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A STRONG SPECTRAL RESIOUUM
FOR EVERY CLOSED OPERATOR

BY

B. NAGY

1. Introduction

Decomposable operators (see, e.g., [2]) are linear operators, for which a
weaker, geometric variant of the constructions, characteristic of spectral opera-
tors [3], is still possible. Residually decomposable operators, introduced by
F.-H. Vasilescu [6], [7], and bounded S-decomposable operators, studied by I.
Bacalu 1], are operators such that, loosely speaking, the property ofdecompo-
sability holds only outside a certain part of the spectrum. F.-H. Vasilescu has
proved [7] that for certain operators having the single-valued extension
property there is a unique minimal closed subset of the spectrum, called the
spectral residuum, outside which the operator has a good spectral behavior of
this kind.
The main result of this paper is that, utilizing a similar concept of good

spectral behavior, for an arbitrary closed operator there exists a unique mini-
mal closed subset of the spectrum, called the strong spectral residuum, outside
which the operator shows this behavior. It is proved that for a large class, close
to that occurring in [7; Theorem 3.1], of operators strong and ordinary spectral
residues coincide. If the strong spectral residuum is void, the operator is
(bounded and) decomposable. Whether the converse is true, is equivalent to a
well-known unsolved problem, raised by I. Colojoar5. and C. Foia,s [2; 6.5 (b)].
Though the proofs seem to remain valid after minor modifications in a Fr6chet
space, to make references more convenient, we have chosen the Banach space
setting.

Let X be a complex Banach space and let C(X) and B(X) denote the class of
closed and bounded linear operators on X, respectively. Let C and (7 denote
the complex plane and its one-point compactification, respectively. Unless
stated explicitly otherwise, all topological concepts for sets in C will be under-
stood in the topology of C. If F C, then F denotes C\F and F denotes the
closure of F. For T C(X), D(T) is its domain and a(T)denotes its extended
spectrum, which coincides with the spectrum s(T)if T B(X), and is
s(T) w {} otherwise. We set p(T)-- a(T)c. If Y is a closed subspace of X and
T(Y D(T)) Y, then we write Y I(T) and T] Y denotes the restriction of
Tto Y D(T).

Received March 22, 1978.

173

(C) 1980 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America



174 B. NAGY

We recall some concepts and facts from [7]. For x X, z e (7 we say that
z fir(x)if in a neighborhood U of z there is a holomorphic D(T)-valued
function f such that (u- T)fx(U)= x for u e U c C. Such a function fx(U)is
called T-associated with x. There is a unique maximal open set fir in C with the
following property" if G c fT is an open set andfo: G D(T) is a holomorphic
function such that (u T)fo(u) 0 for u e G c C thenf0(u) 0 on G. We put
ST fSr, and, for any x in X,

7r(X) 6r(X), at(x)= r(X) w Sr and pr(X) at(x).
We say that T has the single-valued extension property if Sr is void. For any
T C(X), H c C we set Xr(H)= {x X; Or(X)c H}, then Xr(H} is a linear
manifold in X. A closed linear subspace Y in X belongs to the class 1T if
T IY B(Y). If F is a closed set in (7, define

Ir,F {Y IT;  (rl Y) F}.
If IT.F has an upper bound (with respect to the relation c), which belongs to
It,F, then it is denoted by Xr.F. Similarly, we define

I(T, F)= {Y e I(T); (Y Y)= F}.
If I(T, F) has an upper bound, belonging to I(T, F), with respect to the relation
c, then it is denoted by X(T, F).
DEFINITION 1. A closed subspace Y in I(T) is a spectral maximal space of

T C(X)if for any Z I(T) the relation (r] Z) (r] Y)implies z c Y.

It is easily seen that if F is closed in (7 and X(T, F) exists, then X(T, F) is a
spectral maximal space of T. Conversely, if Y is a spectral maximal space of T
and F tr(T] Y), then Y X(T, F).
The following result is taken from [4] and will be utilized later.

LEMMA 1. If T C(X), the closed set F contains ST and X(F) is closed
in X, then XT(F X(T, F).

Let S be closed in (7. A finite family of open sets (G, G,; G) is an
S-covering of the closed set H c (7 if 7= Gi w G H w S and d S
for 1, n.
The next definition is an extension from the case of a bounded operator [1].

DEFINITION 2. Suppose T C(X) and the closed set S is contained in a(T).
Call T strongly S-decomposable if for any open S-covering (G , G,; G) of
tr(T) there are spectral maximal spaces of T, X, c D(T)(i 1,..., n), X c X
such that"

(1) a(TIX,) c Gi (i 1, n)and a(TIX,)c G,;
(2) for any spectral maximal space Y of T, Y Y m X, + ZT=x (Y c X).

T is called S-decomposable if we postulate (2) only for Y X.
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The following results will be utilized later. For their proofs we refer to [4] (cf.
also [1]).

LEMMA 2. If T C(X) is S-decomposable then ST S.

LEMMA 3. If T C(X) is S-decomposable and F is a closed set containin9 S
then XT(F X(T, F).

2. The strong spectral residuum

DEFINITION 3. Let T C(X) and R R(T) be the family of all closed sets S
such that ST = S tr(T) and T is strongly S-decomposable. If there is S* R
such that S* is contained in each S R, then S* is called the strong spectral
residuum of T.
Now we state the main result of this paper.

THEOREM 1. The stron9 spectral residuum existsfor each operator T C(X).

Proof It will be divided into several steps.
(1) R is nonvoid, for tr(T) clearly belongs to R. If {Sa; a A} is a totally

ordered subfamily of R with intersection So {Sa; a A} and H is a
closed set disjoint from So then, since (7 is compact, there is ao A such that
H Sao is void. Hence an So-covering of tr(T)is an Sa-covering of tr(T) for
some a A. Since T is strongly S,-decomposable, it is also strongly
So-decomposable. By Zorn’s lemma, there exists a minimal element in R.

(2) If T is S 1- and S 2-decomposable, S $1 S 2, the set H is closed in (7
and is disjoint from S, then the subspace XT,n exists.

Indeed, if S F (7 then f 2=1 (F w Si), hence

2

XT(F XT(F
i=1

If, in addition, F is closed, then X(F w S) is closed in X, by Lemma 3, for T is
S-decomposable (i-- 1, 2). Thus X T(F is closed in X and, by Lemma 1,
Xz(F)=X(T,F). Putting F=HwS, Z=Xr(HwS), we obtain that
Z X(T, H w S)is a Banach space. Thus the operator V- T[Z is in C(Z)
and (V) H w S. The sets (V)c H and s (V)c S are disjoint
spectral sets [5; p. 299] of V. If P, Ps denote the associated projections and
Z, Zs denote their ranges, then Z Z + Zs. [5; Theorems 5.7-A-B] yield
that Z I(T, H). Moreover, if do belonged to r, then we should have S = C,
hence S = C for 1 or 2. Since T is Srdecomposable, this is easily seen to
imply T B(X). But then V B(Z) would yield do (V), a contradiction.
Thus is bounded, which implies Z e 1T,.

Further, if YelT. then (TIY)H wS implies Y=Z. Hence
T IY V IY and r(VIY H. IfD is a Cauchy domain (bounded or not, cf. [5;
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pp. 288-293]) such that H c D, / Sc, with positively oriented boundary
B(D), then for every y Y we have

Py (2rti)- (z- V)-y dz + cy
B(D)

=(2rti)-a f (z- V r)-y dz + cy
"B(D)

y

where c if D is unbounded and c 0 otherwise. Thus Y Zn, hence the
subspace XT,n Zn exists.

(3) If the closed set E c (7 contains S T and XT(E is closed in X, then
a(T XT(E)) = S.

(T) the set of all z e C such that there is a connected openDenote by
neighborhood V of z and a D(T)-valued holomorphic function f(v), not iden-

0tically 0 and satisfying (v T)f(v) 0 on V. As in the case T e B(X), cry(T)is
open and its closure in ’ is ST. If there is a point z e ( such that z
p(T]XT(E)), then there exists an open disk G C such that G
p(T[XT(E)). Further, there is a holomorphic function f(z), not identically 0
and satisfying (z- T)f(z)=_0 on G. By [6; Proposition 2.2],
(rT(0)- ST. Thus there is Zo e G such thatf(zo) g: 0 andf(zo) e XT(E), which
contradicts Zo p(T[XT(E)).

(4) If T is S-decomposable, S c G and G is open, then
(TI Xr()) = S.

Indeed, by Lemma 3, XT(( is closed in X, thus S ST and (3) imply
cr(T XT(()) ST. Hence, if the statement of (4)is false, there is z
p(TIXT(j)). Thus there exists a neighborhood U of z such that U
p(T[X(G)), and for u U, y XT(G we have

(u T)(u T XT(C,))- y y.

Therefore z rT(y for every y XT((7). Further, let (G, G) be an open S-
covering of (T). Since T is S-decomposable, for every x X we have
x x + y where xa XT, g, and y XT((). Hence 7T(x) ( and
G w ST. Since rT(x = rT(x) w rT(y), we have z T(x) for each x X, and
z S a(T). On the other hand, for any T C(X)we have r(T)= w {a(x);
x 6 X} (see [6; p. 513]), a contradiction, which proves (4).

(5) If T is S-decomposable, S c G , G is open and Y is a spectral
maximal space of T, then W Y m XT(() is a spectral maximal space of T.

Indeed, by Lemma 3, XT(G X(T, J). Further, put H r(T XT(()), then
(4) implies S c H (, and we have XT((7 X(T, H). If F (T[ Y), then
Y X(T, F). We shall show that W X(T, H F).

It is clear that W el(T). Suppose now that z(HCwF)cC. If
(z-T W)w 0 and z H, then w 0, for z-T is injective on all of
X(T, H). Similarly for z U, thus we have shown that z T W is injective.
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Choose an arbitrary w W and assume that z (H F) C. Then there
is h X(T, H) such that (z- T)h w, for z- T is surjective on X(T, H).
Further, we can prove similarly as in [6; Proposition 3.1] that a spectral maxi-
mal space of T is a T-absorbing subspace of X, hence z a(T[ Y) implies h Y,
thus h W. In a similar way we obtain that z- T W is surjective also for
z (H Fc) C. Finally, if z H F C, then there exist h X(T, H)
and f X(T, F) such that (z T)h w (z T)f, hence (z T)(h f O.
Since H S, the subspace XT(H w F)= X(T, H w F), by Lemma 3. The
operator z- T is injective on this subspace, and clearly h-f X(T, H w F).
Hence h =fe W, thus we have shown that z-TIW is surjective for
z (H w Fc) C.
Suppose now that o Hew Fe, then one of the closed sets, say F, is

bounded. Then a(T Y) F implies that T] Y B(Y), hence T] W B(W) and
o p(T] W). Thus we have proved that in any case W I(T, H F).

If a subspace U is in I(T, H F), then a(T U) H F, hence U X(T,
H) c X(T, F) W. Thus W X(T, H c F) is a spectral maximal space of T.

(6) IfSa, SRandS=S S2,thenSR.
Indeed, suppose (G (j 1,..., n), G)is an open S-covering ofa(T). The sets

Z S\G (k 1, 2) are closed in C" and they are disjoint, for S = G. Hence
there are open sets H (k 1, 2) such that H = Z and/-1 //2 . Put
G, G w Hk, then G, S k_) G (k 1, 2) and G, c G G. There exist
open sets Bk such that Sk Bk, Bk G, (k 1, 2). For every G (j 1, n)
let G G-i B,; then G G.i, G S and G w Gsk G-i (k 1, 2).
Thus (G (j 1, n), Gsk)is an open Sk-Covering of a(T). Since T is strongly
S 1-decomposable, for any spectral maximal subspace Y of T we have, by
Lemma 3 and (2),

Y Y XT(s,)+ (Y XT,-fi ).
j-1

According to (2), the spectral maximal spaces XT,,j exist for j 1, n, and

XT,Gjl XT,j.
Hence

Y= Y XT(G,)+ (Y Xw.aj).
j=l

By (5), W Y c XT(G, is a spectral maximal space of r. Since r is strongly
S2-decomposable, we obtain

w w <w Y <Y
j=l /=1

for we have 02= XT(G,,)= XT(= G). Hence

j=l

thus T is strongly S-decomposable.
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(7) According to (1), there exists a minimal element $1 in R. If $2 G R, then
(6) yields $1 c $2 R, hence $2 D S 1. Thus $1 is the strong spectral residuum
of T, and the proof is complete.
Now we recall some definitions and results from [7]. T C(X) is called

S-residually decomposable (S c (T) is a closed set) with localized spectrum if
for every closed F c (7 with F c S the subspace XT,F exists, for every
S-covering (G1, G,, Gs) of a(T) there exist X1, X, Ir such that
a(TIX,) (,i (i 1, n) and any x X has a decomposition x x +
..+ x, + xs where xi Xi, 7r(xi) 7(x) (i 1,..., n) and a(xs)c Gs. In

this case we shall write S Q(T) Q. If there is So Q such that S Q implies
So s, then So is called the spectral residuum of T.

F.-H. Vasilescu proved [7; Theorem 3.1] that if T C(X) has the single-
valued extension property, and for any closed F 1, F2 i the property that
Xr(F1), XT(F2) are in D(T)and are closed implies that Xr(F1 w F2)is in D(T)
and is closed, then the spectral residuum of T exists.

THEOREM 2. Suppose T C(X) has the single-valued extension property and
for any closed F C the set Xr(F) is closed in X. For any closed set S c a(T)
then S Q(T) ifand only ifS R(T). Hence the spectral residuum ofT exists and
coincides with the stron9 spectral residuum of T.

Proof Under the given conditions Lemma 1 implies that for any closed
F c C’ the set Xr(F) X(T, F) is a spectral maximal space of T. Assume first
that S Q(T), (G1, G,, Gs)is an open S-covering ofa(T) and Y is a spectral
maximal space of T. Setting F a(T[Y) then Y X(F) and, in view of [7;
Proposition 3.1], we may assume that the sets G1,..., G, are bounded. For any
Y e Y, Y Y +"" + Y, + Ys where y e X r(t) (i 1 n, s), further S r if5
implies that ar(Y) r(Y) F (i 1,..., n), since T has localized spectrum.
Hence also r(Ys) C F. The spectral maximal spaces X= Xr((7i)(i 1, n,
s) exist, X D(T) for 1, n, by [7; Proposition 2.5], and Y Y X +
2=1 (Y Xi); thus S e R(T).

Conversely, if SeR(T), and F is closed in (7 with FS=, then
X(T, F)= Xr(F exists. If F is bounded, then [7; Proposition 2.5] yields
Xr(F) c D(T). If F is unbounded, then S is bounded, which implies T B(X).
In either case, X r,F X r(F) exists. For any x e X the closed set H a r(x)
defines the spectral maximal space Xr(H). By assumption, for every open
S-covering (G1, G,, Gs)of (T),

XT(H)=XT(H as)+ XT(H c
i=!

Hence x x +"" + x, + xs, where xi XT(---J’i), and S T implies
7T(X,) H YT(X). Thus S Q(T), and the proof is complete.

Added in proof. After submitting the manuscript, the author learned that
E. Albrecht (Manuscripta Math., vol. 25 (1978), pp. 1-15) had shown that there
is a decomposable operator for which the strong spectral residuum is not void.
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