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Abstract

A reflexive Banach space E has an unconditional finite dimensional expan-
sion of the identity iff E has the approximation property and E is a subspace of
a space with an unconditional basis. More results are given in the non-reflexive
case. The results are applied to show that the non-complementation of C(E, F)
in L(E, F) is equivalent to C(E, F):/: L(E, F) in certain cases such as: E is
reflexive, E or F has the b.a.p, and F is a subspace of a space with an uncondi-
tional basis.

1. Introduction and preliminaries

Throughout this paper, "operator" means a bounded linear map, a "space" is
a Banach space and "subspace" means a closed linear subspace, X, Y, E, F and
G will always denote Banach spaces. E’ is the dual of E. L(E, F) denotes the
space of all operators from E to F normed by the usual sup norm and C(E, F) is
the subspace of L(E, F) of the compact operators.
A separable Banach space E has the bounded approximation property

(b.a.p.) if and only if there is a sequence {A,} of finite rank operators in E such
that x A, x for all x E. If An x converges unconditionally for all x E
then {A.} is called an unconditional finite dimensional expansion of the identity
(u.f.d.e.i.) of E. In this case we say that E has the unconditional approximation
property (suggested by H. P. Rosenthal). If, in addition, for all n, A, is a
projection and An A --0 when n 4: m, then {A,} is called an unconditional
finite dimensional decomposition (u.f.d.d.) of (the identity of) E. Peiczyfiski and
Wojtaszczyk [13] proved that E has an u.f.d.e.i, iff E is complemented in a space
with an u.f.d.d. A space with an u.f.d.d, is a subspace of a space with an
unconditional basis (see Lindenstrauss and Tzafriri [10]). Hence a space with
an u.f.d.e.i, is a subspace of a space with an unconditional basis. We shall show
that in certain cases, the converse is also true. In particular we prove that for a
reflexive Banach space E having the approximation property, E has an u.f.d.e.i.
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iff E is a subspace of a space with an unconditional basis. We mention an
example of a subspace of having a basis but lacking the unconditional a.p.
(i.e. having no u.f.d.e.i.). In the nonreflexive case we prove that if E has a
shrinking unconditional basis, M is a subspace ofE and M’ has the approxima-
tion property (a.p.) (and hence the b.a.p.) then M has the unconditional a.p.
Finally if N is a quotient of a space with a shrinking unconditional basis and N’
has the a.p. then N and N’ have the unconditional a.p.

In the last section we study some equivalences of the non-complementation
of C(E, F)in L(E, F). It is still an open question whether C(E, F)can be
nontrivially complemented in L(E, F). Among the results proven, if L(E, F) :/:
C(E, F), E is reflexive, F is a subspace of a space with an unconditional basis
and E or F has the b.a.p, then C(E, F) is uncomplemented in L(E, F).

Let {x.} be a sequence in E. If

sup {El f(x.)l, f E’, Ilfll 1}

is finite then we say that the series x, is weakly unconditionally Cauchy. It is
well known and easy to see that x, is weakly unconditional Cauchy iffthere
exists K > 0 such that for every n and scalars 2, 2.,

< K sup 12il.

For any x’ E’ and y F denote by x’ (R) y the operator mapping x --. x’(x)y.
If {e,} is an unconditional basis of E with an unconditional constant K and if
{e,} is the sequence of coefficient functionals and if A L(F, E), B L(E, G)
then

K[IAII IIBII sup I Zil

for all n and ’’1, ’n" Hence ex({A*e’,(R) Be}) < o (as observed by Lust [11]).
Finally if {A,} is a sequence in L(E, F) such that A.x converges uncondi-
tionally for every x in E then lie ,,xl[ _< ({A.x))for every finite sequence
{2,} with a. By the uniform boundedness principle IlY ,Z, is uni-
formly bounded for such sequences--i.e. A, is weakly unconditionally
Cauchy.

2. The main tool

LEMMA 1. Let {T.} and (B.} be sequences in C(X, Y)and let T L(X, Y).
Assume that Tn x tends to Tx in norm (respectively, weakly)for every x X and
that

( T f B’[f) - O for f Y dp 6 X (2.1)
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Then there is a sequence {A,,} offinite linear combinations of the Ti’s so that
=1 A, x Tx (respectively, in the weak topology)for all x X and

(i) Z A,x converges unconditionally for all x X ifZ B,x does, and
(ii) A, is weakly unconditionally Cauchy in C(X, Y) if E B. is.

Proof Put V, T, 7= Bi, then dp(V*.f)O for everyfe Y’ and every
05 e X". By Kalton [8, Corollary 3], {V.} is weakly null. By a well known
theorem of Mazur, there is a strongly null sequence {U.} of convex combina-
tions of the V,’s of the form

U,,= y’, 2, V (2.2)
iln

where

I,=(i’p,_ <i<_p,}, 0-- Po < Pl < P2 < "",

and

(2.3)

2i >_ 0 for all i, 2, 1 for all n, (2.4)
il

and such that U, < 2-" for all n.
Now let us put I0 0 and define A, i . 2i T i .-1 2 T/for all n. It

is clear that 7=1 A x i ,. 2, T x --. Tx for all x X, in the strong (respec-
tively, weak) topology of Y. Suppose now that Anx converges uncondi-
tionally. For every natural put

i<j In

when n is determined by I..
Straightforward calculation gives

,8,= Z 2j (2.5)
i>jln

An Z iBi + Z fliBi + Un- Un-1 (2.6)
i6In iIn-1

iln iln-1

and

Since 0 _< ,, fl, _< 1, the first two series on the right side of (2.7) converge
unconditionally (the I.’s are pairwise disjoint). And (U.- U._ 1)x is (even)
absolutely convergent. Hence A.x converges unconditionally. From (2.6) (ii)
is derived in the same fashion. |

Remark. The idea of the construction of the A.’s is taken from Pelczyfiski.
See [14, p. 446]. The present form was suggested by the referee in a slightly
different form.

Let E have an unconditional basis {e,} with coefficient functionals {e’}. Let M
be a subspace of E. Denote by j" M E the inclusion, put 9, e’, IM J*e and



SUBSPACES OF SPACES WITH AN UNCONDITIONAL BASIS 199

put S. 7=, 0,(R) e,. If U. 7=1 e’,(R) e, are the partial sum projections
defined by {e.} in E then S. U. ]M U, j C(M, E).

PROPOSITION 1. Let E and M be as above and let F be a Banach space.
Suppose that {T.} is a sequence offinite rank operators in L(F, M)pointwise
convergent to some T L(F, M)(i.e. T,x TxlJ -Ofor all x F)and assume

dp(T*.j*f T*S*, f - O for f e E’, dp e F" (2.8)
Then there exists a sequence {An} offinite rank operators in L(F, M)such that

An x converges unconditionally to Tx for all x F.
The sequence {A.} has each of the forms

A. . 2, T 2, T, (2.9)
iln iln-1

A. E c, T*gi (R) e, + Z fli T*g, (R) e, + R. (2.10)
In In-

where the 2i, I,, oi, flisatisfy the conditions (2.3), (2.4)and (2.5) and R, L(F, E),
[IR -< 22- .

Proof We use Lemma 1 where F X, E Y, and B, T*j*e’i (R) ei. Since

S. T T’j* e’i (R) el,
i=1

T*S* =1 B’ and (2.1) is satisfied. It is clear that BnX converges uncon-
ditionally for every x F X. (2.9) and (2.10) are simple consequences of the
proof of Lemma 1. I
The following is a special case of Proposition 1.

PROPOSITION 2. Let E have an unconditional basis, let M be a subspace orE
and let Sn: M E be the partial sum projections of the basis restricted to M.
Suppose {T.} is a sequence offinite rank operators in L(M, M), pointwise conver-
gent to the identity such that

d?(T*,j*f-S*.f)-O forf E’, M" (2.11)
then M has an ufd.e.i.

Let E have an unconditional basis {e,} with {e’,} the coefficient functionals.
Put Un ,".= e’, (R) ei the basis projections. Let N be a quotient of E with
q: E- N the quotient map. Then for any space F, L(N, F) may be isomet-
rically embedded in L(E, F) by a: L(N, F)- L(E, F); a(T)- To q. Clearly,
a(C(N, F)) c C(E, F).

PROPOSITION 3. Let E and N be as above. Suppose { T.} is a sequence offinite
rank operators in L(N, F)pointwise convergent to some T L(N, F)and assume

qb(U*.q*T* -q*T*.)fO forTe F’, qb E". (2.12)
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Then there is a sequence {A.) in L(N, F)offinite rank operators such that E A.x
converges unconditionally to Tx for all x N.
The proof is very much the same as in Proposition 1 and thus omitted.

3. Unconditional finite dimensional expansion of the identity

THEOREM 1. Let E have an unconditional basis and let M be a reflexive
subspace of E. Then M has an ufd.e.i, if and only ifM has the a.p.

Proof The "only if" part is trivial. For the "if" part the result follows easily
from Proposition 2. |

COROLLARY 1. Let G be reflexive then G has an u.f.d.e.i, ifand only ifG has
the a.p. and G is a subspace of a space with an unconditional basis.

COROLLARY 2. Let E have the unconditional a.p. and let F be a reflexive
subspace of E. Then F has the unconditional a.p. if and only if F has the a.p.

Examples (1) Let E be a subspace of Lp, 1 < p < go. If E has the a.p. then
by Theorem 1, E has the unconditional a.p.

(2) Let E be the space defined by Lindenstrauss [9] as the subspace of/a
spanned by the sequence {x"} in l where x"= (xT)is given by x".= 1,

-1/2 and 0 for other than n, 2n + 1, 2n + 2. Then E hasXn2n+l Xn2n+2 Xi
a basis but E has no u.f.d.e.i. (see [13]).

Example 2 shows that Theorem 1 cannot be simply generalized by deleting
"reflexive". Hence, more conditions must be added in the non-reflexive case.

In the proof of the next theorem we need the following fact essentially
contained in Johnson, Rosenthal and Zippin [6].

PROPOSITION 4. Let E’ be separable and suppose E’ has the a.p. Then there is
a sequence offinite rank operators T,: E - E such that T,x - x and T*, fffor
all x E, f E’.

Proof E’ is separable and has the a.p. By Grothendieck [5], E’ has the b.a.p.
Hence there is a bounded sequence of finite rank operators R,: E’ -, E’ so that
R,ff for f e E’. By [6, Corollary 3.2] we may assume R, A.* for suitable
A,: E - E. It follows that A.x - x weakly for every x in E. Let {xi} be a dense
sequence in E. Using induction and Mazur’s theorem define sequences
0- Po < P <"" of integers and 2, 22, of non-negative reals such that
when I. {j: p._ < j < p,}, ,. 2 1 and I[,. 2Axi -< 1/n for all n
and all 1 <i< n. Now put T, ,. 2A. Since [[a. is bounded, I1T. is
bounded and the T,x x for all implies T,x x for all x e E. T*.fffor all
f e E’ follows from the construction. |

THEOREM 2. Let E have a shrinking unconditional basis and let M be a
subspace ofE such that M’ has the a.p. Then M has an ufd.e.i.
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Proof. The assumptions of Prop. 2 are satisfied using Prop. 4. |

If (ei} is a boundedly complete basis of E, then E is isometric to the dual of
[e’i]--the subspace of E’ spanned by the coefficient functionals (e’i). The follow-
ing theorem was proved by P. Saphar.

THEOREM 3 (Saphar). Let E have an unconditional basis {e} and let M be a
subspace of E. Put N E/M.

(a) If {e} is shrinking and N’ has the a.p. then there is an u.f.d.e.i. {An} ofN
such that {A,*} is an u.f.d.e.i, of N’.

(b) If {e} is boundedly complete and M is closed in tr(E, [e’])then M has an
u.f.d.e.i, if and only ifM has the a.p.

Proof. (a) By Prop. 4 there exists a sequence {Tn} in L(N, N)of finite rank
operators such that Tnx x and T*,f-ffor all x N,fe N’. Now by Proposi-
tion 3 there is an u.f.d.e.i. {An} of N. As in Proposition 1 the An have the form
(2.9) and thus 7= A’ ,i 2, T’ and {A,*} is an u.f.d.e.i, of N’.

(b) Follows from (a)by duality. |

Example. Let E be a subspace of 11 closed in r(l 1, Co) and having the a.p. By
Theorem 3, E has an u.f.d.e.i.

4. Applications to spaces of operators

Let E and F be infinite dimensional Banach spaces. Consider the following
properties:

(a)
(b)
(c)
(d)

L(E, F)= C(E, F);
L(E, F) contains no isomorphic copy of loo;
C(E, F) contains no isomorphic copy of Co;
C(E, F)is complemented in L(E, F).

Kalton [7] proved that (a), (b), (c)and (d)are equivalent when E has an
u.f.d.e.i. His proof does not depend on this particular property of E for the
implications (a)= (b)and (the trivial)(a)= (d). Using a theorem of Nissenz-
weig [12] and Josefson [7] it is easy to extend Kalton’s proof to give (b)= (c).
Tong and Wilken [17] proved (d) (a) when F has an unconditional basis.
The results of the preceding section together with the mentioned results

yield some cases when (a),* (b),, (c),, (d). We shall give some more results.
The following lemma is basically due to Kalton.

LEMMA 2. Let E be weakly compactly generated and suppose there exists a
sequence {Tn} in C(E, F) such that Tnx converges unconditionally to Tx for
every x in E where T L(E, F)is non-compact. Then C(E, F)is uncomplemented
in L(E, F).
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Proof (1) First we prove the special case where E is separable. Since T is
non-compact, T. diverges in C(E, F). Thus, there is a sequence 0 Po <
P <"" of integers such that Bk _,+1 T. satisfies inf ]ln > 0. Clearly

B, x also converges unconditionally for all x E. Using standard methods of
the uniform boundedness principle, it is easy to see that there is some K > 0
such that f(n.x)[ _< gllf[I Ilxll for every x E andf F’ (see also intro-
duction). The map dp: 1oo L(E, F)defined by q()x ,T,x is well
defined, linear and bounded and b(Co) C(E, F). Now proceed as in the proof
of (iv) (v)in Theorem 6 of Kalton [7].

(2) Now let E be any WCG space. T is not compact. Thus, there is a separ-
able subspace Eo of E such that the restriction of T to Eo, T leo is non-compact.
E is WCG and Eo is separable. By Amir and Lindenstrauss [1] there is a separ-
able complemented subspace E1 of E containing Eo. Let P be a projection of E
on El. If there was a projection Q of L(E, F) on C(E, F) then Q1 L(E1, F)
C(E1, F) defined by QI(S)= Q(sP)Ie, would be a projection of L(E1, F) on
C(Ea, F), in contradiction with the first part of the proof (since
converges unconditionally to TIE, for all x El). Hence no such Q exists. |

THEOREM 4. Let E and F be infinite dimensional and suppose one of the
following cases occurs"

(1) E is reflexive, F is a subspace of some Banach space G with an uncondi-
tional basis, and E or F has the b.a.p.

(2) E is weakly compactly generated, F is a subspace of some G having a
shrinking unconditional basis and E’ or F’ has the b.a.p.

(3) E is a quotient of some G with a shrinking unconditional basis and either
E’ has the b.a.p, or F’ is separable and has the b.a.p.

Then (a), (b), (c)and (d)are equivalent.

Proof As mentioned before (a) (b) (c) and (a)= (d) always hold. We
have only to prove that (c) (a) and (d) (a). Suppose (a)fails, then thei’e is a
non-compact To in L(E, F). We will show that this implies the existence of a
series A, in C(E, F) and a non-compact T in L(E, F)such that A,x
converges unconditionally to Tx for every x in E. This means (see the introduc-
tion) that A, is divergent and weakly unconditionally Cauchy. By Bessaga
and Petczyfiski [2], (c) fails and by Lemma 2, (d) fails. So all that is left to do is
prove the existence of the series A. for each of the three cases of the theorem.

Case 1. As in the proof of Lemma 2 (second part) there is a separable
subspace E1 of E and a projection P in E, with P(E) E1, such that To lel is not
compact. Put T To P, then T is not compact. Since either E1 or F is a
separable space having the b.a.p. (and E is complemented in E) it is easy to see
that there is a sequence {R,} of finite rank operators from E to F so that

IlR.x Tx]l 0 for all x in E. Let {e,} and {e;} be the unconditional basis of G
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and its sequence of coefficient functionals and Di e’i (R) e. Let j" F G be the
inclusion and C--- Dj. Then, since E is reflexive,

tends to 0 for allfin G’ and 4 in E" E. The assumptions ofLemma 1 are now
satisfied with X E, Y G, T jR, and Bi Ci T. Since Bix is uncondi-
tionally convergent for every x in E’, there is (by Lemma 1) a series A as
claimed.

Case 2. Put T To. F’ is separable and T*(F’) is separable. Since either E’
or F’ has the b.a.p, there is a bounded sequence H.: F’-, E’ of finite rank
operators such that H.f--, T’ffor all fin F’. Let {f} be a dense sequence in F’.
For each n there is by [6, Lemma 3.1] a weak* continuous operator K.: F’ E’
such that range K. c range H,, K. f H. f for i= 1, 2, n and IlK. <
2]]H. []. By the weak* continuity of K., K. R.* for some R." E -, F. Clearly
R*, f T*f for all f in F’ and this implies

R,xTx for allxinE.

Now define D and Ci as in Case 1, with {el} shrinking. This yields
J*(Z D.*,f)= j*(f)=f IF for all f in G’. Hence

dp(R*.j*f ,=
T*C*’ f) - O

is true again as in Case 1 and the rest is alike.

Case 3. Put T To. Either E’ or F’ is separable and has the b.a.p. Hence
we can construct the sequences {R.} and {D} as in Case 2. Let q: G E be
the quotient map and use Lemma 1 with X=G, Y=F, T,=R,q and
B TqD. We have again a shrinking basis so (2.1) is satisfied. By Lemma 1,
there is a sequence {1.} of finite linear combinations of the R,q’s so that, 7t,x Tqx unconditionally for every x in G. Now define A, (iRi if
,71. 6Rq. , A, is the series which was claimed to exist. |

Remark. If E F and (d) fails, then there is an operator T" E --, E where T
is not of the form T 2I + K, 2 scalar and K C(E, E) (I the identity).

THEOREM 5. Let E and F be reflexive and suppose F or E’ is a subspace ofa
Banach space with an unconditional basis. Then C(E, F) is either reflexive or
non-isomorphic to a dual space.

Remark. The isometric version is known to be true more generally (see [4]).

Proof. Suppose C(E, F) is non-reflexive. Let {D.} be a bounded sequence in
C(E, F) which has no weakly convergent subsequence. By [4, Corollary 1.3]
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there is a subsequence {Sk D,k which is weakly Cauchy. In particular
lim f(SkX) exists for everyf F’ and x E. Since F is reflexive lim f(SkX)=
f(Tx) for some T L(E, F). T is not compact because otherwise, by Kalton [8,
Corollary 3],

Sk -, T

in contradiction to the construction of (D.). Now we must look at the two
following cases:

Case 1. F is a subspace of a space G with an unconditional basis (ei) and
coefficient functionals {e’i}. Put j" F - G the embedding, T, jS., K. e’, (R) e,
and B, K, jT. Then the conditions of Lemma 1 are satisfied with X E,
Y G. K, is weakly unconditionally Cauchy and thus, so is B,. By
Lemma 1 there exists a weakly unconditionally Cauchy series A, such that

A, x Tx weakly. As in the proofs of Lemma 2 and Th. 4 there is a projec-
tion P in E such that E P(E)is separable and T 11 is not compact. C(E , F)
is separable and isomorphic to a complemented subspace of C(E, F). Z A. [e is
a divergent series and weakly unconditionally Cauchy. By Bessaga and
Petczyfiski [2], Co is isomorphic to a (complemented)subspace of C(Ea, F).
Thus Co is isomorphic to a complemented subspace of C(E, F). By Bessaga and
Pelczyfiski [3], C(E, F) is not isomorphic to a dual space.

Case 2. E’ is a subspace of a space with an unconditional basis. By Case 1
C(F’, E’) is either reflexive or non-isomorphic to a conjugate space. But here
C(E, F)and C(F’, E’)are isometric by T T*. |

Example. C(l,, lq) is reflexive (respectively, not isomorphic to a conjugate
space) if 1 < q < p < o (1 < p < q < o). See [4]. We conclude with two open
problems.

Problem 1. Is Theorem 5 true even when the condition F or E’ is a subspace
of a space with an unconditional basis is dropped ?

Problem 2. Let E be an infinite dimensional subspace of a space with an
unconditional basis. Is there always some T: E ---, E not of the form 21 + K, 2
scalar, K in C(E, E)? (The problem is open for any infinite dimensional Banach
space and was raised by Lindenstrauss. See the remark after Theorem 4.)
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