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I. Introduction and statement of results

Let f(s)= Z:x a(n)n-, a(1) :/: 0, be a Dirichlet series that converges abso-
lutely for Re (s)> 1 and that can be continued to a function analytic on
Re (s) > 1, except for a finite number of poles in the strip 0 < Re (s) _<_ 1. Let
N(a, T) be the number of zeros, p, of f(s) with l>Re(p)>_a and
Im (p)[ _< T, where a > 1/2 and T > 1. The purpose of this paper is to give

estimates for N(a, T).
Let g(s)

_
b(n)n be a Dirichlet series that also converges absolutely

for Re (s) > 1. Let A(s) I-I F(as + fir), where a > 0 and fl are complex,
1 < j < N. We assume that there exist real numbers C and 0, with C > 0, and a
complex number 6 such that f(s) and g(s) satisfy the functional equation

(1.1) A(s)f(s)- C+A(1 s)/(1 s).
We shall assume the following estimates on the coefficients off(s) and 0(s)"

(1.2) Z < lglx
n_x

and

(1.3) Z b(n) e " x log x.

Let a*-(n) be the Dirichlet convolution inverse of a(n), i.e.,

11 if n

at t0 ifn>l.

This exists since a(1) 0. We assume

(1.4) x lox E la*-’(n)l2 x lo x.

Note that if a(n) O, then [a*- ’(n)[ a(n) and so the upper estimate follows
from (1.2) with M3 M. Let W 2 1 and

tn) , W)= E d)a*- (/d)
din,
dW
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Then c(1, W)= 1 and c(n, W)= 0 for 1 < n < W. We assume

(1.5) E c(n)l < lo#, x.

Note that (1.5) is independent of W. We cannot prove this in general, but when
a(n) > O, it is easy to see that the estimate is independent of W, since in that
case ]c(n)[ < (a*a)(n). In general the best we can do is an estimate involving
the first powers of x and l/V, which is obtained by using the Cauchy-Schwarz
inequality.
We shall prove the following results.

THEOREM 1. Let 1/2 < a < 1 and let k > 2 be an inteoer. Ifwe assume (1.4),
(1.5) and that there exist constants in(k)and v(k) such that

T

(1.6) f If(l/2 + it)] dt Tu(k) log(k) T,
-T

as T + m then, as T + o

N(a, T) (T2(1-a) + T2(k+2"())(1-a)/(+4-aa)) log’() T,

where g,(k)= max (M4 + 10, 3 + (2v(k)+ (M3 + 5)k)/(k + 2)).

THEOREM 2. If we assume (1.4), (1.5)and (1.6), then for
o _> (8/(k) + 3k 4)/(8/z(k) + 4k 4)

we have

N(a, T), T(4()+k)(-)/(’-+(-4)) log() T,

as T +, where g2(k --max (M4 -+-6, v(k)+ 3, M3 W 6).

COROLLARY. Unormly on 1/2 a 1 we have, as T + ,
N(a, T) +2())(8()+-*)(-)/(()+z) loS() T,

where M3(k max (g,(k), M2(k)).

In most applications we take either k 2 or k 4, which is the reason for
Theorem 3 below.

THEOREM 3. Let A = aj. Ifwe assume (1.2) a (1.3), then we may take

#(2) max (1, 2A 1)

If we further assume that

2 [(a*a)(n)l2 x log’ x

and v(2) max (M, + 1, Mz).

and E (b*b)(n) z " x 10# X,

then we may take/z(4) max (1, 4A 1)and v(4)= max (Ms + 1, M6).
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In the proofs of Theorems 1 and 2 we adapt the method of Montgomery [13]
and in the proof of Theorem 3 we adapt the method of Ramachandra [15].

In [16] Sokolovskii used Ingham’s method of convexity theorems to give
estimates for N(a, T) for the same class of Dirichlet series as we are concerned
with here. He assumes (1.2), (1.4) and (1.5) and the essential tool for him is an
estimate forf(1/2 + it). We have replaced this by the estimate (1.6). He uses the
functional equation (1.1) to derive his estimate forf(1/2 + it), while we use the
functional equation in the proof ofTheorem 3 and in the proof ofTheorem 1 to
guarantee certain behavior of the function f(s).
One could also improve Theorem 2 and its corollary by using further im-

provements in large value theorems for Dirichlet polynomials. See, for exam-
ple, Huxley and Jutila [8] or Jutila [10]. We hope to return to this in a latter
paper.

In the sequel the cj, j 1, 2, will denote positive absolute constants. We
use (a)to denote the integral +,oo and S(a.T)to denote the integralioo iT"

2. Proof of Theorem 1

We state a lemma that we need for the proof of Theorem 1. This is a version
of Theorem 2 of [12].

LEMMA 1. Let M be given and {an}, 1 <_ n <_ M, be complex numbers. For
1 <_ r <_ R, let s, or, + it, be arbitrary complex numbers. Let

z=min{t,--tb: l <_ a < b <_ R},
S= l+max{t," l_<r_<R}-min{t," l_<r_<g}

co=min{a,: l_<r<R}.
Then

R M [2 M
M [a

ann-S’l <(S+M)(l+z-llg2M) log4
n= n2

To begin the proof of Theorem 1 let

(2.1) M(s) M(s, W) a*- l(n)n-S.
n<W

Then f(s)M(s)= =1 c(n, W)n-. If r > t, then by a standard integration
formula we have, if U > 1,

e-1/v + E c(n)n-e-n/v E c(n)n-e-
n>W n=l

(2.2)
1

2rr--] (,)f(s + z)M(s + z)UF(z)dz.

We assume W < U < T’.
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Let s a + it, where 1/2 < a < 1, and move the contour to Re (z)=
1/2 a. Then we pick up the poles of the integrand, by the residue theorem,
which are the poles of/(s + z) in 0 < a < 1 and the pole at z 0 of F(z). Since
f(s) satisfies the functional equation and both f(s)and O(s)are absolutely
convergent for > 1, it follows by a standard Phragmen-Lindel6f argument
that, if Q is sufficiently small,

Z c(n)n_e_,/v 1 f(s + z)M(s + z)UZF(z)dz2gi 1/2-)

1
f(s + z)M(s + z)UZr(z)dz+

z--s)=

2nil (1/2_a) f(s + z)M(s + z)UF(z) dz + f(s)M(s)

o 1
f(s + z)M(s + z)UZr(z) dz+

z-(-s)l=Q

where the sum over 2 denotes a sum over the poles of the integrand.
If 2 s is a pole off(s + z), let n(2) be its order and let a_,(2), 1 j n(2),

be the coefficients of the principal part of the Laurent expansion off(s + z)
about z 2 s. Then we have

f(s + z)M(s + z)UZF(z) dz

n(a)

j=l

E s)M(’)(2 s)log" U
e+f+o=j_l e! f!g!

Suppose 1/2 + 1/log T <_ a < 1 and p fl + iy, fl >_ , is a zero of f(s). If
2 u + iv, let u* max {u" 2} and n* max {n(2): 2}. If ]] > log2 T, then
the sum of the residue terms is, by Stirling’s formula,

(2.4)

o(1)
as T + o, since U _< T1.

In [1, Theorem 10] it is shown that f(s) has , T log T zeros in the rectangle
0<Re(s)<l, ]Im(s)] <T. Thus there are ,loga T zeros with ]1 <
log2 T. Thus, if we add to the final estimate an O(log3 T) term to account for
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the neglected zeros, we can assume wl log2 T. Thus, by (2.3)and (2.4), we
have

n=l

(2.5) 1 f+o32-- f(1/2 + i(t + u))M(1/2 + i(t + u))U1/2-a+iUF(1/2- ff + iu)du

+ f(s)M(s) + o(1),
as T +c.

Sincef(s) satisfies the functional equation (1.1) and is absolutely convergent
for Re (s)> 1 we know that + it) is bounded by a power of ltl for tr in
any finite fixed vertical strip. Also, by (1.5), we know that c(n)l _< c2 n. Thus
we have

f(1/2 + i(t + u))M(1/2 + i(t + u))U1/-+iF(1/2- a + iu) du

T-f
+

(log2 T)/2

uCSe c@ du

(2.6) TCae-(C6/2) log2 T f uCSe -c6u/2 du

o(1),
as T+,and, ifs=a+it, 1/2<a<l, then

E c(n)n-e-"/u , E ne-"/u
n>u2 n>U2

" ftz tCTe -t/U dt

(2.7) " e-U2/2u fl tCTe -t/2v dt

e- V/2

=o(1)
as T + oo, if U tends to + oo with T.

Thus, by (2.5)-(2.7), we have, since c(n, W)= 0 for 1 < n <_ W,

e-/v+ Z c(n)n-e-’/v
W<n<U2

lfI(s)M(s) + ni /-,(,o, r)/z)
f(s + z)M(s + z)U’F(z) dz + o(1),

as T+.
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Let p fl + iy be a zero off(s). Then we have either

(2.8) E c(n)n-/’e -"Iv >3> 1,
W<n<U2

(2.9) f f(p + z)M(p + z)UZr(z) dz 1
(1/2 tr,(logZ T)/2)

or both. Of the zeros p with fl > a, ]y] < T we take a subset R ofthem so that
if p a, P2 are two zeros, then

(2.10) 1 :2 > 2 log2 T.

By Theorem 3 of [1], we have N(T + 1)- N(T). log T, where N(T) is the
total number of zeros off(s)in the rectangle 0 < Re (s) _< 1, Im (s)] < T, and
SO

N(1/2, t + 1)- N(1/2, t)< log T,

for It < T. Thus we may choose the subset of R zeros so that

U(tr, T)< (R + 1)log T.

Finally, let Ra and R2 be the number of the R zeros such that (2.8)and (2.9),
respectively, hold. Then R _< R + R2.

If (2.8) holds, then there is a Y such that W < < U2 and
2Y

c(n)n- "e-"/t: >> log- U
n=Y

for >> Ra log-1 U zeros for which (2.8) holds. If p;, 1 < j < R a, are the zeros
under consideration, then, by Lemma 1,

R1 2Y [2R log-3 U, Z Z c(n)n-"’e-’/t:
j=l n=Y

2Y

< (T + 2 Y)(1 + -’ log2 2 Y) log’ 2 Y Ic(n) 12n- 2e- r/u,
n=Y

where min I?,- ?J] > 2 lo82 T, by (2.10). Thus, by (1.5), we have

(2.11) R , (T + Y)e-r/UY’-2 log’+v T.

Let F(Y)= YPe-r/ for Y > O. Then

F’(Y) yt,- (p Y/U)e-
and

F"(Y) yp-2(p(p_ 1)-2pY/U + Yz/u2)e-r/t:.
Now F’(Y)= 0 implies Y= pU and F"(pU)= -p(pU’-2e-r/t: < 0. Thus pU
yields the maximum for F. Thus, from (2.11), we have

(2.12) R < (TW-2" + U2-2") log+7 T.
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Suppose (2.9) holds and let pj, 1 < j < R2, be the zeros under consideration.
For these values let tj be such that [tj-7[ <(logZT)/2 and
[f(1/2 + itj)M(1/2 + itj)[ is maximal. Assume that fl > cr > 1/2 + 1/log T.
Then

-k-oO

f r’(1/2 fl + iu)ldu log T.

Thus

(2.3) f(1 + it)M(1/2 + it)] >> U / log- T.

If Pa and Pb are zeros with 1 < a < b < R 2 and a and tb are the correspond-
ing values of t, then, by the triangle inequality, the definition of tjand (2.10), we
have ]t, t] >_ log2 T.
For any integer k > 2 we have

R2 T

f(1/2 + itj)]k y f(1/2 + it)]k dt.
j=l -T

Then, by Lemma 1, (1.4)and (2.13), we have

R2 u2ktr/(k + 2)-k/(k + 2) log- 2k/(k + 2) T
R2, f(1/2 + its)M(1/2 + it)l2k/tk+2)
j=l

f(m + it,ll IM(/ + ittl

(r"k/k+ logk/k+ r)((r + W)log W logeu+ W)k/(k+.

Thus

(2.14) R2 , TZUk)/k+ 2)(T _+_ W)k/(k+ 2)U(k-2ka)](k+ 2)

X log(2v(k)+(M3+ 5)k)/(k+ 2) T.

Thus, by (2.12)and (2.16), we have

N(a, T) (R + 1)lo T

(TWX-2 + U2-2)10#,+,0 T

+ (T + W)k/(k+ 2)T2u(k)/(k+ 2)U(1-2a)k/(k+ 2)

x log3+t2tk)+ta+ 5)k)/tk+ 2) T.

If we choose W T and U k+ 2tk))/tk +- 4), we have

N(, T) (T- + T+’-/+-) lo#,* T,

which completes the proof of Theorem 1.
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3. Proof of Theorem 2 and its corollary

We first state a lemma that we shall need.

LEMMA 2. Under the hypotheses of Lemma 1, if V satisfies
M

V2 >> S1/2(log3/2 S)(log log M) lanl2n-2c,
n=l

then the number of r, 1 < r < R, such that 1= a n-’[ > V is

M, MV-2(1 + v-’ log M) la.lZn -2’.
n=l

This is Theorem 3 of [12].
Throughout the proof of Theorem 2 we assume that

a _> (8/(k)+ 3k 4)/(8/(k) + 4k 4).

We take V log- U in Lemma 2. The hypotheses of the lemma will be
satisfied if

(3.1) W2a-1 V-2 Ta/2 log,+2 T Tx/2 log’+4 T.

Thus, subject to (3.1), we have, by Lemma 2 and (1.5),
2Y

R log-1 U yV-2(1 + z-’ log Y)
n=Y

Y0ogV)Y’-(lo, Y)- /.

Thus

(3.2) R, V- lo,+

Let V be a positive quantity. Then the number of r for which
f(/2 + it)l v is

(3.3) VkT(k) log(k) T.

By (2.13), we have for the remaining r,

M(1/2 + it,)l U ’/V’ log-’ T.

We now take V U /2V log- T in Lemma 2. The hypotheses of Lemma
2 will be satisfied if

-’ v r’ log" r E I*-
nW

(3.4) v r’/: o+ r,
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by (1.4), since W _< T’. Thus, by Lemma 2 and (1.4), the number of such r is

W(U‘’-’/2V- log-’ T)-2 E la*-’(n)ln-’
n<W

(3.5) WU’ 2,,V log3 +M3 T.

Thus, by (3.3)and (3.5), we have

(3.6) R2 < v-kTutk) logvtk) T + WU1-2aV log3+Ms T.

Thus, by (3.2)and (3.6)we have

N(., T) (U- + V;*T"’*’+ WU’-V) lo#’*’ T.

Choose W so that we have equality in (3.1) and U so that we have equality in
(3.4). Choosing

V1 (2u(k)+ 1)a-(1 +u(k))/(4-k+(2k-4)a)

gives the result and completes the proof of Theorem 2.
To prove the corollary to Theorem 2 we need only note that the function (of

a) 2(k + 2p(k))/(k + 4 43)is increasing, whereas the function (of a)(4p(k) +
k)/(4- k + (2k -4)a) is decreasing for k 2. Since these two functions are
equal at

a (Sp(k) + 3k 4)/(Sp(k) + 4k 4)
the result of the corollary follows.

4. Proof of Theorem 3

We state two lemmas that we need for the proof of Theorem 3.

LEMMA 3 (Montgomery-Vaughn). Let {a.} be a sequence ofcomplex numbers
such that ,1 a. ]2 and = n a, 12 both converge. Then, as T

T 2

f-r ,= a"n -i’ dt .=, (T + n)la.l 2.

This is Corollary 2 of [14].
LEMMA 4. Let {c,} be a sequence of nonnegative numbers such that

c.xlox,

as x + . If a > O, then as U + ,
lo+ U ifl=c

c,n-:e-""/lU-aloU iflc.n=l

This is easily proved by partial summation.
Let e > 0. Then we have, if s 1/2 + it,

a(n)n_e_./= 1 f( + z)zr(z)dz.
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Let 1 < q < 0 and let 2 denote a pole of the integrand. Then, since all the
poles off(w) are in the strip 0 < Re (w) < 1, we have, for Q sufficiently small,

a(n)n-*e-"/e=
2ci

f(s + z)VZF(z)dz
0_<Re (2)< 1/2 z-(a-s)[ =O

1 f f(s + z)UZF(z)dz

=f(s) + 2ri
f(s + )UF()e

0 < Re (2)< 1/2 z-(2-s)l =Q

1 f f(s + z)UZF(z)dz,

which can be rewritten as

f(s) .Z= a(n)n-e-"/v 2rci--1 In) f(s + z)UF(z) dz

(4.1)
1 I f(s + z)UF(z)dz.

0 <Re (2)< 1/2 2hi z--s)l

Let H(s)= C+OA(1- s)/A(s)and assume H(s) has no poles in [-1, 0).
Then, by the functional equation (1.1), we have

f(s + z)= H(s + z)9(1 s z).
Thus, if-l<q<-l/2and -l<q<0, wehave

1 f f( + z)zr(z)z

f n( + z)o - z)Zr(z) z

(4.2) =2i ,
1 f H(s+z)(Z b(n)n,+Z_,)UZF(z)dz"

By Stirling’s formula we have

H( + z)U’ c+)+(1 z)U/( + z)

cORe(s+z)+Se(6)uSe(z)[(1 S )/g(s

cORe (s+z)uRe (z)D- 2 Re (s+Z)TA(1- 2 Re

where

D exp log g.
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Choose r/= -1/2 -1/log T, r/ -1/log T and U T. Then on Re (z)= r/
we have

and on Re (z)= r/ we have

n(s + z)UZ , CO(1/2-1/lg Y)T-1/lg YD-2(1/2-1/lg Y)T-A/lg Y " 1.

With the notation as in the proof of Theorem 1 we have

f(s + z)ur(z)dz

nta) (re)/F)(2 s)logy U
(4.3) U-F(2- s) a_(2)

=t +=_ e!f!
< URe (’-’1 r(z s) llog(’-’ u.

Thus, by (4.1)-(4.3),

Thus

(4.4)

f (1/2 + it)
n=l

+o{
0 < Re (2) < 1/2

TR (x)- 1/2 F(2 1/2 it) log"(a) -1 T

H(s + z)(n<_TE b(n)n+’-l) Tq"(z)dz.

fr If(l/2 + it)l2 dt
-T

T 12Z a(n)n-ll2-ue-nlr dt
n=l

+ LT 0<Re(2)<1/2

2

TR()-1/2 IF(2 1/2 it) log(,-’ T dt

+ f T2A-1
-T

Z b(n)n-l- 1/log T+i(t+.,r(. + i)
n>T

dv dt

Z b(n)n- 1/2 1/log T + i(I +")r(ql + iv)
n<T

2

dv dt

Ix + 12 + I3 + 14,

say.
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By Lemmas 3 and 4 and (1.2), we have

I, < Z a(n)n-’/e-n/" I (r + .)

n=l n=l

,Tlog’ T+Tlog’+ T

T log / T.

307

Let n* max {n(2)" 0 < Re (2) g 1/2}. Then, by the Cauchy-Sehwarz
inequality,

(4.6)
T

12 ’ E T2 a (x)-, log2.(x)-2 T f Z r(x 1/2 it)]2 dt
O<Re (2)< 1/2 -T O<Re (2)< 1/2

T

1og2nA- 2 T f t2 Re (2)- 2-t dt
0<Re ()< I/2, 1og2nA- 2 T,

since Re (2) < 1/2.
We have, by Lemmas 3 and 4, (1.3) and the Cauchy-Schwarz inequality,

T +oo 1213 < 72"4-1 f L E b(n)n--/lgr+it’+’) IF(r/+ iv)ldv
-T n> T

x f + iv) lay dt

(4.7) < Ta- b(n)ln--z/og T(n + T)
n>T

< T2A- I(T- 2/log T logU T + T" T-’- 2/log T logU, T)
< T2A-1 logM2 T.

Finally, as for the estimate of 13, we have

(4.8) I, < E lb(n)ln-1- 1/log T(. -I- T) < T logM2 T.
n<_T

Thus, by (4.4)-(4.8), we have

T

f f(1/2 + it)l2 dt T log+ T + log2*-2 T + T24- log2 T + T log2 T
-T , T’(2) logv(2) T,
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where/(2) max (1, 2A 1) and v(2) max (1 + M 1, M2), which proves the
first part of Theorem 3.
The second part follows easily from the first part if we note that

rE(s)= (a*a)(n)n -s, fiE(s)= (b*b)(n)n
n=l n=l

and
AZ(s)fZ(s C2O+ 2a A2(1 s)f2(1 s).

This completes the proof of Theorem 3.

5. Examples

Example 1. The Riemann zeta function. Here f(s)= O(s)= (s), a(n)=
b(n) 1, A(s)= F(s/2), C , 0 1 and 6 -1/2. Also a*-(n)= (n), the
MiSbius function. Thus we can take M -M2 --M3 0. By the remark of
(1.5) we see that c(n)l < d(n)and so we have M4 3. By Theorem 3 we have
/(2) =/(4) v(2)= 1 and v(4)= 4.

Thus, for k 2, we have from Theorem 1,

N(cr, T), T4(1-)/(3-2a) log13 T

and for k 4 we have

N(a, T) , T3(1 a)/(2- a) log13 T.

The first result is due to Titchmarsh [17] and the second is due to Ingham [9].
By the corollary to Theorem 2 these results may be improved to

N(a, T), T3(1-) log13 T and N(a, T), T5(1-")/2 log13 T,

respectively, for 1/2 < a < 1. The second result is due to Montgomery [13].

Example 2. Cusp forms of weight k with Euler product. Let

f(s)= a(n)n
n=l

be a cusp form of weight k with Euler product. Then it is known [6] that

r(s)f(s) (2)-F(k s)f(k s)
and that f(s)is absolutely convergent for Re (s)> (k + 1)/2.

Let al(//)-- a(n)n -(k- 1)/2 and

F(s) al(n)n-= a(n)n -(k- 1)/2-s =f(s + (k- 1)/2).
n=l n=l

Then we see that F(s) is absolutely convergent for Re (s) > 1 and satisfies the
functional equation

F(s + (k 1)/2)F(s)= (2g)2- 1F(1 s + (k 1)/2)F(1 s).
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Here we have a(n)= b(n)= a,(n), A(s)= F(s + (k 1)/2), C 2rt, 0 2
and 8 1.
By a result of Hecke [7] we know that ,_< [a(n)[2 x

, and so

2 [al(n)[2 ’ x.

Thus we have M1 M2 --0.
Goldstein [4] has shown that, for every prime p,

,-,(p)

1, j=0,

-a(p), j= 1,

pk-, j= 2,

0, j>3,

and is defined on the integers by multiplicativity. From this it is easy to show
that xk . .<_x a*- (n)l2 " xk and so

x la-(n)l2 x.

Thus M3 0.
By the Ramanujan-Petersson conjecture (see Deligne [3])

la(n) _< d(n)n-
From this it is easy to show that ]c(n)l <_ d4(n)n- )/. Thus

[c(n) 2 , xk logx’ x
n<x

and so

E Ic(n)l x log’ x.
tl_<x

Thus we have M, 15.
By Theorem 3 we have p(2)= v(2)= 1. This gives, by Theorem 1,

N(r, T), r4-)/(3-2) log25 T,

which improves the result obtainable from the theorem of Sokolovskii [16,
Theorem 2]. By the corollary to Theorem 2 we have

(5.1) N(cr, T), T3(-’r) log25 T,

for 1/2 N tr N 1, which we believe to be new.
One can use part (2)of Theorem 3 to show that p(4)= 3 and v(4)= 16, but

this does not lead to a better result than (5.1).
If we translate (5.1) back to the cusp form f(s) we have

N(tr, T), T3((k+l)/2-a) log25 T.
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Example 3. The Dedekind zeta function. Let K be an algebraic number
field of degree n > 2 over the rationals and let :(s) be the associated Dedekind
zeta function. For Re (s)> 1 we have s(s)= =1 as(m)m-s where at(m)is
the number of integral ideals of K with norm exactly m. Then it is known [11,
p. 75] that s(s) satisfies the functional equation

r’,(s/2)r’(sK(s) 8/’r’((1 s)/:)r’,-( s)g(1 s),
where B is a constant depending on the field K, r is the number of real
conjugates and r2 is the number of imaginary conjugates of K so that
r + 2r2 n.

In [2] it is shown that
T

f Is(1/2 + it)l 2 at , T"/2 log" T,
-T

E lag(m)1xlgE-x
mNx

Thus

We have

Ic(m) -< E az(d) * a x(m/d)
d<W
dim

<_ (as * ar)(m)
<_ dz.(m).

E c(m) 12 -< E d,,(m) , x log"’’-- x.
m<x m<x

Thus, here, we have M1 M2 M3 n 1, M4 4n2 1, p(2)= n/2 and
v(2) n.
Thus by Theorem 1 and the corollary to Theorem 2 we have

N(rr, T), Z(n+2)(1-o)/(3-2o) log4"2+9 T

and

N(cr, T)< T’+)-) log4’’-+9 T,

respectively, for 1/2 < rr < 1. Both of these results better those of Sokolovskii [16,
corollary to Theorem 2]. In [5] Heath-Brown has improved these results even
more by showing that if n > 3, then, for any e > 0, N(a, T) < 7x"/)t-‘). The
result for n=2, is somewhat complicated, but it too shows that
N(rr, T) < 7x2 +)ta-’), for any e > 0. His method was to use the later improve-
ments of Huxley on large values of Dirichlet polynomials in the method of
Montgomery that we have used in this paper.

and as(m) < d,,(m).
Since as(m)> 0 we see that la:-l(m)l < aa(m). Thus

xlog-lx E [a-(m)l2xlog"- x.
mNx
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6. The more general functional equation

In this section we simply indicate the results that can be obtained if we
assume a more general functional equation. The method used is that of Section
2, though the details are more complicated.
We assume a functional equation of the form (under the notation as above)

A(s)f(s) C+ A(r s)g(r s),
where r is a positive real number, f(s) and g(s) converge absolutely for
Re (s) > r and f(s) has as its singularities only a finite number of poles in the
strip 0 < Re (s) _< r. We assume the more general estimates on the coefficients:

la*-1(n)12 < x logb x and c(n)l2 < xal logbl x.
n<_x n<_x

Let N(tr, T) be the number of zeros, p, off(s)in the region r > Re (p)> tr,

Im (P)I < T, with tr > r/2 and T > 1. Then we have

U(cr, T), Z(al+l-2a) -- T(a2+l+a’)(al+l-2a)/(2(al+l)-r-2a)) logM T,

where M max (bx + 10, 6 + b2/2 + b’/2),
0 ifa<r

a’= 0 ifa<r
and b’= b+l ifa=r,a-r ifa>r

b ifa>r

if we assume that
T

f If(r/2 + it)[ 2 dt Ta2 logb T.
-T

There are also results for other power means and results corresponding to
Theorems 2 and 3 and the corollary to Theorem 2.
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