GROUPS WITH SOLVABLE CONJUGACY PROBLEMS

BY
\section*{Seymour Lipschutz}

1. Main theorems

Let A and B be groups with $h \in A$ and $k \in B$. Suppose $g p(h)$, the cyclic subgroup generated by h, is isomorphic to $g p(k)$. We let $G=(A * B ; h=k)$ denote the free product of A and B with $g p(h)$ and $g p(k)$ amalgamated by identifying h with k. Clearly B must have the following two properties if G is to have a solvable conjugacy problem:
$\left(C_{1}\right)$ The conjugacy problem in B is solvable.
$\left(C_{2}\right)$ The membership problem in B with respect to the amalgamated subgroup $g p(k)$ is solvable, i.e. for any $b \in B$ one can decide if $b \in g p(k)$.

The author proved the following in [5].
Theorem 1. Suppose A and B are free groups. Then $G=(A * B ; h=k)$ has solvable conjugacy problem.

This result was generalized by Comerford and Truffault in [2] as follows.
Theorem 2. Suppose A and B are sixth-groups and $h \in A$ and $k \in B$ have the same order. Then $G=(A * B ; h=k)$ has solvable conjugacy problem.

The main observation of this paper (stated below) and an analysis of the proofs of Theorems 1 and 2 show that the conditions on one of the factors, say B, are not necessary if h is a nonpower. Such generalizations are stated below. We say that x is a nonpower if there does not exist a y such that $x=y^{n}$ with $n>1, x$ is nonselfconjugate if $x^{r} \sim x^{s}$ implies $r=s$, and x is seminonselfconjugate if $x^{r} \sim x^{s}$ implies $|r|=|s|$. (Here \sim is the conjugacy relation.) The definition of a sixth-group and Solitar's Theorem [8, p. 212] for the case $G=(A * B ; h=k)$ appear in [2]. Any other terms or definitions appear in [8]. Lastly we note that if x has infinite order then (1) x is nonselfconjugate when x is in a free group, and (2) x is seminonselfconjugate when x is in a sixth-group, (cf. [7] and [1]).

Theorem 3. $\quad G=(A * B ; h=k)$ has solvable conjugacy problem if
(a) A is free and h is a nonpower and
(b) B satisfies $\left[C_{1}\right]$ and $\left[C_{2}\right]$ and k is nonselfconjugate.

Received April 10, 1978.

Theorem 4. $\quad G=(A * B ; h=k)$ has solvable conjugacy problem if
(a) A is a sixth-group and h is a nonpower and nonselfconjugate and
(b) B satisfies $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ and k is nonselfconjugate.

Theorem 5. $\quad G=(A * B ; h=k)$ has solvable conjugacy problem if
(a) A is a sixth-group and h is a nonpower and
(b) B satisfies $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$, k is seminonselfconjugate, and for any $b \in B$ one can decide if there exists an n such that $b \sim k^{n}$.

Proof of Theorems 3, 4 and 5. Let u and v be elements of G. We must show how to decide if $u \sim v$ in G. We can assume without loss in generality that u and v are cyclically reduced and have free product length n. As usual, the proof reduces to the cases $n>1$ and $n=1$.

Suppose $n>1$. As noted in [5] and [2], $u \sim v$ in G iff there exists an m such that

$$
\begin{equation*}
h^{m} u_{1} u_{2} \cdots u_{n} h^{-m}=v_{1} v_{2} \cdots v_{n} \tag{1}
\end{equation*}
$$

where $u_{1} u_{2} \cdots u_{n}$ and $v_{1} v_{2} \cdots v_{n}$ are normal forms of cyclic conjugates of u and v, respectively. The main observation of this paper follows.

Remark. We can assume without loss in generality that u_{1} belongs to A. Otherwise u_{n} belongs to A and then we decide if $u^{-1} \sim v^{-1}$ in G.

In a free group or in a sixth-group (see Greendlinger [4]) h and u_{1} commute if and only if h and u_{1} are powers of the same element. But h is a nonpower and u_{1} does not belong to $g p(h)$. Hence h and u_{1} do not commute. Thus (1) holds if and only if

$$
\begin{equation*}
h^{m} u_{1} h^{r}=v_{1} \tag{2}
\end{equation*}
$$

holds in A. The author showed in [5] that we can decide if (2) holds when A is free, and Comerford and Truffault showed in [2] that we can decide if (2) holds when A is a sixth-group. Thus we can decide if $u \sim v$ in G when $n>1$.

Suppose $n=1$. The proof of Theorems 3 and 4 is identical to the proof of Theorem 1. That is, suppose u and v belong to the same factor. Since h and k are nonselfconjugate, $u \sim v$ in G if and only if u and v are conjugate in the factor. On the other hand, suppose u and v are in different factors, say $u \in A$ and $v \in B$. Then $u \sim v$ in G if and only if $u \sim h^{m}$ in A and $v \sim k^{m}$ in B. However, in a free group or in a sixth-group one can decide if $u \sim h^{m}$ (cf. [6] and [2]), and for this m one can decide if $v \sim k^{m}$ in B since B has solvable conjugacy problem. Thus Theorems 3 and 4 are proved.

Theorem 5 is slightly more complicated since h and k need not be nonselfconjugate. However, h and k are both seminonselfconjugate, so there are only two possible powers of h and k that one has to consider. Otherwise, the proof is similar to the proof of Theorems 3 and 4.

2. Examples

We now give some examples of groups with solvable conjugacy problem.
(a) Garside [3] solved the conjugacy problem for the braid group B on $n+1$ strings with generators a_{1}, \ldots, a_{n} and defining relations

$$
\begin{gathered}
\qquad a_{i} a_{j}=a_{j} a_{i} \quad \text { when }|i-j| \geq 2 \\
a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1} \quad \text { for } i=1,2, \ldots, n-1
\end{gathered}
$$

Let k be a braid in B. Then $k=W\left(a_{i}\right)$, a word in the a_{i}. By the index of the braid k, written ind (k), we mean the sum of the exponents of the a_{i} in W. Since the defining relations have index zero, ind (k) is independent of the particular word W. Clearly, $\operatorname{ind}\left(k^{n}\right)=n \cdot \operatorname{ind}(k)$ and if $k \sim k^{\prime}$ then $\operatorname{ind}(k)=\operatorname{ind}\left(k^{\prime}\right)$.

Let A be any sixth-group and let $h \in A$ be any nonpower; and let k be any braid in B such that $\operatorname{ind}(k) \neq 0$. Clearly, the membership problem in B with respect to $g p(k)$ is solvable, k is nonselfconjugate, and for any braid b in B one can decide if there exists an n such that $b \sim k^{n}$. By Theorem $5, G=(A * B$; $h=k$) has solvable conjugacy problem.
(b) There is the natural generalization of (a). That is, let B be a group with solvable conjugacy problem whose defining relations have index zero, e.g. the groups discussed in Garside's paper [3]. Let k in B be an element with $\operatorname{ind}(k) \neq 0$. Then $G=(A * B ; h=k)$ has solvable conjugacy problem where A is a sixth-group and $h \in A$ is a nonpower.
(c) First we need a lemma.

Lemma. Let A and B be groups with solvable membership problem with respect to any cyclic subgroup. Then $G=(A * B ; h=k)$ has solvable membership problem with respect to any cyclic subgroup.

Proof. Note first that G has solvable word problem. Given u and w in G we want to decide if u is a power of w. By choosing an appropriate inner automorphism, we can assume that w is cyclically reduced with free product length n. If $n=1$, then u must lie in the same factor as w and the membership problem is solvable in the factor. If $n>1$, then the length of w^{k} increases as $|k|$ increases. Consequently, a length argument can be used to determine if $u=w^{k}$ for some k. Thus the Lemma is proved.

Now let G be a finite tree product of sixth-groups where all amalgamated subgroups are cyclic and generated by nonpowers. A simple induction argument, Theorem 5, and the above Lemma show that G has solvable conjugacy problem.
(d) Let T be a tree product of groups with solvable conjugacy problem, e.g. the groups discussed in (c). Let w be an element of T which is not conjugate to an element in a vertex of T. Then the length of w^{k} increases as $|k|$ increases. In particular, w is seminonselfconjugate, the membership problem in T with re-
spect to $g p(k)$ is solvable, and for any $u \in T$ one can decide if there exists an n such that $u=w^{n}$. Suppose A is a sixth-group and $h \in A$ is a nonpower. By Theorem $5, G=(A * T ; h=w)$ has solvable conjugacy problem.

References

1. L. P. Comerford, Powers and conjugacy in small concellation groups, Arch. Math., vol. 26 (1975), pp. 353-360.
2. L. P. Comerford and B. Truffault, The conjugacy problem for free products of sixth-groups with cyclic amalgamation, Math. Zeitschr., vol. 149 (1976), pp. 169-181.
3. F. A. Garside, The braid group and other groups, Quart. J. Math. vol. 20 (1969), pp. 235-254.
4. M. D. Greendlinger, The problem of conjugacy and coincidence with an anticenter in the theory of groups, Sibirsk. Mat. Z., vol. 7 (1966), pp. 785-803.
5. S. Lipschutz, Generalization of Dehn's result on the conjugacy problem, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 759-762.
6. -_On Greendlinger groups, Comm. Pure Appl. Math., vol. 23 (1970), pp. 743-747.
7. - On powers, conjugacy classes and small-concellation groups, Lecture Notes in Math., vol. 319, Springer, New York, 1973, pp. 126-132.
8. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.

Temple University
Philadelphia, Pennsylvania

