SMOOTH FUNCTIONS AND CONVERGENCE OF SINGULAR INTEGRALS II

BY

CALIXTO P. CALDERÓN¹

0. Introduction and statement of the main result

Throughout this paper we shall keep the notation and definitions introduced in [2]. Given $f \in L^1(\mathbb{R}^n)$, its L^1 -modulus of continuity w(t) is defined by

(0.1)
$$w(f, t) = w(t) = \sup_{(h; |h| \le t)} \int_{R^n} |f(x+h) - f(x)| dx.$$

As in [2], we shall be concerned here with singular kernels satisfying

(0.2)
$$K(\lambda x) = \lambda^{-n} K(x); \quad \lambda > 0, \ x \neq 0.$$

If K(x) is odd then

(0.3)
$$\int_{|x|=1} |K(x)| d\sigma < \infty$$

where $d\sigma$ stands for the "area" element of the unit sphere. If K(x) is not odd then

(0.4)
$$\int_{|x|=1} K(x) \, d\sigma = 0; \qquad \int_{|x|=1} |K(x)| \, \log^+ |K(x)| \, d\sigma < \infty.$$

Similarly, we shall introduce the L^1 -modulus of continuity of the kernel K as

(0.5)
$$w_K(t) = \sup_{h; |h| \le t} \int_{2 < |x| < 4} |K(x+h) - K(x)| dx, \quad 0 < t \le 1.$$

We shall assume that

$$\int_0^1 w_K(t) \frac{dt}{t} = \infty$$

and introduce

(0.6)
$$\phi(t) = \int_{t}^{1} w_{K}(s) \frac{ds}{s}, \quad 0 < t \le 1.$$

Received July 31, 1978.

¹ The author was partially supported by the National Science Foundation.

² Note that $\phi(d_{k,i}^n) \sim \phi(d_{k,i})$.

^{© 1980} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Let E be a bounded Lebesgue-measurable set. We define the ϕ -Entropy of the set E to be

$$(0.7) |E|_{\phi} = \inf_{G \supseteq E} \sum_{k} |I_{k}| \phi(|I_{k}|)$$

where $G = \bigcup_{1}^{\infty} I_k$; $\mathring{I}_k \cap \mathring{I}_j = 0$, $k \neq j$; $|I_k| \leq \frac{1}{2}$ for all k. We clearly have

$$(0.8) E_1 \subset E_2 \Rightarrow |E_1|_{\phi} \le |E_2|_{\phi}.$$

Let f be Lebesgue measurable and supported on the cube Q. We define the ϕ -Entropy of f on the cube Q by

(0.9)
$$-\int_0^\infty y \, d \, ||f| > y|_{\phi} = J_{\phi}(f)$$

The above integral is understood in the Riemann-Stieltjes sense.

THEOREM A. Let K(x) be a singular kernel satisfying (0.2) and (0.3) or (0.2) and (0.4). Let $w_K(t)$ be its modulus of continuity as defined in (0.5). Let $\phi(t)$ be the function defined in (0.6). If $f \in L^1(\mathbb{R}^n)$ and the restriction of f to the cube Q has finite ϕ -Entropy on Q then

(0.10)
$$\lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} K(x-y) f(y) \, dy \text{ exists a.e. on } Q$$

1. Proof of Theorem A

Without loss of generality we may assume that f is supported on Q and non-negative. In fact, if $f \in L^1(\mathbb{R}^n)$ and it is supported in the complement of Q the singular integral (0.11) converges a.e. in Q.

Let E_k be the set where $2^{k-1} < f \le 2^k$; and $E_0 = Q \cap \{f \le 1\}$. The fact that $J_{\phi}(f) < \infty$ implies

(1.1)
$$\sum_{k=0}^{\infty} \sum_{j=1}^{\infty} 2^{k} |Q_{k,j}| \phi(|Q_{k,j}|) \leq C J_{\phi}(f)$$

for a family of cubes $\{Q_{k,i}\}$ satisfying

(1.2) (i)
$$|Q_{k,j}| \leq \frac{1}{2},$$

(ii) $\mathring{Q}_{k,j} \cap \mathring{Q}_{k,j} = 0, \quad i \neq j,$
(iii) $\bigcup_{j=1}^{\infty} Q_{k,j} \supset E_{k}.$

The inequality (1.1) is a consequence of the definition (0.10). Call f_k the restriction of f to E_k and define the mean values $\mu_{k,j}$ by

(1.3)
$$\mu_{k,j} = \frac{1}{|Q_{k,j}|} \int_{Q_{k,j}} f_k \, dy$$

Clearly, we have $0 \le \mu_{k, j} \le 2^k$.

Let $\Psi_{k,i}$ be the characteristic function of $Q_{k,i}$ and define \overline{f} by

(1.4)
$$\vec{f} = \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \mu_{k,j} \Psi_{k,j}.$$

If we let $\bar{w}(t)$ denote the L¹-modulus of continuity of \bar{f} then

(1.5)
$$\int_0^1 \bar{w}(s) w_K(s) \frac{ds}{s} < \infty$$

The convergence of the above integral is a consequence of (1.1), the estimate $\mu_{k,j} \leq 2^k$ and the following two estimates:

(1.6) (i)
$$\int_{\mathbb{R}^{n}} |\Psi_{k,j}(x+h) - \Psi_{k,j}(x)| \, dx \leq C(d_{k,j})^{n-1} |h| \quad \text{if} \quad |h| \leq \frac{d_{k,j}}{10},$$

(ii)
$$\int_{\mathbb{R}^{n}} |\Psi_{k,j}(x+h) - \Psi_{k,j}(x)| \, dx \leq 2 |Q_{k,j}| \quad \text{if} \quad |h| > \frac{d_{k,j}}{10},$$

where $d_{k,j} = \text{diam}(Q_{k,j})$ and $y_{k,j}$ denotes the center of $Q_{k,j}$. In fact, let $w_{k,j}$ be the L^1 -modulus of continuity of $\Psi_{k,j}$. Then, by (i) and (ii),

(1.7)

$$\int_{0}^{1} w_{ij}(t) w_{K}(t) \frac{dt}{t}$$

$$\leq C d_{ij}^{n-1} \int_{0}^{d_{ij}} w_{K}(t) dt + 2 |Q_{ij}| \int_{d_{ij}}^{1} w_{K}(t) \frac{dt}{t}$$

$$\leq C_{1} |Q_{ij}| [1 + \phi(d_{ij})]$$

$$\leq C_{2} |Q_{ij}| [1 + \phi(|Q_{ij}|)].$$

The last inequality above follows from the fact that $\phi(d_{ij}) \sim \phi(|Q_{ij}|)$ (see Lemma C) at the end of this section). Let us decompose f in the following way:

(1.8)
$$f = \bar{f} + \sum_{k=0}^{N} \sum_{j=1}^{\infty} (f_k - \mu_{k,j}) \Psi_{k,j} + \sum_{N=1}^{\infty} \sum_{j=1}^{\infty} f(k - \mu_{k,j}) \Psi_{k,j}$$

Also define the exceptional set

(1.9)
$$E_N = \bigcup_{k=N}^{\infty} \bigcup_{j=1}^{\infty} 2Q_{k,j}$$

where $2Q_{k,j}$ denotes the dilation of $Q_{k,j}$ two times about its center $y_{k,j}$.

Let m_0 be the mean value $(\int_{|x|=1} K(x) | d\sigma) S^{-1}$, where S stands for the "area" of the unit sphere. Consider also the kernel

(1.10)
$$K^*(x) = |K(x)| - m_0 |x|^{-n}.$$

Clearly, we have $w_{K*}(t) \le w_K(t) + C|t|$ where C is a constant independent of t.

428

Since f is supported on Q we may take K_0 instead of K, where

(1.11)
$$K_0(x) = K(x)$$
 if $|x| \le 2$,
= 0 if $|x| > 2$.

Without loss of generality we may assume that $0 < \varepsilon < 1/8$. Since

$$\sum_{k=0}^{N}\sum_{j=1}^{\infty}(f_{k}-\mu_{k,j})\Psi_{k,j}$$

belongs to $L^2(\mathbb{R}^n)$ the convergence problem reduces to the analysis of

$$\sum_{k=N}^{\infty}\sum_{j=1}^{\infty}(f_k-\mu_{k,j})\Psi_{k,j}$$

Estimates for

$$\sup_{\varepsilon>0} \left| \int_{|x-y|>\varepsilon} K_0(x-y) \left(\sum_{N=1}^{\infty} \sum_{j=1}^{\infty} [f_k - \mu_{k,j}] \Psi_{k,j} \right) dy \right|.$$

Consider $x \in \mathbb{R}^n - \mathbb{E}_N$ and $\varepsilon > 0$.

Let us designate by $Q_{k,j}^{\varepsilon}$ the cubes that intercept the sphere of radius ε about x. For those cubes,

(1.12)

$$\begin{aligned} \left| \int_{|x-y|>\varepsilon} K(x-y) \left(\sum_{Q_{k,j^{\varepsilon}}} [f_{k}-\mu_{k,j}] \Psi_{k,j}(y) \right) dy \right| \\ \leq \int_{\varepsilon/2<|x-y|<2\varepsilon} |K(x-y)| \sum_{Q_{k,j^{\varepsilon}}} (f_{k}-\mu_{k,j}) \Psi_{k,j} dy \\ + \int_{\varepsilon/2<|x-y|<2\varepsilon} |K(x-y)| \sum_{N} \sum_{j=1}^{\infty} 2\mu_{k,j} \Psi_{k,j}(y) dy \end{aligned}$$

Note that $Q_{k,j}^{\varepsilon} \subset \{y; \varepsilon/2 < |x - y| < 2\varepsilon\}$. Let g_N be the function defined by the sum

(1.13)
$$\sum_{k=N}^{\infty} \sum_{j=1}^{\infty} \mu_{k,j} \Psi_{k,j}(y)$$

Let Γ_N be the function

(1.14)
$$\sum_{k=N}^{\infty} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} |K_0(x-y) - K_0(x-y_{k,j})| (f_k + \mu_{k,j}) \Psi_{k,j}(y) \, dy.$$

We shall use the maximal operators

(1.15)
$$\sup_{\varepsilon>0} \bar{\varepsilon}^n \int_{|x-y|<\varepsilon} |f| dy = M_1(f)(x),$$

and

(1.16)
$$\sup_{\varepsilon>0} \left| \int_{|x-y|>\varepsilon} K^*(x-y)f(y) \, dy \right| = M_2(f)(x).$$

It can be readily seen that the right hand member of (1.12) is dominated by

(1.17)
$$C_0[\Gamma_N(x) + M_1(g_N)(x) + M_2(g_N)(x)]$$

provided that $x \in \mathbb{R}^n - E_N$. To see this, note that $f_k - \mu_{k,j} \Psi_{k,j}$ has mean value zero over $Q_{k,j}^{\varepsilon}$ and consequently

(1.18)

$$\int_{\varepsilon/2 < |x-y| < 2\varepsilon} |K(x-y)| \sum_{Q_{k,j^{\varepsilon}}} (f_{k} - \mu_{k,j}) \Psi_{k,j}(y) \, dy$$

$$= \int \{ |K_{0}(x-y)| - |K_{0}(x-y_{k,j})| \} \sum_{Q_{k,j^{\varepsilon}}} (f_{k} - \mu_{k,j}) \Psi_{k,j}(y) \, dy$$

$$\leq \Gamma_{N}(x).$$

Also the last integral in (1.12) can be written as

$$(1.19) \ 2 \int_{\varepsilon/2 < |x-y| < 2\varepsilon} K^*(x-y) g_N(y) \, dy + 2m_0 \int_{\varepsilon/2 < |x-y| < 2\varepsilon} |x-y|^{-n} g_N(y) \, dy$$

We bound the first integral above by the operator (1.16) and the second one by (1.15).

In a similar manner we obtain

(1.20)
$$\sum_{Q_{k,j} \cap \{|x-y| \le \varepsilon\}=0} \left| \int_{|x-y| > \varepsilon} K_0(x-y) (f_k - \mu_{k,j}) \Psi_k(y) \, dy \right| \le C_0 \Gamma_N(x);$$
$$x \in \mathbb{R}^n - E_N.$$

Using the fact that

$$\int_{|x|>2t, |h|$$

we obtain

(1.21)
$$\int_{\mathbb{R}^{n}-E_{N}}\Gamma_{N}(x) dx < C \sum_{k=N}^{\infty} \sum_{j=1}^{\infty} 2^{k} |Q_{k,j}| (\phi(|Q_{k,j}|)+1).$$

From Theorem A in [2] we obtain

(1.22)
$$|Q \cap E(M_2(g_N) > \delta)| < \frac{c}{\delta} \sum_{k=N}^{\infty} \sum_{j=1}^{\infty} \mu_{k,j} |Q_{k,j}| (1 + \phi(|Q_{k,j}|))$$

From Hardy-Littlewood maximal theorem we have

(1.23)
$$|E(M_1(g_N) > \delta)| < \frac{c}{\delta} \sum_{k=N}^{\infty} \sum_{j=1}^{\infty} \mu_{k,j} |Q_{k,j}|.$$

Using the estimates (1.17) to (1.23) we obtain

(1.24)
$$\overline{\lim_{\varepsilon \to 0}} \int_{|x-y| > \varepsilon} K(x-y) \left[\sum_{k=N}^{\infty} \sum_{j=1}^{\infty} (f_k - \mu_{k,j}) \Psi_{k,j} \right] dy < 4 \delta$$

in Q except for a set whose measure does not exceed

(1.25)
$$\frac{C_0}{\delta} C_1 \sum_{k=N}^{\infty} \sum_{j=1}^{\infty} 2^k |Q_{k,j}| [1 + \phi(|Q_{k,j}|)]$$

where C_0 and C_1 do not depend on N or δ . Once $\delta > 0$ has been fixed (1.25) can be made arbitrarily small by choosing N large enough.

The convergence of $K_{\varepsilon} \times \tilde{f}$ follows from Theorem A in [2], and that of

$$K_{\varepsilon}\left[\sum_{k=0}^{N}\sum_{j=1}^{\infty}(f_{k}-\mu_{k,j})\Psi_{k,j}\right]$$

follows from the fact that the function between brackets is in $L^2(\mathbb{R}^n)$.

LEMMA C. Let $\phi(t)$ be the function defined in (0.6). Then,

(1.26)
$$\phi(s^n)/n \le \phi(s) \le \phi(s^n), \quad n > 0, \quad 0 < s < 1.$$

Proof. If 0 < s < 1 then

(1.27)
$$\int_{s^n}^1 w_k(t) \frac{dt}{t} \ge \int_s^1 w_k(t) \frac{dt}{t}$$

On the other hand, a change of variables shows

(1.28)
$$\int_{s^n}^1 w_k(t) \frac{dt}{t} = n \int_s^1 w_k(t^n) \frac{dt}{t}$$

Also

(1.29)
$$n \int_{s}^{1} w_{k}(t^{n}) \frac{dt}{t} \leq n \int_{s}^{1} w_{k}(t) \frac{dt}{t}$$

Now, (1.27) and (1.29) give the thesis.

2. Remarks on entropy and smoothness

The proof of Theorem A shows that if f has finite ϕ -Entropy on Q, then there exists a smooth function g such that

$$|f| < g \quad \text{a.e. in } Q,$$

(2.2)
$$\int_0^1 w(s) w_K(s) \frac{ds}{s} < \infty,$$

where w(s) stands for the L^1 -modulus of continuity of g. Without loss of generality we may assume that $f \ge 0$. We are going to take $g(x) = \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} 2^k \Psi_{k,j}(x)$ where the $\Psi_{k,j}(x)$ are the characteristic function of the cubes $Q_{k,j}$ defined in (1.2). As is readily seen, (2.1) and (2.2) follow from (1.1) and (1.7). We have also the following:

3. THEOREM B. Suppose that f is supported on a cube Q and its L^1 -modulus of continuity satisfies the Dini condition with respect to the weight $w_K(t)$, namely

(3.1)
$$\int_0^1 w(s) w_K(s) \frac{ds}{s} < \infty$$

Then its ϕ -Entropy over Q is finite; moreover we have

(3.2)
$$J_{\phi}(f) \leq C \left(\|f\|_{1} + \int_{0}^{1} w(s) w_{K}(s) \frac{ds}{s} \right)$$

where C depends on Q and on w_K but not on f.

The proof of this result follows step by step the corresponding one in [3] and [4]. We are going to prove Theorem B in three cases:

- (i) f(x) is the characteristic function of a set of finite measure.
- (ii) f(x) is a simple function taking positive dyadic values only.

(iii) f(x) is a simple function.

The general case will follow from (iii) by a density argument.

Case (i). Let f(x) be the characteristic function of E, $|E| < \infty$. Let w(t) be the L^1 -modulus of continuity of f. We assume that

(3.3)
$$\int_0^1 w(t) w_K(t) \frac{dt}{t} < \infty.$$

Let $\bigcup_{1}^{\infty} Q_k$ be a covering of E by cubes in the following sense:

(a) $E \subset \bigcup_{1}^{\infty} Q_k$. (aa) If $x \in \mathbb{R}^n$, then x belongs to at most (12)ⁿ different cubes Q_k . (aaa) $|Q_k \cap E|/|Q_k| = (1/10)^n$, k = 1, 2, ...(av) If Q is any cube containing a Q_k , then $|Q \cap E|/|Q| \le (2/5)^n$.

By cube we mean cube with edges parallel to the coordinate axes.

For a prove of this type of lemma see [2, lemma 2.3]. Let T(|x|) be a non-increasing function coinciding with $w_{k}(|x|)|x|^{-n}$ if $0 < |x| \le 1$ and such that

(3.4)
$$\int_{|x|>|} T(|x|) \, dx < \infty, \quad T(|x|) \ge 0.$$

Let CE be the complement of E. Then

(3.5)
$$\iint_{R^n \times R^n} |f(x) - f(y)| T(|x - y|) dx dy$$
$$\geq \int_E f(y) \int_{CE} T(|x - y|) dy$$
$$\geq \frac{1}{(12)^n} \sum_{1}^{\infty} \int_{Q_k} f(y) dy \int T_K(|x - y|) \Psi(x) dx$$

where $\Psi(x)$ is the characteristic function of *CE*, and $T_K(s) = T(s)$ if $s > 4 \operatorname{diam} Q_k$, $T_k(s) = T(4 \operatorname{diam} Q_k)$ if $s \le 4 \operatorname{diam} (Q_k)$.

By (αv) and Lemma (2.1) in [2] we have

(3.6)

$$\int_{Q_k} f(y) \, dy \int T_k(|x - y|) \Psi(x) \, dx$$

$$\geq C_n [1 - (\frac{2}{5})^n] \int_{Q_k} f(y) \, dy \int_{C|Q_k|^{1/n}}^1 T_k(s) s^{n-1} \, ds$$

$$= C_n [1 - (\frac{2}{5})^n] (\frac{1}{10})^n |Q_k| \phi(|Q_k|^{1/n}).$$

The estimates in (3.5) and (3.6) give

(3.7)
$$|E|_{\phi} \leq \sum_{1}^{\infty} |Q_{k}| \phi(|Q_{k}|)$$
$$\leq C \iint_{R^{n} \times R^{n}} T(|x - y|) |f(x) - f(y)| dx dy$$
$$\leq C \left(|E| + \int_{0}^{1} w(t) w_{K}(t) \frac{dt}{t} \right)$$

Case (ii). Suppose that $f(x) = \sum_{k=1}^{N} 2^{k} \varphi_{k}(x)$, where the $\varphi_{k}(x)$ are the characteristic functions of the sets E_{k} , $E_{k} \cap E_{j} = 0$, $k \neq j$. The following inequality holds:

The following inequality holds:

(3.8)
$$\iint_{R^{n} \times R^{n}} |f(x) - f(y)| T(|x - y|) dx dy \\ \geq \frac{1}{2} \sum_{E_{j}} \int_{E_{j}} 2^{j} dx \int_{C(E_{j})} T(|x - y|) dy.$$

To see this, observe that $|f(x) - f(y)| \ge \frac{1}{2}f(x)$ for $x \in E_i$, $y \in E_j$, $i \neq j$.

Now, we apply to each E_i the covering argument of Case (i) and get

(3.9)
$$\int_{E_j} 2^j dx \int_{C(E_j)} T(|x-y|) dy \\ \ge \sum_k (12)^{-n} \int_{E_j \cap Q_k} 2^j dx \int T(|x-y|) \Psi_j(y) dy$$

where $\bigcup_{i=1}^{\infty} Q_k$ is a covering of E_j in the sense described in Case (i) and CE_j stands for the complement of E_j . As is readily seen, (3.9) directly gives

(3.10)
$$C \int_{E_j} 2^j dx \int_{CE_j} T(|x-y|) dy \ge C2^j |E_j|_{\phi}.$$

Now, combining (3.8) and (3.10) we obtain the thesis in this case.

Case (iii). Let $\varphi_k(x)$ be the characteristic functions of the measurable sets $E_k, E_i \cap E_j = 0, i \neq j$. Consider the simple function $\sum_k \alpha_k \varphi_k(x), \alpha_k > 0$. We are going to construct a simple function $f^*(x)$ taking dyadic values only, such that

$$\begin{array}{ll} (\beta) & \frac{1}{2}f(x) \le f^*(x) \le 2f(x) \\ (\beta\beta) & \text{Let } \|g\|_D = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \|g(x) - g(y)\| T(\|x - y\|) \, dx \, dy; \text{ then} \\ & \|f^*\|_D \le C \|f\|_D. \end{array}$$

The construction of f^* is going to be accomplished in successive steps. We will modify f within the range of values $2^j < f \le 2^{j+1}$. Once that modification is carried out we go to the next range $2^{j+1} < f \le 2^{j+2}$ and so on.

We shall illustrate the basic step only. Consider the range of values

$$(3.10) 2^k < f(x) \le 2^{k+1}.$$

Let $\alpha_{k_1} < \alpha_{k_2} < \cdots < \alpha_{k_m}$ be the values of f(x) within the above range, namely

$$(3.11) 2k < \alpha_{k_1} < \alpha_{k_2} < \cdots < \alpha_{k_m} \le 2^{k+1}.$$

We construct a new function $\overline{f}_{k,1}$ defined in the following way: $\overline{f}_{k,1}(x) = f(x)$ if $f(x) \le 2^k$ or $f(x) > 2^{k+1}$; $\overline{f}_{k,1}$ takes the value α_{k_2} or 2^k on E_{k_1} depending on whether

(3.12)
$$\sum_{\alpha_j > \alpha_{k,1}} \int_{E_{k,1}} \int_{E_j} T(|x-y|) \, dx \, dy \quad \text{or} \quad \sum_{\alpha_j < \alpha_{k,1}} \int_{E_{k,1}} \int_{E_j} T(|x-y|) \, dx \, dy$$

is larger. On the sets E_{k_2} , E_{k_3} , ..., E_{k_m} , $f_{k, 1}$ takes the same values as f. The construction gives

$$\| f_{k,1} \|_{D} \le \| f \|_{D}.$$

Our next step will be to modify $\overline{f}_{k,1}$. We have $\overline{f}_{k,2} = \overline{f}_{k,1}$ on $\mathbb{R}^n - \mathbb{E}_{k_2}$. On \mathbb{E}_{k_2} , $\overline{f}_{k,2}$ is going to take the value α_{k_3} or 2^k depending on whether

(3.14)
$$\sum_{\alpha_j > \alpha_{k,2}} \int_{E_{k,2}} \int_{E_j} T(|x-y|) \, dx \, dy$$
 or $\sum_{\alpha_j < \alpha_{k,2}} \int_{E_{k,2}} \int_{E_j} T(|x-y|) \, dx \, dy$

is larger.

The next step is the modification of $\overline{f}_{k,2}$ on E_{k_3} . Define $\overline{f}_{k,3} = \overline{f}_{k,2}$ everywhere except at E_{k_3} ; $\overline{f}_{k,3}$ takes the values α_{k_4} or 2^k on E_{k_3} depending on whether

(3.15)
$$\sum_{\alpha_j > \alpha_{k,3}} \int_{E_{k,3}} \int_{E_j} T(|x-y|) dx dy$$
 or $\sum_{\alpha_j < \alpha_{k,3}} \int_{E_{k,3}} \int_{E_j} T(|x-y|) dx dy$

is larger. In this way we construct the functions

(3.16)
$$\bar{f}_{k,1}, \bar{f}_{k,2}, \ldots, \bar{f}_{k,m}.$$

If $\alpha_{k_m} = 2^{k+1}$, we take $\overline{f}_{k,m} = \overline{f}_{k,m-1}$. If $\alpha_{k_m} < 2^{k+1}$, we take $\alpha_{k_{m+1}} = 2^{k+1}$ in our construction. The conditions (3.12), (3.14), (3.15) and the construction itself give

(3.17)
$$||f||_{D} \ge ||\overline{f}_{k,1}||_{D} \ge ||\overline{f}_{k,2}||_{D} \ge \cdots \ge ||\overline{f}_{k,m}||_{D}.$$

The construction gives $\overline{f}_{k,m}$, that takes the values 2^k or 2^{k+1} on the sets E_{k_1}, \ldots, E_{k_m} . This finishes the proof.

4. A Soboleff type of inequality

If $J_{\phi}(f) < \infty$ over Q, then

(4.1)
$$\int_{Q} |f| \phi\left(\frac{1}{|f|}\right) dx \leq C J_{\phi}(f)$$

with C depending on ϕ and Q only. In fact, going back to the construction (1.1) and assuming without loss of generality that $J_{\phi}(f) \leq 1/8$ we have

(4.2)
$$\sum_{k=0}^{\infty} \sum_{j=1}^{\infty} 2^{k} |Q_{k,j}| \phi(|Q_{k,j}|) \geq \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} 2^{k} |Q_{k,j}| \phi(2^{-k}).$$

The above inequality follows from the fact that $2^k |Q_{k,j}| \le 4J_{\phi}(f) \le 1/2$. Inequality (4.2) gives (4.1) for the case $J_{\phi}(f) \le 1/8$. The general case is obtained by taking

$$f^* = (8J_{\phi}(f))^{-1} | f |$$
 when $J_{\phi}(f) \ge \frac{1}{8}$.

We have, in this case,

(4.3)
$$\int_{Q} f^{*} \phi\left(\frac{1}{f^{*}}\right) dx \leq \frac{1}{4}.$$

On the other hand $\phi(1/f^*) \le \phi(1/|f|)$ which directly gives

(4.4)
$$\int_{\mathcal{Q}} |f| \phi\left(\frac{1}{|f|}\right) dx \leq 2J_{\phi}(f).$$

By (4.4) and Theorem B in the previous section we immediately obtain

(4.5)
$$\int_{Q} |f| \phi\left(\frac{1}{|f|}\right) dx \leq C\left(||f||_{1} + \int_{0}^{1} w(s)w_{K}(s)\frac{ds}{s}\right)$$

The above inequality is the corresponding version in this case of the well known Soboleff's inequality.

REFERENCES

- 1. A. P. CALDERON, M. WEISS and A. ZYGMUND, On the existence of singular integrals, Proc. Symp. Pure Math., vol. 10 (1967), pp. 56–73.
- 2. CALIXTO P. CALDERÓN, Smooth functions and convergence of singular integrals, Illinois J. Math., vol. 23 (1980), pp. 497-509.
- 3. R. FEFFERMAN, A theory of entropy in Fourier analysis, Ph.D. Thesis, Princeton University, 1975.
- 4. ——, A theory of entropy in Fourier analysis, Advances in Math., vol. 30 (1978), pp. 171-201.

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE CHICAGO, ILLINOIS