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Introduction

In his article [27] T. H. Hildebrandt has given a complete treatment of linear
differentio-Stieltjes integral equations involving H. S. WalFs theory of har-
monic matrices [69] and the concept of the Young integral [74], [26]. This type
of integral allows one to integrate any function of bounded variation with
respect to another and to distinguish between the value of a function at some
point and the right- as well as the left-hand limit at this point (e.g. if we regard
the integral as a function of the upper limit). Thus, Hildebrandt derives a
necessary and sufficient condition for the existence and uniqueness to both
homogeneous and nonhomogeneous equations

Y(x)= Yo + (dA(s)Y(s),
"a

Y(x) U(x) + fo dA(s)Y(s)

in which x varies in the closed interval [a, b], Y and U are n-dimensional vector
functions, and A is an n x n matrix function, defined also on [a, b].

In the present paper we discuss mainly the case of only one dimension.
Clearly, in this case Hildebrandt’s results have an especially simple and explicit
representation. Using this we are able to solve a nonlinear differentio-Stieltjes
integral equation

y(x) Yo + .! f(s, y(s)) din(s) (x [a, b]) (0.1)

with a continuous Lipschitzian function f and a function m of bounded varia-
tion on [a, b]. Because of the discontinuities of m the usual proof of existence
and uniqueness for the classical explicit first-order differential equations via
Banach’s fixed point principle is not applicable; in general the corresponding
operator is not contractive. This problem is solved by introducing an appro-
priately weighted norm in generalization of the well-known very effective norm
I[fl[- sup {e-lf(x)[; x [a, hi}, first introduced by D. Morgenstern [52],
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which allows one to obtain the global solution in the case m(x) x, compare
e.g. with [70, pp. 48-50]. Another approach to solve the equation (0.1)was
given in the paper of P. C. Das and R. R. Sharma [6] in which an assertion
about local existence is proved. In [5] the same authors has investigated appli-
cations in deterministic control theory, compare also with R. W. Rishel [59].

In [43] and other articles J. S. MacNerney has extended the work of H. S.
Wall [68], [69] about harmonic matrices to a more abstract setting by a con-
sequent usage of product integral methods. This approach allows also the
establishment of a nonlinear integral operation [48]. Many other articles are
devoted to further development in various directions, see J. W. Neuberger [55],
R. H. Cox [4], W. H. Ingram [33], B. W. Helton [18], J. V. Herod [23], C. W.
Bitzer [1], D. L. Lovelady [43], J. C. Helton [21]. Compare also with the
articles by D. B. Hinton [30], J. A. Reneke [58] and W. L. Gibson [13]. For
connections between solutions to Stieltjes integral equations based on various
types of integrals see [46], [23]. An extensive list of references can be found in
the recent paper by J. C. Helton and S. Stuckwisch [22]. Using another integral
concept J. Kurzweil has developed in the fiftieth also a general theory of
differential equations with possibly left continuous solutions, see [38], [39], also
[62] and the further work of ,. Schwabik. In this case there are connections
between Kurzweil’s and our approach, compare to the local existence theorem
[39, p. 366].
To prove the continuous dependence of the solution to (0.1) on the initial

value the classical Gronwall lemma [17, p. 24] is not applicable. We replace
again the exponential function by a suitable discontinuous but "harmonic" [69]
function and derive in this manner an appropriate generalized Gronwall
inequality of the type described by J. V. Herod [24] for general linear Stieltjes
integrals. Concerning other types of integrals see also D. B. Hinton [30, p. 318],
W. W. Schmaedeke and G. R. Sell [61], g. Schwabik [62, p. 401], B. W. Helton
[19], [20], F. M. Wright, M. L. Klasi and D. R. Kennebeck [73], and J. R. Kroll
and K. P. Smith [37]. For the purely discontinuous case see G. S. Jones [34], D.
Willett and J. S. W. Wong [71], and J. Chandra and B. A. Fleishman [3].
From a detailed analysis of the above linear and nonlinear equations (which

allow right- and left-hand discontinuities) we see that there are some defects:
The existence and uniqueness of solutions depend on sometime troublesome
conditions for the function rn or the functions m and f, respectively. This gap
will be omitted if we use another version of these equations. Thus we can solve
uniquely the equation

X

y(x)= yo + f y(s -O) dm(s) (x [a, b])

without any conditions, and the existence and uniqueness of a solution to the
nonlinear equation

y(x) Yo + f f(s, y(s 0)) dm(s) (x e [a, b])
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requires only the usual Lipschitz condition on the function f. We remark that
equations of this type occur in the theory of stochastic equations, based on the
integral calcul of K. It6, see e.g.C. Dol6ans-Dade [9], I. I. Gihman and A. V.
Skorohod [14].

If we use the linear equations only with right continuous functions instead of
arbitrary functions of bounded variation the situation is much simpler and
some proofs are more elegant. For example we give a very short proof of our
version of Gronwall’s lemma in this case. Also the connections between the
solutions of both versions of the homogeneous equation are more transparent.

Afterwards we consider an application of our results in stochastic control
theory. A Bellman type equation is solved, which arises from the optimal
control of one-dimensional quasi-diffusion processes [16].

Finally, we take a look at the case ofmore then one dimension. In a modified
form, most of the previous results are valid also too.

In a short appendix the definition of the Young integral and some of its
properties are listed. We give a Lebesgue type definition of the Young integral.
Thus any measurable bounded function can be integrated with respect to an
arbitrary weight function of bounded variation. This concept is useful in the
treatment of nonlinear equations. But Hildebrandt [27] use a Riemann type
Young integral. Nevertheless in the case that the integrand as well as the weight
function are of bounded variation both integrals exist and are equal. Because
the solutions of our integral equations are in fact of bounded variation all of
Hildebrandt’s results concerning linear equations remain applicable in our
consideration. Most assertions made in the appendix can be found in [28]. For
the higher-dimensional case see also the very detailed summary about this in
the paper of O. Vejvoda and M. Tvrd3) [67]. In further papers [65], [66] these
authors have developed boundary value problems for integral equations with
nondegenerate (time dependent) kernels.

Concerning mechanical interpretations of some Stieltjes integral equations
see the monograph of F. R. Gantmacher and M. G. Kreln [12] and the nice
appendix of the Russian translation of F. V. Atkinson’s monograph, written by
I. S. Kac and M. G. Kreln [35]. Compare also with H. Langer [42] and the
work of W. T. Reid [57], W. F. Denny [8] and C. S. H6nig [31]. For classical
nonlinear Volterra integral equations see R. K. Miller [51], Ja. M. Mamedov
and S. A. Airov [49].
The present paper is very influenced by T. H. Hildebrandt; the knowledge of

his work as well as his kindly encouragement was very helpful during its
preparation. Also the author wishs to express his hearty gratitude to the referee
for the communicated improvements and suggestions concerning mathematics
and style.

Preliminaries

With the exception of Section 7 we deal throughout this paper with real-
valued bounded functions and especially with functions of bounded variation
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on the closed interval [a, b] only. For such a function 9 of bounded variation
and all points x 6 [a, b] we denote the differences 9(x) 9(x 0), 9(x 4- 0)-
9(x), and 9(x / 0) 9(x 0) by A-9(x), A / 9(x), and A +_ 9(x), respectively. We
make the convention 9(a 0)= 9(a) and 9(b / 0)= 9(b). Clearly, the A-, A /

and A+ are linear operations. Further, let (x) be the total variation of 9 on
the segment [a, x].

Finally, let m be a fixed function of bounded variation on [a, b]. Without loss
of generality we assume always m(a) O.

1. About linear equations

At first we consider the homogeneous equation

y(x) Yo + f y(s) dm(s) (x [a, b]) (I)

with respect to an arbitrary real initial value Yd. The result of Hildebrandt has
the following form.

Equation (I) has a unique solution if and only if the relation 1 A-re(x)4= 0
holds for all x [a, hi. Then the solution can be expressed by

y(x) yo em(’) H [1 + A+m(z)]e-’+m()/ H [1 A-m(z)]e’-m() (x [a, b]).
<x z<_x

Clearly, in case of 1 A-re(x), 1 / A +re(x) > 0 (x [a, hi)the solution y is
(strictly) positive on the whole interval [a, b] whenever Y0 > 0. Because this
assertion is one of the crucial points of the following considerations we repeat
here some ideas of Hildebrandt’s proof; for the full story see [27]. First let us
consider equation (I) with a continuous weight function m. With the aid of the
formula

d

fc m(s)" dm(s)- (m(d)+1 m(c)"+)/n + 1

(a<c<d<_b;n=O, 1,2,...) (1.1)
we obtain, by a term by term integration, that x - yo emtx) (x [a, b]) is the
solution to (I); compare with [68, p. 74]. Now we will consider the case of only
one discontinuity of m at a < x < b. On the interval [a, x)we have
y(x) yo emtx) again. At the point Xx, we have

yo + din(s)

x1 0

fyo + +
x-O

y(x O) + y(xl)A-m(x).
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It follows that the value y(xl) is determined uniquely if and only if the term
1 A-m(x) is nonvanishing. In this case

Y(X1) YO era(x l- 0)/[ 1 A-m(xx)]

YO emXa)/[1 A-m(xx)]eA-mxl).

Further,

y(x + O)= Yo +. y(s) dm(s) + y(xx)A+m(xa)

[1 + A+m(x)ly(xa)

YO em(X’ + )[ 1 + A + m(xx)]e- A+m(x,)/[1 A-m(xx)]e
without any new condition. In the end, for x < x < b we have

y(x) y(x, + O) + y(s) dm(s).
x+O

Because of the continuity of m in (x, b] we can write

y(x) y(x + O)e{’-"x’ + o,

yoemtx)[1 + A+m(xx)]e-a+"’""/[1
In the case of finitely many discontinuities ofm the validity of (I) can be proven
step by step. In general, we approximate the function m by suitable functions mk
(k 1, 2, ...) with the same continuous part as rn and with those discontinuities
of m, which are greater than 1/k. Now we solve the equations

+ .! [a, b])

and show that the limit of the sequence (Yk; k 1, 2,...) is a solution to
equation (I).
The uniqueness of this solution can be shown with the help of some corre-

sponding nonhomogeneous equations, which have weight functions with
finitely many discontinuities only. But for this as well as for the proof of the
following general assertion about the nonhomogeneous equation

y(x) u(x) + f y(s) dm(s) (x [a, b]) (IX)

with arbitrary functions m and u ofbounded variation we refer to Hildebrandt’s
original paper. For convenience we assume 1 A-re(x) > 0, 1 + A+m(x) > 0
(x [a, b]). Then the equation

h(x)= l + f h(s) dm(s) (x [a, b])
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has a unique and positive solution h and we can formulate the following
assertion.

The equation (II) has a unique solution y, defined by the formula

y(x) h(x) u(a) + h(s) du(s)

+ 2 h(’c-O)-lA-m(’r)A-u(z)
a<r,<x

E h(z + O)-’A+m(z)A+u(r)] (x [a, b]).
a<_z<x

If we interpret the interval [a, b] as the time scale of some system, which is
described for instance by the homogeneous equation (I), because of the relation
y(x) y(x- O)+ y(x)A-m(x) one can say that this system is anticipative. At
the points x with A-m(x) :/: 0 we need for the further evolution of y informa-
tion about the near future. In Section 4 we will give an alternative of this
situation.

2. A Gronwall inequality

Let us assume additionally that the function m is nondecreasing on the
interval [a, b]. Consequently, 1 + A+ re(x) > 0, but we suppose in addition that
1 A-m(x) > 0 for all x [a, b]. Then the equation

h(x)= l + .[a h(s) dm(s) (x e [a, b])

has a unique and positive solution. With the aid of this function we are able to
formulate an appropriate analogue of Gronwall’s lemma.

Let c be a nonnegative constant and y afunction ofbounded variation on [a, b]
with

O <_ y(x) <_ c + f y(s) am(s) (x e [a, b]).

Then y(x) < c h(x) (x [a, b]).

Clearly, here the function h plays the role of the exponential function in the
classical case. For the proofwe can go the same somewhat tedious way as in the
argument solving the equation (I): After consideration of a continuous m you
have to deal with functions m, which have finitely many discontinuities. The
general case can be treated by approximation. We omit this procedure, but we
refer to J. V. Herod [24, p. 35] in a more general setting, and to Section 5, in
which we give a very simple proof with respect to the special case of both fight
continuous functions y and m.
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3. The nonlinear equation

Now we are able to formulate the main result of this paper. Let m be a
function of bounded variation again. The function f, which is defined and
continuous on the set [a, b] R, satisfies a uniform Lipschitz condition

If(x, y)--f(x, Y2)I --< L y21 (x [a, hi; y, Y2 R)
with some positive constant L.

THEOREM. Assume there exists a (positive) constant such that

IA-m(x) - > > L (3.1)
for all points x [a, b] with A-m(x)4: 0. Then for every real yo the equation

y(x) Yo + f f(s, y(s)) dm(s) (x [a, b]) (III)

has a unique solution y, which depends continuously on the initial value y(a) Yo.

To prove this assertion we fix first the solution ha to the equation

ha(x)= l + f ha(s) d m (s) (x [a, b]),

which is positive because of condition (3.1) and the relation A-Iml (x)=
A-m(x) (x [a, b]). Further, it is clear that we have to seek for a solution of

(III) in the set of all functions 9 which satisfy the conditions

m(x) m(x O) O(X) O(X 0),
m(x) m(x + O) O(x)= g(x + O)

for all points x [a, b]. This means that every point of left continuity of m is
also one of the function g and similarly with respect to right continuity. To
define a space of such functions let us introduce a new metric Pm on the set
[a, b] by

pro(X, Y)= IX Y + m(x) m(Y)l (x, y [a, b]).
It should be remarked that the metric space ([a, b], Pm) is not complete and
consequently not compact. Let us regard for example a point x [a, b] with
A+m(x) > 0, A-re(x) 0, and a sequence x, x, x. > x which converges in the
usual sense from the right to the point x. Then this sequence is not convergent
in the space ([a, b], Pro) because there exist neighborhoods (x 6, x]
(0 < 6 < A+re(x))containing not any point of the sequence (x.).
We denote by Cm[a, b] the space of all real-valued bounded functions which

are continuous with respect to the topology obtained by the metric Pro. Because
of the completeness of the real axis R the space Cm[a, b] with the supremum
norm is complete itself; compare for example with [53, p. 24’6]. But for our



A NONLINEAR VOLTERRA-STIELTJES INTEGRAL EQUATION 251

considerations we must introduce another norm, which is defined for every
y Cm[a b] by

Ilyll sup {h(x)- y(x) x [a, b]}.
Because of the positivity and finiteness of ha this norm is equivalent to the
supremum norm, see [70, p. 42] for instance. Consequently, Cm[a, b] with the
norm I" ]Is is also a Banach space and we can apply Banach’s fixed point
principle. For this purpose we show that the operator T, defined for every
y Cm[a b] by

,X

(Ty)(x) Yo + fa f (s, y(s)) dm(s) (x [a, b]),

is contractive on the space (Cm[a, b], I ), Let y and z be arbitrary functions in
Cm[a b]. Then, because of the Lipschitz condition and the definition of ha for
every x [a, b], we have

(Ty)(x) (Tz)(x) .! [f(s, y(s)) f(s, z(s))] dm(s)

-< f f(, y()) -f(, (s))l dim

_< Z f ly(s)- z(s)l dlml(s)

_< L Y z I1 hls) dim I(s)

z-1L [y zll(h(x)- 1)
<_ - tlly z][h(x).

Consequently, we have the estimation

h(x)- l(Zy)(x) (Tz)(x)] <_ -L[ y zl;
this means IlZY- TzlI <_ -LIIy- z[. Because of (3.1) we have z-IL < 1
and the operator T is strict contractive. It follows that there exists a unique
solution to equation (III).

Finally, let Yo and Zo be two initial values for equation (III), and y and z the
corresponding solutions. By the Lipschitz condition then, for every x [a, b],
we have

[y(x) z(x)[ _< [yo Zo] + L f ]y(s) z(s)[ dim ](s).

The solution of equation (III) is of bounded variation and we can apply the
Gronwall inequality from Section 2. We obtain the estimation

]y(x)- z(x)] _< ]Yo- Zo[ h,.(x) (x [a, hi),
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in which the function hL is the solution to the equation

hL(x)= l + L f hL(s) d lml (s) (x [a, b]).

The function hL is bounded and therefore the solution y to equation (III)
depends continuously on its initial value Y0.

4. Another type of equation

At the end of Section 1 we observed that our equations are anticipative in
some sense. Now we will consider equations which are possibly more realistic,
if we think of concrete physical systems. This feeling will be emphasized by the
fact that these equations are solvable uniquely under substantially weaker
conditions. Indeed, let us consider the equations

Wo + f w(s O) am(s) (x e [a, b]) (I’)

w(x) u(x) + f w(s O) dm(s) (x e [a, b]) (IX’)

Wo + f f(s, w(s- 0))dm(s) (x [a, b]) (IXI’)

in which the functions m and u are of bounded variation on [a, b], w0 is a real,
and the function f is continuous and satisfies the Lipschitz condition from
Section 3 with the same Lipschitz constant L.

Equation (I’) has a unique solution w, which can be expressed by the formula
W(X)-- woem’X)[1 -+ lk-m(x)]e -a-re‘x) 1-I [1 + A+m(r.)]e-a+-m (x [a, b]).

The convergence of the (possibly) infinite products follows from the absolute
convergence of the series <, A +_ re(z); compare this with [56] or [36, p. 229].
In the sequel we consider only the essential difference between equations (I’)
and (I) which occurs naturally at points x with A-re(x) 0. At such points we
have

w() [ + a-,()]w( 0), w( + 0) [ + a_+ m()]w( 0).
But to "solve" uniquely this equation we need no further condition, contrary to
the case of equation (I) in which the equations

y() [ a-m()]-’y( 0), y( + 0)= [ + a+m()]y()
must be fulfilled.
To simplify matters we consider the solution to (II’) in the case where

+ a-m(), + a: m()> 0 (x b, b]).
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In this case the homogeneous equation

k(x)= l + fa k(s O) dm(s) (x [a, b])

has a positive solution k and we can write the unique solution to the nonhomogen-
eous equation (II’) in the form

w(x) k(x) u(a) + k(s 0)-’ du(s)

k(a + O)-’A+m(a)A+u(a)

k(r + O)-’A_+m(’r)A_+
a<<x

A-m(x)A-u(x) (x [a, b]).
The proof of this assertion is similar to the argument in [27, Section 10,
pp. 368-9], which verifies the solution of tII), using the Dirichlet formula.
Now we turn to the last equation.

The nonlinear equation (III’) has a unique solution w, which depends contin-
uously on the initial value Wo.

The proof of this statement follows that in Section 3, but we choose in
contrary here on the set C,,[a, b] the weighted norm

Ilwll sup {k(x)-’ w(x)l x [a, b]},
in which the weight function ks is the (positive and bounded) solution to the
equation

ks(x) l + a f k(s O) d m (s) (x [a, b])

with a 2L. We show that the operator U, defined by

(Vw)() Wo + f(s, w(s o))am(s) (w C.[a, b]; [a, b]),

is contractive. For w, v C[a, b] and x [a, b] we have

(Uw)(x) (Uv)(x) If(s, w(s o)) f(s, v(s 0))1 d m (s)

Lllw 11 k(s O) dim I(s)
"a
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and from here Iluw- ull 2-lllw- 11. To show the continuous depen-
dence on the initial value w0 we need the following version of Gronwall’s
lemma. On this occasion k is the (positive) solution to the equation (4.1) if we
set 1, compare the considerations in the next section for a special case.

Let c >_ 0 and w be a function of bounded variation on [a, b] which satisfy the
inequality

< w(x) <_ c + f w(s O) d m (s) (x e [a, b]).0

Then we have the estimation w(x) <_ c k(x) (x [a, b]).

5. A special case: right continuous solutions

In this section we simplify our considerations. To this end we assume the
right continuity of the function m on the interval [a, b]. Also we assume
1 A-re(x) > 0, 1 + A-re(x) > 0 for all x e [a, b]. Especially, we are interested
in an analogous form of the relation ee 1, where we interpret e and e
as solutions to the equations y(x)= 1 + o y(s)ds and {x)= 1 (s)ds,
respectively. For this matter, we consider the equations

with the common initial value q e R. Applying the results of Sections 1 and 4
we obtain the (positive) solutions to these equations for all x e [a, b] in the
following form"

y(x)-- qem(X)l H [1 A-m(z)]ea-mt),
<_x

f(x) rle-’tx)/ 1--[ [1 + A-m(z)]e-

w(x) r/e
"(x) H [1 + A-m(v)]e- A-(),

(x) r/e-"*’ I-[ [1 A-m(v)]e-’’*,.

From this it follow that y(x)= v(x)-’, w(x)= (x)-1 (x e [a, b]). For that
reason, equations (I) and (OI’) as well as (I’) and (OI) are in a natural way
adjoint to each other (compare with [27, Section 12, pp. 370-1]).
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As a nice application we give as indicated previously a very simple proof of
the Gronwall lemma from Section 2 with respect to right continuous functions
m and y (m nondecreasing).

Let h and k be the solutions to the equations

and

h(x)= l + f h(s) dm(s) (x e [a, b])

(x) 1 f (s O) dm(s) (x [a, b]),

respectively. For a nonnegative constant c and all x [a, b] we assume that
0 < y(x)< c + y(s)dm(s). Setting z(x)= y(s)dm(s) we have y(x)-
z(x) < c. We multiply by the integrating factor k-(x- 0) and integrate both
sides, and obtain

X

f y(s)(s O) dm(s) f z(s)(s O) dm(s) <_ c ,(s O) dm(s),
a

where we have used the fact that rn is nondecreasing. It follows

f (s O)dz(s) + (z(s) d(s) < c(1 -/(x)).
a

In this case the integration by parts is very simple (compare for example with
[29, Satz 20.9, p. 132]). Using z(a)= 0 we have

(x)z(x) <_ c(1 k(x)),
y(x) c <_ z(x) <_ c(/(x) -1 1)= c(h(x)- 1),

and, finally, the desired result

y(,,) <_ c h(x) (,, [a, hi).
With the help of the solutions to (I’) and (DI) for r/= 1 we can verify the
version of Gronwall’s lemma from Section 4 in the same fashion.

6. An application in stochastic control theory

Many problems within stochastic control theory lead to a so-called Bellman
equation which allows one in principle to compute the minimal expected cost
corresponding to the application of an optimal control policy. In case of the
optimal control of one-dimensional nonconservative quasi-diffusion processes
(see [16], and for classical diffusion processes [50, Section VI.3])the Bellman
equation has the form

(D.D; v)(x) + min {a(x, z)-lib(x, z)(D; v)(x O) + c(x, z)]} 0

(x e [a, b]), v(a) qo, (O- v)(a)= r/,, (6.1)
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in which D,D is Feller’s generalized second order differential operator with a
nondecreasing right continuous function m and a (strongly) isotone continuous
function p (see for example [11], [50, pp. 21-2], [15]), D- stands for the right
derivation with respect to the function p, J is a compact set in R, and a 0, b, c
are continuous functions on [a, b] x J.

In [50, Lemma 3, p. 161] it was shown that the function

P(x, y)= min {a(x, )-a[b(x, )y + c(x, )] (x 6 [a, hi, y 6 R)
zeJ

is continuous and satisfies the Lipschitz condition

IV(x, y)- V(x, Y)I L lY YI (x [a, b]; y, Y2 R)
where

L max {I b(x, z)lla(x, z); x e [a, b], z e J}.
Integrating (6.1) we obtain the equation

(O; v)(x) + f V(s, (O; v)(s 0)) am(s) (x [a, b]).

According to Section 4 this equation has a unique solution z. Setting

() o + f (s) dp(s) ( [, hi)

we have solved (in principle) the Bellman equation (6.1).

7. A glance at the higherimensional case

In the original paper of T. H. Hildebrandt [27] all assertions about linear
equations are formulated in the finite-dimensional case. Thus the homogeneous
equation

Y(x) Yo + f dM(s)Y(s) (x [a, b]),

in which x M(x) is a matrix-valued function of bounded variation on [a, b],
has a unique solution if and only if the matrices I A-M(x) have reciprocals
for all points of discontinuity of M.

Let us give the precise definitions. In the n-dimensional real vector space R"
we introduce for each vector Y (y,, y,)’ the norm ]Y] max, lyl the
no of a vector function x Y(x) (x [a, hi)is given by

tit sup (I r() [a, 1.
The no of the n x n matrix M (m)is defined by ]MI maxi ]m,.
The matrix function x M(x) (x [a, b]) is called ofbounded variation if each
of its components m(x) are of bounded variation; we set

VM sup M(x,) M(x_
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where the least upper bound is taken with respect to all subdivisions

{ Xo <

of the interval [c, d] _c [a, b]. It follows immediately that Vam < VaM, and the
isotone function x ---+ vt{x) VM is discontinuous if and only if some m is
discontinuous. Also we have for all x e [a, b] the relation

A-vM(x) max E [A-mij(x)[" (7.1)

Finally, we must introduce a counterpart to the space Cm[a, b] in the case of
one dimension. Clearly, we are interested in the set of all bounded vector-
valued functions G(x) (9 l(x),..., 9n(X))’ on [a, b] which satisfy the conditions

E A-m,(x) 0 A-gi(x)- 0,
J

Z A + mij(x) 0 ::> A +O’(x) 0

for all x e [a, b] and 1, n. To define such a space we introduce on [a, b]
the metrics Pm) (i 1,..., n) by setting

p(i,(x, y)= Ix Y + Im,(x) m,a(y){ (x, y [a, b]).
J

Let us denote by C[a, b] the space of all bounded vector-valued functions
G (g l, gn)’ such that g, C(0[a b] (i= 1, n), where C(0[a b]
(i 1, n) is the space of all real valued bounded functions which are contin-
uous on the metric space ([a, b],
Now we are able to formulate analogous assertions about the nonlinear

systems

Y(x) Yo + f dM(s)F(s, Y(s)) (x [a, b]) (Ill)

W(x) Wo + f dM(s)F(s, W(s- 0)) (x [a, b]) (III’)

in the n-dimensional case. In this case F denotes a vector-valued continuous
function on [a, b] x R which satisfies the uniform Lipschitz condition

IF(x, u)- F(x, V) _< L Iu v (x [a, b]; U, V 6 Rn).
Assume the existence of a positive constant a such that

max 21A-mij(x) > > L.

Then, for every vector Yo equation (III) has a unique solution Y, which depends
continuously on the initial condition Y(a)= Yo.

(7.2)
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We will prove only that 3;, defined by

(ZZ)(x) Yo / f dM(s)F(s, Z(s)) (x [a, b])

for all Z CM[a, b], x [a, b], is a contractive operator, ifwe choose an appro-
priate weighted norm. For > 0 let h be the solution of the equation

h(x)= l + f h(s) dvM(s) (x [a, b]);

by (7.2) and (7.1) it is strictly positive. Then we define in C[a, b] the norm
by

[IZl] sup {h(x)-* Z(x)l x e [a, b]}.

The validity of the Lipschitz condition implies that for every Y, Z e C[a, b]
and x e [a, b] the estimation

I(Y)(x) (Z)(x)l fxa dMts)[F(s, Y(s))- F(s, Z(s))]]
j2 IF(s, Z(s))- F(s, Z(s))ldvu(s

L Y(s)- Z(s)ldv(s

Ell Y zll f h(s)d(s)- gl t Zlh(x).

Consequently,

and

h=(x)-a (Y)(x)- (Z)(x)l <_ o-’Lll Y- zll (x [a, b]),

Because of (7.2), we have e- 1L < 1. Also the other parts of the proof as well as
the proof of the continuous dependence on the initial value are completely
analogous to the one-dimensional problems of Sections 3 and 4. The same is
true for the last assertion"

For any matrix valuedfunction M ofbounded variation, the system (Ill’) has a
unique solution W dependin9 continuously on the initial vector Wo.
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Appendix

Each function 9 of bounded variation can be split into a continuous part 9
and a pure jump function 9b, the function of the breaks. This decomposition is
unique up to an additive constant; we set

9(a) O,

9(x) A +9(a) + Z A+ o(r) + A-O(X) (x [a, b]),
a<r<x

b]).
The verification of the continuity of gc can be found for instance in [54].
For a function # of bounded variation on [a, b] and a measurable, bounded

functionfthere exists always the Lebesgue-Stieltjes integral f(X)#c(dx). Here
and for the rest of the appendix let a < c < d < b. Now the (Lebesgue type)
Young integral of the function f with respect to # is defined by the relation
d ,d

f f(x)do(x)= f f(X)Oc(dx) +f(c)A+O(c)+ E f(r)A+o(r) +f(d)A-a(d)
"c c<r<d

Additionally, we set f(x)d#(x)= 0. Clearly, we have the usual estimation

f(x) dg(x) < If(x)] d]gl(x).

Regarding the Young integral as a function of the upper limit

h(x)= f f(s) do(s) (x [a, b])

we obtain afresh a function of bounded variation which has the properties

A-h(x)= f(x)A-9(x), A+h(x)= f(x)A+o(x), A+ h(x)= f(x)A+ 9(x)
for all x [a, b] (remember o(a 0)= o(a) and 9(b + O)= 9(b)).
The connection of the Young integral to the Lebesgue-Stieltjes integral can

be expressed by the formulas
d+O

(LS) f f(x)g(dx) f f(x) do(x),
[c,d] 0

d

f f(x) dg(x) (LS) f f(x)9(dx) + f(c)A +9(c) + f(d)A-9(d).
(c,d)

For more information about relationships of different types of Stieltjes inte-
grals see [63], [60].

Henceforth let be all functions of bounded variation on [a, b]. Then our
Young integral is equal to the Riemann type Young integral in [27]. If we set
h(x) x fdg we have the substitution theorem [28, p. 91] k dh d kfdg.
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If we regard a pointwise convergent sequence f,(x)f(x)of uniformly
bounded functions f, on [a, b] and another sequence of functions #m which
converge in variation to 9 then [27, p. 355]

d d

If the function (x, y) h(x, y) (a < x, y < b) is bounded and moreover, is of
bounded variation on in each variable [a, b], then we have the Dirichlet form-
ula [10], [27, p. 355]

d

fd fa h(x, y)df(x)do(y) A +f(c)h(c, c)A + 9(c)
y

[A +f(z)h(z, "r)A +9(z) A-f(z)h(z, z)A-o(z)]
c<r<d

+ a-f(d)h(d, d)a-g(d).

Setting h 1, we then obtain the following integration by parts theorem"
d d

f f d9 + f< 9 df= f(d)9(d) S(c)9(c) a +f(c)A + 9(c)

[a +f(r)a +a(r) a-f(r)a-V(z)] + a-f(d)a a(d).
c<r<d

If both functions f and 9 are right continuous then we obtain a very simple
version of the integration by parts theorem [29, p. 132]"

d d

f f(x)dg(x) + f g(x O)df(x)=f(d)g(d)-f(c)g(c).

For other types of integrals compare also with [60], [41], [40], [32], [47], [72].
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