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Section 1

(1.1) Let V be a three-dimensional vector space over an algebraically closed
field K. Let X be the projective plane of lines in V and let Y be the dual
projective plane of planes in V. The flag variety F is the subvariety of X x Y
consisting of pairs (l, s) where the line is contained in the plane s. F is a
homogeneous space under the action of SL(V).

Let nx (respectively rr) be the projection X x YX (respectively
X x Y Y). Let [(i, j) ryx(gx(i (R) r(gr(j), for any pair of integers (i, j)
which is a line bundle on X x Y. Let La(i, j)denote its restriction to F. A line
bundle is called singular if any of the following conditions hold: i=- 1,
j 1, or + j -2. If a line bundle is non-singula,r, its index is defined to be
the number of negative integers in the set {i + 1, j + 1, + j + 2}.
There is a general theorem of Bott [5] giving the structure ofthe cohomology

of flag varieties if char (K) 0. In the case of F it is:

THEOREM 1.1. Let char (K)= 0. The cohomology
n(oL’(i, j)):# (0) iff is non-singular and q is the index of ’.

vector space

The purpose of this paper is to determine the analogous theorem when
char (K)= p > 0.
The following theorem is a special case of a theorem of Kempf [12].

THEOREM 1.2. Let char (K) be arbitrary. Assume q is either 0 or 3. The
following are equivalent:

(i) Ur(’(i, j))=/: (0) if and only if r q.
(ii) .’(i, j) is non-singular of index q.

The next theorem is the major result of this paper. It shows that Bott’s
theorem is false in positive characteristic.

THEOREM 1.3.
a<p.

Assume char (K)= p. Let a and b be positive integers with
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(i) Assume + 1 and j + 1 have opposite signs. If
aPb < / 11, IJ + II < (a + 1)pb

then n((i, j)) 4: (0)4: n((i, j)).
(ii) Ifthe hypothesis in part (i) does not hold, the conclusion ofTheorem 1.1 is

correct even in the non-zero characteristic case.

Since Hq(9) (0) for any a if q > dim F 3, theorem 1.3 completely
solves the problem of when Hq(50)vanishes.

(1.2) In Section 2 projective duality and Serre duality will be used to help
reduce the proof of Theorem 1.3 to a special case. In Section 3, the fact that F is
a Cartier divisor in X x Y will be used to relate the cohomology of 5a(i, j) to
the cohomology of /(i, j). As an incidental bonus, a proof of Theorem 1.2
different from Kempf’s is obtained. In Section 4, the cohomology ofthe "boun-
dary", of the region in Theorem 1.3 (i), will be computed by representation
theoretic techniques. In Section 5, the proof of Theorem 1.3 is completed and
some corollaries are given.
The author would like to acknowledge the guidance of his advisor, Professor

David Mumford, as well as the assistance of George Kempf, C. S. Seshadri and
the referee.

Section 2

Let (i, j) be a line bundle on F. Since all assertions to be proven involve the
cohomology of, duality theorems may be used to restrict the range of values
of (i, j) that must be considered. The canonical sheaf on F has degrees (-2,
-2)[2], hence by Serre duality nq(50) and n3-(( @) are dual vector
spaces over K. The degrees of 50-1 (R) cg are (- 2, -j 2). Ifj 1, then
H(50) (0) for all q (independently of as in [12] or [13]. So it may be
assumed that j > 0, replacing by 50-1 (R) cg is necessary.

In the case when < 0 but + j > -2 a further reduction may be made by
using projective duality. Let Xo, X1, X2 be projective coordinates on X; let Y0,
Y1, Y2 be dual projective cordinates. By [11], F is the subvariety of X x Y
defined by the single equation X0 Yo + X1 Y1 + X2 Y2 0, and hence is a Car-
tier divisor in X x Y, since X x Y is irreducible.

Exchanging a flag (l, s) with its dual (s*, l*) yields an automorphism of
p2 x p2 leaving F invariant and exchanging Xi and Y/. Since the sections of
line bundles are rational functions in the X’s and Y’s, a map of sheaves
a 50, is induced. It is easy to see that if 50 So(i, j), then o, .50(j, i) and
further that the induced map nq(50) H(9*) is an isomorphism for all q in
the category of K-vector spaces. Combining with Serre duality yields the fact
that Hq(Sf) is dual to H3-q((5*)-1 (R) cg). The degrees of (50")-1 (R) cg are
(-j 2, -i 2). If/-- 1, n() (0) as above, so assume _< -2. Then it
follows easily that the involution taking 5 to (Sa*)- (R) cg takes line bundles of
degree (i, j) with _< -2, + j >_ -2,j _> 0 into line bundles ofdegree (i, j)with
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+ j _< -2, j > 0. So for the purposes of proving Theorem 1.3 it suffices to
assume + j _< -2, j _> 0.

Section 3

(3.1) Since F is a divisor in X Y of degrees (1, 1)as seen in the previous
section, there is a short exact sequence of sheaves

(1) 0 /(i 1, j 1) //{(i, j) -* (i, j) --+ 0.

First assume that i, j > 0. (1) can be used to prove Theorem 1.2. Since

l’ i, j) xc (gx (R) x’ (_g r j

H((i, j)) - H((gx(i))(R) H((gr(j)) and H(/) (0) for q > 0 by the Kun-
neth formula and Serre’s computation of the cohomology of line bundles on
projective spaces [10, III, 2.1, 12]. Note that a similar discussion also holds for
///(i 1, j 1), since 1, j 1 > 1 and H((gx(- 1)) H(9 r(- 1)) (0)
for all q. Taking the long exact sequence in cohomology corresponding to (1)
yields

(2) 0 U(/(i 1, j 1)) U(/g(i, j)) U(L’(i,j)) 0

and H(’(i, j))= (0) for q > 0. This proves Theorem 1.2 for the case of index
(5) 0. If index (5)= 3 an analogous proof holds, or one may simply use
Serre duality to reduce to the case above. Note that Theorem 1.3 is also proven
in the case where and j are of the same sign.
Assume now that < 0, j > 0. By the Kunneth formula and Serre’s result

cited above, H2(/(i, j))= H2((gx(i))(R) H((_9(j)) and H(//)= (0) if q 2.
Further, H2((_Ox(i))is the K-vector space generated by monomials XoX X2,
where a + b + c and a, b, c < 0. H((j)) is the K-vector space ofelements
homogeneous of degree j in the symmetric algebra generated by Y0, Y, Y2. The
long exact sequence in cohomology now reads

(3) 0 - H(’(i, ;)) U2(’(i 1, ; 1)) U2(/(i, j)) H2((i, ;))-0
and

U(..q(i, j)) U(L’(i, j)) (0).

THUOR 3.1. H(9( (a + 1)p, ap)) (0), where a, b Z+ and a < p.

To prove Theorem 3.1 a lemma is needed. Let c e H2(#(i 1,j 1)). From
above, c can be written in the form

(4) c= cX + c2X2 + + c_i+X-1

where each ca is an expression involving X-, X-, Yo, Y, Y2. Let

E Xo Yo + X Y1 + X2 Y2 Xo Yo + r.

The map H2(/’(i 1, j 1)) H2(/(i, j))is induced by multiplication by E.
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LEMMA 3.2. (i) E" a 0 impliesyio divides rici
(ii) If d is an expression in X-; 1, X 1, Yo, Y1, Y2 such that Yio divides r d,

then there exists a unique c H2(///(i- 1, j 1)) as above such that ci--- d.

Proof Write

E c-- xl(rCl -+- Yoc2)+ X2(rc2 -+- Yoc3)-[-...-1- Xio l(rci+ 1).
Then E c 0 ifand only if -rcl Yoc2, rc+l 0. Note that Yo is nota
zero divisor. By successive substitutions 1)k Yo ck + ?c for 1 < k < i. The
case of k i-2 immediately yields (i). Given ca, ck+a can be uniquely
determined by the preceding equation, hence (ii) also follows.

Proof of Theorem 3.1. By the exact sequence (3), it suffices to show that

H2(((- (a + 1)pb 1, ap 1)) H2([(- (a + l)p, ap))
has non-zero kernel. By Lemma 3.2 (ii) this will be true if a suitable non-zero c
can be found. Let c X PbXapb YaoP- 1.Then

raPca (XfVPl -] Xty)ax-PX;apypb-1.
Since a < p,

a! [alpl’ua2pbyallPbYa22ff’(5) (xfr + X’Y) Z
a2

"1 ,2

al +a2 al

Recall from Serre’s computation [10] that if s > 0, < 0, X] X] 0 as a coho-
mology class if tl < s (and similarly for X2). Each term of the right-hand side
of (5) hence annihilates X-PbX;aPYp-a, since if al=0, xadp" Xa’=
xa2p X ap 0, whereas if a > 0, Xalpb X p O.
Hence rapc 0 and the hypothesis of Lemma 3.2 (ii) is satisfied. This yields

a non-zero element of Ha(#( (a + 1)pb, apb), proving Theorem 3.1.

LEMMA 3.3. If9 is of index 2, H2(9) =/= (0).

Proof Let hi(’) dim Hi(c.). Since h2(///(i 1,j 1)) and h2(//(i, j))do
not depend on. the characteristic of K by the computation preceding (3),
Z() hE(f’) ha() does not depend on char (K)either by (3). By Theorem
1.1 and the hypothesis on L, Z() > 0. So h2(5a) > 0, proving Lemma 3.3.

(3.2) In this section certain Schubert subvarieties of F will be used to study
the cohomology. The various assumptions made above continue to be in force.

Define a Cartier divisor S in F by the global equation X2 0. (Hence
Xo Yo Xa Ya on S.) Define a divisor T in S by the following local equations"
on the open set Ua {Xo 0} in S, the equation of T is Ya X-a 0; on the
open set Uz={Xa4=0} the equation of T is YoX? =0. Since

Y1 Xff Yo X- on Ua U2 this gives rise to a Cartier divisor. S and T
are examples of Kempf varieties (see [12]).
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Note that S is the variety of flags (/, s) such that lies in the plane x2 0 and
T is the subvariety such that s is that plane. Hence T px.

(3.3) The cohomology of line bundles on S and T will now be calculated. It
follows from the last paragraph of (3.2) that L,(i, J)IF C,1(i); the isomor-
phism multiplies a local section of C(i)(expressed in terms ofXo and X 1)by Y
to obtain the corresponding section of (i, j)IF. Hence Hq(T, (i, j))= (0)if
q 1 and Hi(T, ,’(i, j)) is the K-vector space generated by monomials of the
form XX Y2, where a0 + al and ao, al < 0.
Next consider S. The exact sequence of the divisor T in S is

(6) 0 oC,e(i + 1, j 1)Is a(i, j)Is (i, j)IF 0.

LEMMA 3.4. Hi(S, (i, J)ls) is naturally isomorphic as a K-vector space to
the vector space lenerated by the monomials

Xo+’X’Y Y2 for O < s <j, 1 < r < -i-s-1.

Also H(e(i, j)I)= (0) if q + .
Proof. By increasing induction on j. If j 1, H((i, j)Is) (0) for all q

[2], [12], [13]. Ifj 0, then Hl((i, J)ls) is isomorphic to H((i, J)IF), by the
long exact sequence derived from (6) and the case of j -1 just mentioned.
Since the map Le Is --* L,e Ir is restriction, the monomials XoXa which generate
nx(?’lF) have preimages vaov’a in n (,o Is). Taking r -a proves Lemma
3.4 ifj 0, since w(e I)= (0)implies w(l)= (0) for all q 1.

Assume the lemma holds for j- 1. From (6),

(7) o--, H((i + 1,j 1) I) --, H((i,j)l) --, H((i,j)l)--,O.
-1The map ’(i + 1, j-1)Is---, (i,j)ls is given by multiplication by YaXo

(= -YoX-X), so the image of n((i + 1, j- 1)Is--, n((i, J)ls) is gen-
erated by

Xo+rX?rY+Y2--, 0<s<j--1, 1 < r < s 2.

Replacing s + 1 by s gives

Xo+rX?Y Y2-, l < s <_j, 1 <_ r <_ -i s -1.

The preimage of n(’(i, J)lr) is generated by --oV’ v-a.,l y1/2., this just gives the
s= 0 case. Since by induction m((i + , j-1)])= (0)if q =pl and
Hq((i, J)IF)= (0) if q 1, then the cohomology sequence derived from (6)
implies n((i, j)Is)= (0), q =p 1. This proves Lemma 3.4.

(3.4) LEMMA 3.5. Let ’ be the line bundle of degrees (1, 0)(resp. (0, 1)).
Assume that the delrees and j of both and o (R) " satisfy + j < 2, j >_ O.
Let u be Xo (resp. Yo). Then the map

c,,. u()--,u( (R) ’)

(induced by the cup product Hl(,f’) (R) H(,a’) H’(c’ (R) f")) is injective.



COHOMOLOGY OF FLAG VARIETIES IN CHARACTERISTIC /9 457

Proof Assume first that 5’ has degrees (1, 0). The variety defined by the
vanishing of u is S. Since the map C, acts on H1(50) (as it has been represented
here) by multiplication by u, it is clearly the map in the exact sequence

(8) H(50 (R) 50’ Is) H’(50) H’(50 (R)

obtained from the exact sequence of the divisor u 0"

0- --, (R) , (R) o’l0
Hence it suffices to show H(Ze (R) ’ Is)- (0). This follows immediately from
Lemma 3.4.
Assume now that 50’ has degrees (0, 1). Let the subvariety of F defined by

Yo 0 be denoted by S’. As above it suffices to show that n(5a x ’ Is’) (0).
As noted in Section 2, there is a map F F obtained by interchanging Xand.. This map clearly takes S’ to S and vice versa. So the involution

(*)-a @ of Section 2 takes @ ’ls’ to Is, where has degrees
(i, j) such that + j -2, j 0. To show H(@’ Is) (0) it sumces then
to show H2(x Is)= (0), by Serre duality.
By taking the long exact sequence in cohomology coming from (6) the fol-

lowing exact sequence is obtained:

(9) H2(5(i + 1, j 1)Is) H2(50(i, J)I) - H2(50(i, J)It).
H2(50(i, J)I)- (0) by the first paragraph of (3.3), so

HZ(50(i + 1, j 1)Is) Hz(50(i, J)Is)
is surjective. By induction HZ(50(i + r,j r)I) - HZ(’(i, J)I-)is surjective for
any r > 0. In particular

H2(50(i + j + 1, 1)Is) H2(50(i, J)I)
is surjective. HZ((i + j + 1, -1)Is)= (0) by [12, Lemma 1], so H2(a Is)=
(0), proving Lemma 3.5.

Section 4

(4.1) The following material is adapted from [8] to the case of char (K) p.
Assume that 50 is a line bundle ofdegrees (i, j) such that + j _< -2,j _> 1. In
this section it will be shown that H1(50) 4: (0) ifj apb 1 for a, b e Z + with
a<p.

Let S: F X be the map induced by the projection X Y X. Let be a
non-negative integer of the form ap 1 for 1 < a < p, b > 0. Let 501 be the
line bundle on F ofdegrees (1, 0). S,(50)is a SL(3)-homogeneous vector bundle
on pz. If W1 denotes the canonical sheaf of F over p2 (i.e., the sheaf of differen-
tials of F3 as a PZ-scheme via S), then by [8] there is an equivariant duality
S,(1) (R) S,(’]- (R) - ) ___, (.9,, since S is a Pl--fibering (the fiber of S over a
plane representing a point of p2 is the set of all lines contained in t, which is
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isomorphic to p1). This clearly extends to a map

(10) Symi’ (S,()) (R) Symi’ (S,(-’ (R) -1))
_

(9,2.

(10) is in fact an equivariant duality. Because the sheaves are SL-homogeneous,
it suffices to verify (10) after passing to the stalks at any particular point y in p2.
Choose y to have homogeneous coordinates (Yo, Y, Y2)= (0, 0, 1). The equa-
tion of F then reduces to X2 0 in the fiber of S over y. Hence the stalk of
Symi’ (S,(x)) is Symi’ V, where V is the vector space generated by X0, Xx
over K. By [8, Section 6] cgx is the line bundle ofdegrees (- 2, 1). Then the first
degree of 56- (R) cg- is also 1, so its stalk is Symil 17, where 17 is the dual of V.
It is only necessary then to verify that Symil V is irreducible as an SL(2)-space
(the subgroup of SL(3) preserving the stalk, modulo the subgroup which acts
trivially on the stalk, is isomorphic to SL(2)).

LEMMA 4.1. The representation of SL(2, K) on Symi V is irreducible, if
apb- 1 and K is algebraically closed.

Proof Let r be the representation of SL(2, K)on V. The irreducible
module

(R) :r,. (R)... zrr,.,,-, (R) ,
k=l

which is irreducible by [16], is easily verified to be the representation of SL(2)
on Sym V. This proves Lemma 4.1.

(4.2) Hence (10)is an equivariant duality. Since

Sym(S,()) S,() and Sym(S,( ))S,(i i),
then (10) translates as

-i,))
being a perfect pairing. Hence

[(;,) 0))] i,))]
is a perfect pairing. But

(,) S,((i, 0)) S,((i,, ,))
and

SO

(9(--ix) (R) S,((i,, -ix) - S,(o’(ix, -i -ix)),

S,((’(ix, Jx))(R) S,(q(ix, -ix -j,)) (9,

is a perfect pairing. Let P c,(ix, Jx). Then the pairing is

S,((p ( S,(p- ()- i.)
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By Serre duality S.(q-1 (R) cgi-’l) is dual to RIS.( (R)cf + x) so

(11) S,(’) - RS,( + )
Since S*(ff(j))@ (i, 0),

RqS,() (j) RqS.((i,, 0)).
But RqS.((i, 0))= (0) if q > 0 since i 0. So RqS.()= (0) if q > 0.
Similarly

RqS.( i + ) RqS.((_i, -2, i + j + 1)
(i + j + 1) RqS.(( i 2, 0)),

which is 0 if q 1.
Then the Leray Spectral Sequence pli

H() H(S,()), H+’( i’+’)

so

(12) Ht( (R) cg + ) H0{oW), H(a (R) cg + 1) (0}, q 4:1
Applying the involution - (*)- @ W of (2.1)(recall (-2,-2})
one obtains from (12),

e +’)*}-’ e
(13)

H(((@*’+’)*)-’ e) (0), q # 2,

(( @’+ )*)- @ (-i j 3, i). Suppose ’(i, j) is any line
bundle such that + j 2, j 1, and j is of the fo ap 1. By choosing
it j and j: -i-j- 3, we find that

’= (((j, -i-j- 3)@+)*)-Note that ] and --j- 3 -1.
Note that (13) and the last paragraph relate the higher cohomology ofsome

line bundle to the global sections of another. In particular a condition for the
vanishing of H() for ceain in pliM.

Section 5

(5.1) This subsection is the proof of Theorem 1.3. By Section 2 it suffices to
consider (i, j) with + j

_
-2, j

_
0. Suppose there exists a line bundle ’with degrees i, (a / 1)pb-- 1 such that

apb < j <_ (a + 1)apb- 1,

but + (a + 1)apb 1 < -2. Ha(’) 0by (13) above, since 58’ is ofthe form
required. Repeated application of Lemma 3.5 shows that there is an injection
H(5)-. H(Z,’), hence Hx(a) (0).
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The inequalities apb < j <_ (a + 1)pb 1 and + (a + 1)pb 1 _< --2 can be
satisfied for some a, b as in Theorem 1.3 if and only ifapb < + 11 J + 11 <
(a + 1)pb cannot be satisfied for some a, b as in Theorem 1.3. Hence to prove
Theorem 1.3 it now suffices to show apb < + 11, J + I < (a + 1)pb implies
Hx() 4: (0). Since _> -(a + 1)pb, j > ap, there exists an injection

HX((-(a + 1)pb, ap))--+ H’(&’(i, j))

by Lemma 3.5. Since H’(L’(-(a + 1)pb, apb) 4: (0) by Theorem 3.1, Theorem
1.3 follows immediately.

(5.2) In this subsection two corollaries of Theorem 1.3 are proven. In the
case of Corollary 5.2 below, the reader is assumed to know pertinent definitions
and results from [2], [3], and [4].

COROLLARY 5.1. Assume char (K) p. There always exist both singular and
non-singular line bundles 9 for which H(50) (0), q-- 1, 2. (This result was
announced in [4] prior to the presentation of the author’s thesis.)

Proof Let 50 be 56’(-p 2, p); respectively let 5 be 5o( 2p2, p2). Apply
Theorem 1.3.

COROLLARY 5.2. Let F, SL(n)/B.
(1) For any n >_ 3, there exist line bundles 50 on F, such that Hq(50) (O)for

at least two values of q.
(2) For any n >_ 3, there exist line bundles ’ on F,, with neither 50 nor ’(the Serre dual of 50) in the dominant chamber or its adjacent walls, such that

Hq(50) (0)for exactly one value of q.

Proof. By induction on n. For n 3, the corollary is logically weaker than
Theorem 1.3.

Suppose the corollary holds for n 1. There is a morphism S" F, P"-,
where P"- is considered as the projective space of (n 1)dimensional sub-
spaces in A". S takes a flag (Vx, V,_ ,) to V._ . The fiber of S over the point
represented by V,_a is {(Va, V,-z, V;,_ )} and hence is isomorphic to F,_ .
The dominant Weyl chamber (including the adjacent walls) consists of line

bundles with all degrees _> 1 the dual chamber (including the walls) consists
of characters with all degrees _< 1. By [2], any line bundle satisfying (1) must
lie outside these chambers.

By the Leray Spectral Sequence Hq’(P ’, RqS,(50)) converges as an E2

sequence to Hq +q(50), for any line bundle 50 on F.. 5 restricted to the fiber of
S over a point p in P"- is the line bundle with degrees equal to the first n 2
degrees of 5. Choose such that restricted to a fiber (considered as F,_
as above) satisfies (1) (respectively (2)) in the corollary for n- 1. Then
RqS,(9) 4= (0) for at least two values of q2 (respectively exactly one value of
q2). Replace 50 by o (R) S*((9(m)), where m is so large that Rqs,(( () S*(C(m))
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is very ample for all q. Then the Leray sequence degenerates and

Hq( (R) S*((9(m))) - H(P 1, RqS,()(R) (9(m))
Since RS,(q) =/= (0) for at least two values of q (respectively exactly one value
of q), H( (R) S*(C(m))) 4: (0) for at least two values of q (respectively exactly
one value of q).

Since the degrees of 5 are neither all _> -1 or < -1, the same is true of

’ (R) S*(C(m)) (whose first n- 2 degrees are those of a and the (n- 1)-st
degree is m). Hence (1) holds for n (respectively (2) holds).
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