \ll T^{(n+\varepsilon)(1-\sigma)}$. The result for $n=2$, is somewhat complicated, but it too shows that $N(\sigma, T) \ll T^{(2+\varepsilon)(1-\sigma)}$, for any $\varepsilon>0$. His method was to use the later improvements of Huxley on large values of Dirichlet polynomials in the method of Montgomery that we have used in this paper.

## 6. The more general functional equation

In this section we simply indicate the results that can be obtained if we assume a more general functional equation. The method used is that of Section 2, though the details are more complicated.

We assume a functional equation of the form (under the notation as above)

$$
\Delta(s) f(s)=C^{\theta s+\delta} \Delta(r-s) g(r-s)
$$

where $r$ is a positive real number, $f(s)$ and $g(s)$ converge absolutely for $\operatorname{Re}(s)>r$ and $f(s)$ has as its singularities only a finite number of poles in the strip $0<\operatorname{Re}(s) \leq r$. We assume the more general estimates on the coefficients:

$$
\sum_{n \leq x}\left|a^{*-1}(n)\right|^{2} \ll x^{a} \log ^{b} x \quad \text { and } \quad \sum_{n \leq x}|c(n)|^{2} \ll x^{a_{1}} \log ^{b_{1}} x
$$

Let $N(\sigma, T)$ be the number of zeros, $\rho$, of $f(s)$ in the region $r \geq \operatorname{Re}(\rho) \geq \sigma$, $|\operatorname{Im}(\rho)| \leq T$, with $\sigma \geq r / 2$ and $T \geq 1$. Then we have

$$
\left.N(\sigma, T) \ll T^{\left(a_{1}+1-2 \sigma\right)}+T^{\left(a_{2}+1+a^{\prime}\right)\left(a_{1}+1-2 \sigma\right) /\left(2\left(a_{1}+1\right)-r-2 \sigma\right)}\right) \log ^{M} T
$$

where $M=\max \left(b_{1}+10,6+b_{2} / 2+b^{\prime} / 2\right)$,

$$
a^{\prime}=\left\{\begin{array}{cl}
0 & \text { if } a \leq r \\
a-r & \text { if } a \geq r
\end{array} \text { and } \quad b^{\prime}=\quad \begin{array}{c}
0 \\
b+1 \\
b
\end{array}\left\{\begin{array}{l}
\text { if } a<r \\
\text { if } a=r \\
\text { if } a>r
\end{array}\right.\right.
$$

if we assume that

$$
\int_{-T}^{T}|f(r / 2+i t)|^{2} d t \ll T^{a_{2}} \log ^{b_{2}} T
$$

There are also results for other power means and results corresponding to Theorems 2 and 3 and the corollary to Theorem 2.

Acknowledgement. I would like to thank Carlos Moreno for his help and suggestions.

## References

1. B. C. Berndt, On the zeros of a class of Dirichlet series, I, Illinois J. Math., vol. 14 (1970), pp. 244-258.
2. K. Chandrasekharan and R. Narasimhan, The approximate functional equation for a class of zeta functions, Math. Ann., vol. 152 (1963), pp. 30-64.
3. P. Deligne, La conjecture de Weil, I, Publ. Math., l'I.H.E.S., France, vol. 43 (1974), pp. 273-307.
4. L. J. Goldstein, A necessary and sufficient condition for the Riemann hypothesis for zeta functions attached to the eigenfunctions of the Hecke operators, Acta Arith., vol. 15 (1969), pp. 205-215.
5. D. R. Heath-Brown, On the density of the zeros of the Dedekind zeta function, Acta Arith., vol. 33 (1977), pp. 169-181.
6. E. Hecke, Über die Bestimmung Dirichletsche Reihe durch ihre Funktionalgleichung, Math. Ann., vol. 112 (1936), pp. 644-699.
7.     - Uber Modulfunktionen und die Dirichletschen Reihe mit Eulerscher Produktentwicklung, I, Math. Ann., vol. 114 (1937), pp. 1-28.
8. M. Huxley and M. Jutila, Large values of Dirichlet polynomials IV, Acta Arith., vol. 33 (1977), pp. 89-104.
9. A. E. Ingham, On the estimations of $N(\sigma, T)$, Quart. J. Math., vol. 11 (1940), pp. 291-297.
10. M. Jutila, On Linnik's constant, Math. Scand., vol. 41 (1977), pp. 45-62.
11. E. Landau, Einfuhrung in die elementare und analytische Theorie der algebraische Zahlen und der Ideale, Leipzig, 1927.
12. H. L. Montgomery, Mean and large values of Dirichlet polynomials Invent. Math., vol. 8 (1969), pp. 334-345.
13. ——_ Zeros of L-functions, Invent. Math., vol. 8 (1969), pp. 346-354.
14. H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math., Soc. (2), vol. 8 (1974), pp. 73-82.
15. K. Ramachandra, Applications of a theorem of Montgomery and Vaughan to the zeta function, J. London Math. Soc., (2), vol. 10 (1975), pp. 482-486.
16. A. V. SokolovskiI, Density theorems for a class of zeta functions, Izv. Akad. Nauk Uzbek, vol. 10 (1966) (3), pp. 33-40.
17. E. C. Titchmarsh, On the zeros of the Riemann zeta function, Proc. London Math. Soc. (2), vol. 30 (1929), pp. 319-321.

## Southern Illinois University <br> Carbondale, Illinois

