INTENSIONAL SETS

BY

STANLEY H. STAHL

In his proof of the consistency of the continuum hypothesis [4], Gödel introduced the technique of building a model of set theory in stages L_{α} , where each successor stage $L_{\alpha+1}$ contains exactly those subsets of L_{α} which are definable in a first order logic for set theory using parameters from L_{α} . In 1971, Chang [1], extended this procedure by taking the infinitary language $\mathscr{L}_{\kappa,\kappa}$ for the underlying logic, obtaining sequences C_{α}^{κ} where $C_{\alpha+1}^{\kappa}$ contains just those subsets of C_{α}^{κ} definable in $\mathscr{L}_{\kappa,\kappa}$ using parameters from C_{α}^{κ} . The general procedure has recently been investigated by Gloede [2] and [3] and by the author. Suppose we are at stage M_{α} and desire to construct $M_{\alpha+1}$. Whatever process has given us M_{α} is assumed to have also given us both a language $\mathscr{L}_{\alpha} \subseteq \mathscr{L}_{\infty,\infty}(\varepsilon)$ and a distinguished collection F_{α} of subsets of M_{α} . Then $M_{\alpha+1}$ is defined as the collection of subsets of M_{α} that are definable by a formula of \mathscr{L}_{α} using as the set of parameters one of the elements of F_{α} .

The following examples are from Gloede [2, p. 313]:

(i) For all α , let \mathscr{L}_{α} be $\mathscr{L}_{\omega\omega}$ and let F_{α} be the collection of finite subsets of M_{α} . Then for all α , $M_{\alpha+1}$ is simply $L_{\alpha+1}$.

(ii) For all α , let \mathscr{L}_{α} be $\mathscr{L}_{\kappa\kappa}$ and let F_{α} be the collection of subsets of M_{α} of cardinal less than κ . Then for all α , $M_{\alpha+1}$ is $C_{\alpha+1}^{\kappa}$.

(iii) For all α , let \mathscr{L}_{α} be $\mathscr{L}_{M_{\alpha}^+,M_{\alpha}^+}$ and let F_{α} be the collection of finite subsets of M_{α} . Then $\bigcup_{\gamma \in n} M_{\gamma}$ is the collection HOD. (M_{α}^+) is the least admissible set A such that $M_{\alpha} \in A$.)

The particular sequence M_{α} that forms the starting point for this paper is the one obtained by taking, for all α , \mathscr{L}_{α} to be the language $\mathscr{L}_{\omega\omega} \cup \mathscr{L}_{cf(\bar{\alpha}),cf(\bar{\alpha})}$ and F_{α} to be the collection of subsets of M_{α} of cardinal less than $cf(\bar{\alpha})$. The motivation for singling out this particular sequence is that it allows our construction process to grow in a natural way along with the stages of our construction since we continually increase the definitional complexity of our language but only at a pace that keeps \mathscr{L}_{α} inside of M_{α} .

DEFINITION 1. (i) $M_0 = \emptyset$;

(ii) for limit ordinals λ , $M_{\lambda} = \bigcup_{\gamma < \lambda} M_{\gamma}$;

⁽iii) for all α , $M_{\alpha+1}$ is the collection of subsets of M_{α} definable in the

Received June 15, 1978.

^{© 1980} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

language $\mathscr{L}_{cf(\bar{\alpha}),cf(\bar{\alpha})} \cup \mathscr{L}_{\omega\omega}$ using as parameters a subset of M_{α} of cardinal less than $cf(\bar{\alpha})$.

A routine induction shows that every set is in some M_{α} ; in fact, for all x, $x \in M_{\overline{TC(x)}^++1}$. This is so because our language eventually grows to the point where the set x can simply be enumerated as $\{y | \bigvee_{b \in x} [y = b]\}$. Nevertheless there is clearly a difference between those sets x that make their first appearance at stage $M_{\overline{TC(x)}^++1}$ and those that appear at an earlier level, for these latter must be defined by one of their properties and not simply enumerated.

DEFINITION 2. (i) For all x, x is intensional iff there is an $\alpha < \overline{TC(x)}^+$ such that $x \in M_{\alpha+1}$; (ii) For all x, x is hereditarily intensional (HI(x)) iff for all $y \in TC(\{x\})$, y is intensional.

It is immediate from the definitions that every constructible set is hereditarily intensional; that the collection of hereditarily intensional sets is transitive; that, for subsets x of ω , HI(x) iff $x \in L$; and, since V = L implies $\forall x.HI(x)$, Con (ZF) \Rightarrow Con (ZF + $\forall x.HI(x)$).

The most interesting property possessed by the collection of hereditarily intensional sets is that they satisfy the GCH; in fact, loosely speaking, they are the largest natural collection of sets that necessarily satisfies the GCH. The proof that the HI sets satisfy the GCH uses the following lemma.

LEMMA. For all regular cardinals κ and λ , if $\kappa \leq \lambda$ and if the GCH holds below λ , then $\lambda^{\infty} = \lambda$.

Proof. It suffices to establish the lemma in the case $\lambda = \kappa$. If λ is a successor cardinal μ^+ , then $(\mu^+)^{\mu \pm} = (\mu^+)^{\mu} = \mu^{\mu} \cdot \mu^+ \leq 2^{\mu} \cdot \mu^+ = \mu^+ \cdot \mu^+ = \mu^+ = \lambda$. (The identity $(\mu^+)^{\mu} = \mu^{\mu} \cdot \mu^+$ is the Hausdorff recursion formula, [5, p. 289].) If λ is a regular limit cardinal, then the conclusion follows from the hypothesis that the GCH holds below λ which guarantees that λ is strongly inaccessible.

THEOREM. ZFC + $\forall x.HI(x) \vdash GCH$.

Proof. Observe first that for all $\alpha \ge \omega$ and all $x\alpha$, if HI(x), then there is a $\beta < \bar{\alpha}^+$ with $x \in M_{\beta}$. The proof that for all $\alpha, 2^{\aleph_{\alpha}} \subseteq \aleph_{\alpha+1}$ is by induction of α and is seen true for $\alpha = 0$ by the remark following Definition 2. Suppose then that for all $\beta < \alpha, 2^{\aleph_{\beta}} = \aleph_{\beta+1}$. If \aleph_{α} is singular then a trivial counting argument on $\mathscr{L}_{\aleph_{\alpha}}$ and $F_{\aleph_{\alpha}}$ shows that at any stage $M_{\gamma+1}$ with $\bar{\gamma} = \aleph_{\alpha}$, only \aleph_{α} new subsets of \aleph_{α} can be defined so that only $\aleph_{\alpha+1}$ subsets of \aleph_{α} can be hereditarily intensional. In the event that \aleph_{α} is regular, the associated language has cardinal \aleph_{α} and the cardinal of the collection of sets of parameters is $\aleph_{\alpha}^{\aleph_{\beta}}$ which by the induction hypothesis and the lemma is just \aleph_{α} , so that, here too, only \aleph_{α} new subsets of \aleph_{α} can be defined at any stage M_{γ} for which $\bar{\gamma} = \aleph_{\alpha}$ and, therefore, there are only $\aleph_{\alpha+1}$ hereditarily intensional subsets of \aleph_{α} .

The next theorem shows that in any model of ZFC in which there is a set which is not hereditarily intensional, the collection of hereditarily intensional sets does not form an inner model.

THEOREM. Suppose there is a set which is not hereditarily intensional. Then $\langle HI, \varepsilon \rangle$ fails to satisfy the axiom of subsets.

Proof. Choose a non-hereditarily intensional set *a* of minimal order, so that \sim HI(*a*) but for all $x \in a$, HI(*x*). Let $\kappa = \overline{TC(a)}^+$ and let $b = a \cup \{\kappa^+\}$. Then $b \in M_{\kappa^++2}$ (via the definition, over M_{κ^++1} , $y \in b \leftrightarrow y = \kappa^+ \vee \bigvee_{u \in a} [y = u]$) and HI(*b*) since *a* was chosen minimal. However $a = \{x \mid x \in b \land x \neq \kappa^+\}$ is then a definable subset of *b* not hereditarily intensional.

We conclude with the following open question suggested by K. Bowen: Is it true that for every regular κ , there is a structure \mathcal{M} such that $\mathcal{M} \models (V = HI \land V \neq C^{\kappa})$? The strongest possible alternative, that V = HI already implies V = L, is also open.

REFERENCES

- 1. C. C. CHANG, "Sets constructible using $L_{\kappa\kappa}$ " in Axiomatic set theory, D. Scott, editor, Amer. Math. Soc., Providence, R.I., 1971, pp. 1–8.
- 2. K. GLOEDE, "Set theory in infinitary languages" in Logic Conference, Kiel 1974, Müller et al, editors, Springer-Verlag LNM 499, Berlin, 1975, pp. 311-362.
- 3. , Mengenlehre in infinitären Sprachen, Universität Heidelberg, 1974.
- K. GÖDEL, Consistency proof for the generalized continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A., vol. 25 (1939), pp. 220-224.
- 5. K. KURATOWSKI and A. MOSTOWSKI, Set theory, North-Holland, Amsterdam, 1968.

MOUNT HOLYOKE COLLEGE SOUTH HADLEY, MASSACHUSETTS