
ILLINOIS JOURNAL OF MATHEMATICS
Volume 24, Number 3, Fall 1980

SMOOTH FUNCTIONS AND CONVERGENCE
OF SINGULAR INTEGRALS II

BY

CALIXTO P. CALDER6N

O. Introduction and statement of the main result

Throughout this paper we shall keep the notation and definitions introduced
in [2]. Given f LI(R"), its Ll-modulus of continuity w(t)is defined by

(0.1) w(f, t)- w(t)-- sup f f(x dx.
(h; Ihl-<t)

As in [2], we shall be concerned here with singular kernels satisfying

K() -g(); > 0, 0.(0.2)
If K(x) is odd then

(0.3) f:IKt)ld <

where da stands for the "area" element of the unit sphere. If K(x) is not odd
then

(0.4) f,=’ K(x) d 0; I,--’ K(x) lg+ K(x)[ da < .
Similarly, we shall introduce the Ll-modulus of continuity of the kernel K as

(0.5) wr(t) sup f2 K(x + h)- K(x) dx, 0 < t < 1.
h; Ihl<-t < Ixl<4

We shall assume that

and introduce

.1 dt[ Wr(t)----
o

ds
O<t<l(0.6) (t) wt:(S)

s
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Let E be a bounded Lebesgue-measurable set. We define the b-Entropy of the
set E to be

(0.7) IEl,= inf
G-E k

where G jo Ik; [k C [/= 0, k j; II r < 1/2 for all k. We clearly have

(0.8) E, Ez IE, l+ -< IEzl+.
Let f be Lebesgue measurable and supported on the cube Q. We define the
@Entropy offon the cube Q by

(0.9) fo y d ll f > Y I J,(f)

The above integral is understood in the Riemann-Stieltjes sense.

THEOREM A. Let K(x) be a sinoular kernel satisfyinl (0.2)and (0.3)or (0.2)
and (0.4). Let wr(t) be its modulus ofcontinuity as defined in (0.5). Let (t) be the
function defined in (0.6). Iff LI(Rn) and the restriction off to the cube Q has
finite p-Entropy on Q then

(0.10) lim IeO x-yl>e
K(x y)f(y) dy exists a.e. on Q

1. Proof of Theorem A

Without loss of generality we may assume that f is supported on Q and
non-negative. In fact, iff e LI(R) and it is supported in the complement of Q
the singular integral (0.11) converges a.e. in Q.

Let Ek be the set where 2k- <f< 2k; and Eo Q {f< 1}. The fact that
J,(f) < implies

(1.1) Y CJ,(f)
k=O j=l

for a family of cubes {QR, } satisfying

(1.2) (i) IQR,I <---,
(ii) OR,C Ok,=0, i:j,

(iii) QR,Ek.
j=l

The inequality (1.1) is a consequence of the definition (0.10). Call fk the restric-
tion off to Ek and define the mean values/k, by

1
fk dy(1.3) lZk,

Clearly, we have 0 _</z, _< 2.
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Let lkIk, j be the characteristic function of Qk, j and define fby

(1.4) f= E /Zk, jqR,J
k=0 j=l

If we let (t)denote the Ll-modulus of continuity offthen
ds

(.s (s/(s/s
The convergence of the above integral is a consequence of (1.1), the estimate

/k, -< 2R and the following two estimates:

(1.6) (i) IWk,(x + h)- WR,(x)[ dx < C(dR,)"-11hl if Ih[ _<
0

(ii) [WR,(x / h)- %,(x)[ dx <_ 21Q,[ if Ihl > 0’

where dR, j diam (Qk, j) and YR, denotes the center of QR, . In fact, let wR, be
the Ll-modulus of continuity of WR, j. Then, by (i)and (ii),

wij(t)w(t) -{
.a,

jl dt
<_ CdTj j w,(t) dt + 2]0,1 w(t)--

(1.7) o , t

The last inequality above follows from the fact that b(d,j) b(I Q,I) (see
Lemma C) at the end of this section). Let us decomposefin the following way"

(1.8) f f+ Z (fk lak, j)Vk, + , f(k #k,j)Wk,
k=O j=l N j=l

Also define the exceptional set

(1.9) E, J 2Qk, j
k=Nj=l

where 2Qk denotes the dilation of Qk, two times about its center Yk, j.

Let mo be the mean value ( Ixl=l K(x) dr)S- 1, where S stands for the "area"
of the unit sphere. Consider also the kernel

(1.10) K*(x) IK(x) mo Ix
Clearly, we have WK.(t) < WK(t) + C It where C is a constant independent of t.
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Since f is supported on Q we may take Ko instead of K, where

(1.11) Ko(x)= K(x) if [xl -<2,

0 if Ixl > 2.

Without loss of generality we may assume that 0 < e < 1/8. Since

N

k=O j=l

belongs to L2(R") the convergence problem reduces to the analysis of

k=Nj=l

Estimates for

sup Ko(x y) [ PR, )]Vk, ) dy
>0 x-y]> j=

Consider x R" Eu and e > O.
Let us designate by Q, the cubes that intercept the sphere of radius e about

x. For those cubes,

K(x Y)( [ "k, ]k,(Y) ) dy"X y QR,j

( K(x y)[ ( PR, j)VR,) dy(1.12)
/2 Ix- y[ < 2 Q,j

+ ( y) 2 2 dy
/2<[x-y[<2e N j=l

Note that Q, {y; e/2 < Ix y[ < 2e}. Let 9 be the function defined by the
sum

(1.13)
k=’ j=

Let F be the function

(1.14) " fR K(x y) Ko(x Yk, ;)l(f + #k, ;)tPk, (Y) dy.
k=Nj=

We shall use the maximal operators

(1.15) sup " f fl dy M, (f)(x),
>0 Ix-yl<e

and

(1.16) sup,>o II-rI>K*(x y)f(y)dy M2(f)(x).
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It can be readily seen that the right hand member of (1.12) is dominated by

(1.17) CoiFs(x) + Ml(gs)(x)+ M2(g)(x)]

provided that x e R" Es. To see this, note that fk #k, k, has mean value
zero over Qf,, and consequently

K(x Y) E (A , j)V, (y) dy
Qk,je

(1.18) f{I Ko(x Y) Ko(x Yk, J) l} E (fk lk, j)Wk, j(y) dy
QR,je

_< r().
Also the last integral in (1.12) can be written as

(1.19) 2 Jl K’(x- y)g(y)dy + 2too Jl./2 < Ix-yl< 2e /2 Ix-),l < 2e.
x y l-"ls(y) dy

We bound the first integral above by the operator (1.16)and the second one by
(1.1S).

In a similar manner we obtain

E
t2k, (Ix-yl-<)=o

Using the fact that

Ko(x Y)(fk Iz, j)tPk(y) dy _< Co r(x);

x R"-Ev.

fxl>2t, Ihl <t, (0<t< 1/4-)
Ko(x + h)- Ko(x)l dx C[(D(t)+ 1],

we obtain

(1.21) j r(x) dx < c E E2*lO,,Jl((lO,,l) + 1).
n--EN k=N j=

From Theorem A in [2] we obtain

(1.22) Q E(M2(os)> 6) < 3 k:S ,:

From Hardy-Littlewood maxal theorem we have

C

k=Nj=

Using the estimates (1.17) to (1.23) we obtain

(1.24) limo x-rl>K(x y)
k=S =

( Pk,)Wk, dy < 4 6
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in Q except for a set whose measure does not exceed

(1.25) c Z Z2IQ,I[1 /
k=Nj=l

where C o and C do not depend on N or 6. Once 6 > 0 has been fixed (1.25) can
be made arbitrarily small by choosing N large enough.
The convergence of K ffollows from Theorem A in [2], and that of

k=O j=l

follows from the fact that the function between brackets is in LZ(R").

LEMMA C. Let dp(t) be the function defined in (0.6). Then,

(1.26) qb(s")/n <_ qb(s) <_ qb(s"), n > O, 0 < s < 1.

Proof

(1.27)

If0<s<l then

"lw(t)-- _> w(t)

On the other hand, a change of variables shows

.x dt ji(1.28) j Wk(t)--t- n Wk(t")
dt

sn

Also

dt )i dt
(1.29) n Wk(t")--{ < n Wk(t)--
Now, (1.27)and (1.29) give the thesis.

2. Remarks on entropy and smoothness

The proof of Theorem A shows that iffhas finite b-Entropy on Q, then there
exists a smooth function 9 such that

(2.1) Ill < 9 a.e. in Q,

,1 ds
(2.2) j w(s)wK(s)-- <

0 S
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where w(s) stands for the LX-modulus of continuity of g. Without loss of gen-
erality we may assume that f >0. We are going to take g(x)=
=o :x 2RVR, j(X) where the VR, j(X)are the characteristic function of the
cubes QR, defined in (1.2). As is readily seen, (2.1)and (2.2) follow from (1.1)
and (1.7). We have also the following"

3. THEOREM B. Suppose thatf is supported on a cube Q and its La-modulus of
continuity satisfies the Dini condition with respect to the weight wr(t), namely

(.I (sl.(sl

Then its -Entropy over Q is finite’moreover we have

(3.2) Jg,(f) c I1711 + w(s)w(s)T
where C depeMs on Q aM on wr but not on f

The proof of this result follows step by step the corresponding one in [3] and
[4]. We are going to prove Theorem B in three cases"

(i) f(x) is the characteristic function of a set of finite measure.
(ii) f(x)is a simple function taking positive dyadic values only.
(iii) f(x)is a simple function.

The general case will follow from (iii) by a density argument.

Case (i). Letf(x) be the characteristic function of E, [E < c. Let w(t) be
the La-modulus of continuity off. We assume that

.x dt
(3.3) w(t)w(t)--{ < .o

Let [.j]o Q be a covering of E by cubes in the following sense:

() 3 Q.
(aa) If x R", then x belongs to at most (12)" different cubes Q,.
() IO, c EI/IQ, -(1/10)", k= 1, 2,
(ev) If Q is any cube containing a Q, then Q e l/I 1 -< (2/5),.

By cube we mean cube with edges parallel to the coordinate axes.
For a prove of this type of lemma see [2, lemma 2.3]. Let r(lx I) be a

non-increasing function coinciding with wr(]x I)]x I-" if0 < Ix < 1 and such
that

(3.4) T(Ixl)dx < oo, T(Ixl)>_0.
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Let CE be the complement of E. Then

j’f If(x)-f(y)lT(lx yl)dx dy
R R

>_ f(y)dy J" T,,(I y I)’t’(x)dx

where q(x) is the characteristic function of CE, and Tr,(s)= T(s) if s >
4 diam Q, T(s) T(4 diam Q) if s _< 4 diam (Q).
By (,v)and Lemma (2.1) in [2] we have

(3.6)

The estimates in (3.5) and (3.6) give

(3.7) _< c ff T(Ix yl)l/(x)-/(Y)I dx dy
R R

.1 dt)_< c + Jo w(t)w,,(t)--t-

Case (ii). Suppose that f(x)= EL, 2kq)k(X), where the qk(X)are the char-
acteristic functions of the sets Ek, Ek c ES O, k 4: j.
The following inequality holds"

(3.8)

j’j" If(x)-f(y)lT(Ix yl)dx dy
Rn Rn

1

Ej C(Ej)
T(lx-yl)dy.

To see this, observe that If(x)-f(Y)l -> 1/2f (x) for x e Ei, y Ej, i=/= j.
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Now, we apply to each E, the covering argument of Case (i) and get

(3.9)

where ]o Qk is a covering of E, in the sense described in Case (i) and
stands for the complement of E. As is readily seen, (3.9) directly gives

(3.10) C fE 2’ dx fc r( x Y I) dy >_ C2’IE,
Ej

Now, combining (3.8) and (3.10) we obtain the thesis in this case.

Case (iii). Let q)k(X) be the characteristic functions of the measurable sets
Ek, E c E O, 4: J. Consider the simple function k k (Ok(X), k > 0. We are
going to construct a simple functionf*(x) taking dyadic values only, such that

1/2f(x) < f*(x) <_ 2f(x)
Let II011o g.. .. Io(x)- g(y)l T(lx yl)dx dy; then

f* o -< C f ,.
The construction off* is going to be accomplished in successive steps. We will
modify f within the range of values 2’ <f< 2,+ 1. Once that modification is
carried out we go to the next range 2,+ <f_< 2,+ 2 and so on.
We shall illustrate the basic step only. Consider the range of values

(3.10) 2k <f(x) _< 2+ 1.

Let ek, < k_, < < ek. be the values off(x) within the above range, namely

(3.11) 2k < Ok < Ok <’’" < akin 2k + 1.

We construct a new function fk, defined in the following way" fk,, (X) f(x) if
f(x) <_ 2k or f(x) > 2k + 1; J,l takes the value ak or 2k on ER, depending on
whether

(3.12) j; j;T(Ix-y])dxdy or j; jT([x-y])dxdy
otj>Otk,1 k,1 otj<Otk,l k,1

is larger. On the sets Ek,, Eke, Ek,,fk, takes the same values as f. The
construction gives

(3.13) I1,1 Ilo Ilf[lo.
Our next step will be to modify, . We have, , on R" E. On E,, : is going to take the value or 2 depending on whether
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tj > tk,2 k,2 0tj< 0tk,2 k,2

is larger.
The next step is the modification Offk, 2 on Ek 3" Definefk, 3 L, 2 everywhere

except at Ek3; jVk, 3 takes the values (k4 or 2k on Ek3 depending on whether

j> 0tk,3 k,3 tj< tk,3 k,3

is larger. In this way we construct the functions

(3.16) fk, , fk, 2, ’’’,fk,,"
If km 2k + 1, we take fk, fk, 1. If k. < 2k / 1, we take k./l 2k / in our
construction. The conditions (3.12), (3.14), (3.15) and the construction itself
give

(3.17)
The construction gives fk,, that takes the values 2k or 2k/ on the sets
Eke,..., Ek,. This finishes the proof.

4. A Soboleff type of inequality

If J4,(f) < over Q, then

with C depending on 4 and Q only. In fact, going back to the construction (1.1)
and assuming without loss of generality that J,(f) 1/8 we have

(4.2) 2 2*IQ,,jIO(IQ,,I) Z 2’1Q,,1(2-*)
k=O j= k=0 j=

The above inequality follows from the fact that 2klQk, 4Jo(f) 1/2.
Inequality (4.2) gives (4.1) for the case Jo(f) 1/8. The general case is obtain
by taking

f* (8Jo(/))-xl f when Jo(f)
We have, in this case,

On the other hand (1/f*) N (1/I f I) which directly gives

(4.4)
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By (4.4) and Theorem B in the previous section we immediately obtain

(4.5) f ck - dx <_ C Ilfll, + w(s)wds)

The above inequality is the corresponding version in this case of the well
known Soboleff’s inequality.
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