ON THE FOURIER SERIES OF CERTAIN SMOOTH FUNCTIONS¹

BY

CALIXTO P. CALDERÓN AND YORAM SAGHER

1. Introduction and statement of results

By w(t) = w(f, t) we shall denote the L¹-modulus of continuity of a period function belonging to $L^1(-\pi, \pi)$, namely

(1.1)
$$w(t) = \sup_{|h| \le t} \int_{\pi}^{\pi} |f(x+h) - f(x)| dx.$$

A classical result of Marcinkiewicz shows that if

$$\int_0^1 w(t)\frac{dt}{t} < \infty,$$

then the Fourier Series of f converges a.e. The aim of this paper is to show a connection between the smoothness of a function and the growth of the partial sums of its Fourier Series.

THEOREM 1. Suppose that $w(f, t) < c/|\log t|$; then

$$S_n(f) = o[\log \log n(\log \log \log n)^{1+\varepsilon}]$$
 a.e. $\varepsilon > 0$.

More generally:

THEOREM 2. Let w(t) be the L¹-modulus of continuity of f. Let $\phi(t)$ be a continuous increasing function of the variable t such that

$$\int_0^1 w(t)\phi(t)\frac{dt}{t} < \infty, \quad \phi(0) = 0.$$

Then

$$S_n(f) = o\left(\phi\left[\frac{1}{n}\right]\right)^{-1}$$
 a.e.

REMARK. If w(t) satisfies the Dini condition, there $S_n(f)(x)$ converges a.e. On the other hand, the closer w(t) gets to satisfying the Dini condition the slower the growth of $S_n(f)$ is.

© 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received July 31, 1978.

¹ Both authors were partially supported by a National Science Foundation grant.

2. Proof of the results

We shall prove Theorem 2 only since Theorem 1 is a particular case.

(2.1) LEMMA. Let w(t) and $\phi(t)$ be as in the statement of Theorem 2. Then for each $\lambda > 0$ it is possible to decompose f as $\overline{f} + \varphi$ so that the following hold.

(i) $|f| < c_1 \lambda$ a.e.

(ii) f = f on a closed set F. Its complement G is covered by a denumerable union interval $\bigcup_{1}^{\infty} I_k \supset G$ such that each point $[-\pi, \pi]$ belongs to at most N intervals.

(iii)
$$\sum_{1}^{\infty} |I_k| \leq \frac{C_2}{\lambda} \left(\|f\|_1 + \int_0^1 w(t)\phi(t)\frac{dt}{t} \right).$$

(iv)
$$\sum_{1}^{\infty} \int_{I_k} |\varphi| dt \int_{|I_k|}^{1} \phi(t) \frac{dt}{t} < C_3 \left(\|f\|_1 + \int_0^1 w(t) \phi(t) \frac{dt}{t} \right).$$

This lemma is a specialization to $[-\pi, \pi]$ of Lemmas (2.2) and (2.3) in [1] and its proof follows the same lines. The constants C_1 , C_2 , C_3 and N do not depend on λ or f. Select $\lambda > 0$ and consider only the partial sums $S_n(\varphi)$ ($S_n(\bar{f})$ converges a.e. by Carleson's Theorem [2]). Let us denote by $2I_k$ the dialation of I_k two times about its center. Let $G_{\lambda}^* = \bigcup_{1}^{\infty} 2I_k$; Lemma (2.1) gives the estimate

(2.2.1)
$$|G_{\lambda}^{*}| < 2 \frac{C_2}{\lambda} \left(||f||_1 + \int_0^1 w(t)\phi(t) \frac{dt}{t} \right)$$

Let $S_*(f) = \sup_n |\phi(1/n)S_n(f)|$ and denote by M(f)(x) the Hardy-Littlewood maximal operator. Then

$$(2.2.2) \qquad S_*(\varphi) \leq CM(\varphi) + \sup_n \phi\left(\frac{1}{n}\right) \int_{|x-y| > 1/n} \frac{1}{|x-y|} |\varphi(y)| dy$$

if $x \in [-\pi, \pi] - G_{\lambda}^*$. Also

$$(2.2.3)$$

$$\phi\left(\frac{1}{n}\right)\int \frac{1}{|x-y|} |\varphi(y)| dy$$

$$\leq \sum_{k=1}^{\infty} \phi\left(\frac{1}{n}\right)\int_{\{|x-y|>1/n\} \cap I_{k}} \frac{1}{|x-y|} |\varphi(y)| dy$$

$$\leq \sum_{k=1}^{\infty} \int_{I_{k}} \frac{\phi(|x-y|)}{|x-y|} |\varphi(y)| dy$$

$$= \Delta(x).$$

Consequently

(2.2.4)
$$S_*(\varphi) \le C(M(\varphi)(x) + \Delta(x))$$

whenever $x \in [-\pi, \pi] - G_{\lambda}^*$.

It should be pointed out that $M(\varphi)(x) < c\lambda$ on $[-\pi, \pi] - G_{\lambda}^*$. This follows from the proofs of Lemmas (2.2) and (2.3) in [1]. Integrating $S_*(\varphi)$ over $[-\pi, \pi] - G_{\lambda}^*$ and using (iv) of Lemma 2.1 we get

(2.2.5)
$$S_n(\varphi) = O\left[\phi\left(\frac{1}{n}\right)\right]^{-1} \text{ a.e. in } [-\pi, \pi] - G_{\lambda}^*.$$

In order to get "o" we choose λ large so that $M(\varphi)$ is small except for a small set and use the estimate

(2.2.6)

$$\overline{\lim} \left| \phi\left(\frac{1}{n}\right) S_n(\varphi) \right| \leq CM(\varphi) + \lim \left| \sum_{k=1}^{k_0} \phi\left(\frac{1}{n}\right) \int_{I_k} D_n(x-y) \varphi(y) \, dy + \sum_{k_0}^{\infty} \int_{I_k} \frac{\phi(x-y)}{|x-y|} |\varphi(y)| \, dy, \\ \times \in [-\pi, \pi] - \bigcup_{1}^{\infty} 2I_k.$$

In the above expression $D_n(y)$ stands for the Dirichlet kernel. For $x \in [-\pi, \pi] - G_{\lambda}^*$,

$$\sum_{k=1}^{k_0} \phi\left(\frac{1}{n}\right) \int_{I_k} D_n(x-y) \varphi(y) \, dy$$

tends to zero because of the smallness of $\phi(1/n)$ and of Riemann-Lebesgue's Theorem applied to each one of the k_0 terms of the form $\int_{I_k} D_n(x-y)\varphi(y) dy$.

Finally, by selecting k_0 large enough,

$$\sum_{k_0}^{\infty} \int_{I_k} \frac{\phi(|x-y|)}{|x-y|} |\varphi(y)| dy$$

can be made arbitrarily small on $[-\pi, \pi] - G_{\lambda}^*$ except for a subset of small measure. This finishes the proof.

REFERENCES

- C. P. CALDERÓN, Smooth functions and convergences of Singular integrals, Illinois J. Math., vol. 23 (1979), pp. 497-509.
- L. CARLESON, On convergence and growth of partial sums of Fourier Series, Acta Math., vol. 116 (1966), pp. 135–157.

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE CHICAGO, ILLINOIS