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ON QUASISIMILARITY FOR
SUBNORMAL OPERATORS

BY

JOHN B. CONWAY

In this paper it is shown that if two subnormal operators on separable
Hilbert spaces are quasisimilar, then the weak* (or, ultraweakly)closed
algebras they generate are isomorphic, and this isomorphism has additional
properties. The pure and normal parts of quasisimilar subnormal operators are
also investigated, and it is shown that the normal parts must be unitarily
equivalent. It is also proved that the pure parts of quasisimilar cyclic subnor-
maloperators must be quasisimilar. These results are then applied to character-
ize the normal operators all of whose simple parts are quasisimilar. Another
application is made to obtain part of a result of W. S. Clary characterizing
those subnormal operators that are quasisimilar to the unilateral shift of multi-
plicity one.

In this paper all Hilbert spaces are separable and all operators are bounded
and linear. An operator S on a Hilbert space is subnormal if there is a Hilbert
space : containing and a normal operator N on such that N

_
and S Nl (the restriction ofN to ). The weak* topology on ()is the
topology ’() has as the Banach space dual of 1(), the trace class opera-
tors [17]. It is customary to call this the ultraweak topology. The term "weak*"
not only obviates the misleading term "ultraweak", but also emphasizes that all
the results concerning the dual of a separable Banach space are applicable to
() with its weak* topology.
For S in (), (S)denotes the weak* closed algebra generated by S and

the identity, 1. That is (S) is the weak* closure of {p(S): p is a polynomial}. It
has recently been shown by Olin and Thomson [13] that, for a subnormal
operator S, (S) equals the closure of {p(S): p is a polynomial} in the weak
operator topology (WOT).

If 1 and 2 are Hilbert spaces, an operator X: 1 ’2 is said to be
quasi-invertible if it is injective and has dense range; that is, ifker X (0)and
(ran X)- 2. If Sj M(j) (j 1, 2), then $1 is quasisimilar to S 2 if there
are quasi-invertible operators X21:1 -2 and X12:2--1 such that
X21S $2X21 and X12S2---S1212. Denote this by $1..$2. This equi-
valence relation of quasisimilarity was introduced by Sz.-Nagy and Foias (see
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[12]) and has received considerable attention. Unlike similarity, quasisimilar
operators need not have equal spectra [10], though their spectra cannot be
disjoint [10]. However, quasisimilar subnormal operators must have equal
spectra [4].

In Section 1 of this paper it is shown that if $1 and $2 are subnormal
operators and X21 and X2 are quasi-invertible operators such that
X2 S $2 X2 and X12 $2 S Xa2, then there is an isometric isomorphism
p:9’(S1)--.’(82) such that p(S1)--S2 and for A in ’(S),
X2I A p(A)X2, and Xzp(AI)= A1X2; moreover, p is a weak* homeo-
morphism. When combined with Theorem 2.1 of [6], this result gives necessary
conditions that subnormal operators be quasisimilar in terms of their minimal
normal extensions. For j 1, 2, let Nj be the minimal normal extension (mne)
of Sj, and let tj be a scalar-valued spectral measure for Nj. IfP(t)denotes the
weak* closure of the polynomials in L(tj), then the above result implies that if
$1 and $2 are quasisimilar subnormal operators, then the identity map on the
polynomials extends to a weak* homeomorphic isomorphism of P(/)onto
P(); in particular, St and 2 have the same Sarason hulls [16].

It is known that if a subnormal operator S is quasisimilar to a normal
operator, then S is normal [14]. From this it is easy to deduce that if Sa and $2
are subnormal, $1 $2, and if S is pure (that is, $1 has no normal direct
summand), then $2 must be pure. For j=l, 2 let Sj--Nj@Tj on
g ,/V @ -, where N is normal and T is pure. In Section 2 it is shown that
if $1 $2, then N and N2 are unitarily equivalent. An example is produced
where S $2, but T and T2 are not quasisimilar. However, if S and $2 are
cyclic it is shown that S $2 implies that T1 T2.

In Section 3, the first of two applications of the results of Sections 1 and 2
are given. If N is a normal operator on then a part ofN is the restriction
N ff of N to an invariant subspace of N. A part N] ocg is simple if is not a
reducing subspace; equivalently, if N] is subnormal but not normal. In
Theorem 3.1 it is shown that N has the property that all its simple parts are
quasisimilar if and only if N is unitarily equivalent to multiplication by 4 on L
of the circle, where 4 is a weak* generator ofH, the space ofbounded analytic
functions on the unit disk. This condition is also equivalent to the requirement
that all the simple parts of N be unitarily equivalent or similar.
A second application is given in Section 4. Clary [5] has given necessary and

sufficient conditions that a subnormal operator be quasisimilar to the uni-
lateral shift of multiplicity one. We will use our Theorem 1.4 to prove that
Clary’s conditions are necessary.

In this paper, [-] denotes the empty set.

1. The main result

A somewhat more general result than the one stated in the introduction will
be proved. For a compact subset K of C, let C(K) be the algebra of continuous
complex-valued functions on K with the supremum norm, I]’1] K. Let R(K) be
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the closure in C(K) of the subalgebra of rational functions with poles off K. If S
is a subnormal operator and K contains a(S), the spectrum of S, then f(S) is a
well defined subnormal operator for each fin R(K). Let (S; K) be the weak*
closure of {f(S): fe R(K)}. It is not difficult to show that (S; K)is an alge-
bra. If K is the polynomially convex hull of a(S), then Runge’s Theorem implies
that (S) (S; K).
The next result is due to Clary [4] and will be used repeatedly in this paper,

often without further reference.

1.1 THEOREM. If Sj is a subnormal operator on tj (j= 1, 2)and
X: 1-+2’2 is a quasi-invertible operator such that XSI=S2X, then
(S)

_
(S,).

1.2 THEOREM. IfS is a subnormal operator on 3/tg (j 1,2), ifX z -- 2is a quasi-invertible operator such that XSI $2 X, and if K is a compact set
containing a(S,), then there is a contractive monomorphism p: (Sa; K)-
($2; K) such that:

(a)
(b)
(c)

p(s,)
XA p(A)X for every A in ?(S, ;K).
p is weak* continuous.

The proof of this theorem is based on the following lemma.

1.3 LEMMA. If ,1 is a algebra of subnormal operators on W (j 1, 2),
X: #g -+ 2 is a quasi-invertible operator, and p:

_ - .fff[2 is a contractive
monomorphism such that XA p(A)X for all A in /a; then p extends to a
contractive monomorphism [: -2 such that XB (B)X for all B in 1,

where is the sequential closure oj’/j in the weak operator topology.

Proof If B 1, let {A,} be a sequence in , such that A,--, B (WOT)
(WOT weak operator topology). Thus,

M sup {IIA. II: n > 1} < .
Since p is contractive, IIp(A.)ll _< M for all n. Let C e 2 and let {A,k be a
subsequence of {A,} such that p(A,k)-C (WOT)as k. Now
XA, p(A,)X for all k, so XB CX. Moreover, since B and C are subnor-
mal, a(C)_ a(B) by Theorem 1.1. Hence IIcII -< IInll.

If {n} is any other sequence in , such that Bk B (WOT)and p(Bk) C’
(WOT) as k , then

B, A.,-+ 0 (WOT) and p(B,) p(A,,)--+ C’ C (WOT) as k + +.

By the above reasoning, IIc’ cII 0; that is, C C’. This means that {p(A,)}
has a unique WOT cluster point C. Therefore p(A,)-+ C (WOT) as n-+ .
Moreover, this argument also shows that C is independent of the choice of a
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sequence {A,} from ’, such that A,--. B (WOT). Therefore, (B)= C gives a
well defined map iS" Ma - M2 and XB [(B)X for all B in l-

Clearly 5 is an extension of p and/5 is contractive. If B and B’ ’ and {A,}
and {A’,} are sequences from ’, such that A,- B and A’- B’ (WOT)as
n o, then, for fixed m, A, A’,, BA’,, (WOT) as n . Hence, p(A)p(A’)
(BA’) as n . It follows that [(BA’,,)= (B)p(A’). Letting m o, it fol-
lows that/5 is multiplicative. Since linearity is an easy exercise, it follows that 15
is a contractive homomorphism such that XB-- [(B)X for B in a. Because
ker X (0), it follows that t5 is injective. |

Proof of Theorem 1.2. For j 1, 2, let

o(Sj; K)= {f(Sj): f is a rational function with poles off K}.
Let ,(Sj; K) be the WOT sequential closure of o(Sj; K). Define ’(Sj; K)
inductively for each ordinal number a by letting ,(S; K) be the WOT seq-
uential closure of _(Sj; K) when a has an immediate predecessor a- 1;
and

’,(S); K)= (..) {t(S); K):/3 < o}
when a is a limit ordinal.

Since XS $2 X, it is easy to show that Xf(S,)- f(Sz)X for fa rational
function with poles off K. Define

P0:o(S1 ;K) o($2; K)
by po(f(S,))=f(S2). Since a(S2)_ a(S,),

IIf(s )ll Ilfll  ,, IIf(s,)ll.
Hence Po is a contractive monomorphism and XA po(A)X for every A in
o(S K).
Using Lemma 1.3 and transfinite induction, for every ordinal a there is a

contractive monomorphism p: (S1 K) ($2; K) such that
XA p(A)X for every A in ?(S; K)and pis an extension ofpiffl < a. But
[1, p. 213] ?(S; K)= (S; K) for a the first uncountable ordinal; so let
p p for this a.
By the induction process, p satisfies (a)and (b). By (b), p is WOT sequen-

tially continuous. Since the WOT and the weak* topology agree on bounded
subsets of ’(3g), p is weak* sequentially continuous. An application of the
Krein-Smulian Theorem implies that p is weak* continuous. |

It is easy to obtain the main result as a consequence of Theorem 1.2.

1.4. THEOREM. If Sj is a subnormal operator on and X0 38 - 34i are
quasi-invertible operators such that XiiSj= SiXii (i, j 1, 2), and if K is a
compact set containing a(S), then there is an isometric isomorphism
p: ($1 K) ($2; K) such that:
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(a)
(b)

p(s,)--s:.
X21 A p(A)X:, and X,:p(A)= AX,2for all A in (S, ;K).
p is a weak* homeomorphism.

Proof By Theorem 1.2, there are contractive monomorphisms

p: (S, ;K) ($2; K) and r/: ($2; K) (S,; K)
such that p(S,)= $2, r/(S2)- S 1, and p and t/are weak* continuous. Hence
p r/is weak* continuous and p r/(A)= A on the weak* dense subalgebra

{f(S2): f is a rational function with poles off K}.
So p q is the identity. Similarly, r/ p is the identity map, and so r/= p -1

Let S be a subnormal operator and let N be its mne. If p is a scalar-valued
spectral measure for N, then W*(N), the von Neumann algebra generated by
N, is isometrically and weak* homeomorphically isomorphic to L(#), by
means of the functional calculus 4) 4)(N) (see [7, p. 112]). If a(S)

_
K, then

the proof of Theorem 2.1 in [6] can be used to show that

(S; K)= {b(S): b e R(/; K)},
where R(p; K) is the weak* closure in L(p) of R(K). In particular, s(S)=
{4(S): 4 e poo(p)}, where poo()is the weak* closure of the polynomials in
L(p). Moreover these identifications are isometric isomorphisms that are
weak* homeomorphisms.

This allows function-theoretic interpretations of Theorems 1.2 and 1.4. In
particular, we will state the’ interpretation of Theorem 1.4 for the case where K
is the polynomially convex hull of a(S1).
To interpret Theorem 1.4 for poo(p), the following characterization of that

space by Sarason [16] is needed. Let be the collection of all polynomials in
one complex variable.

1.5 THEOREM. If p is a compactly supported measure in the plane, then there
is a pair (G, hi), where G is a bounded open subset of C, ft is a measure such that
< p, and the followin9 hold"

(a)
(b)
(c)

(d)

po(p) LO(p ) @ po(fi).
If is considered as a subspace of both H(G) and P(p), then the
identity map pp on extends to an isometric isomorphism
poo () HO (G).
t?G

_
support/

_
G-.

rl po (fi)
_
C is a weak* continuous multiplicative linearfunctional if, and

only if, there is a z in G such that r/(b)= b(z)for all dp in

(H(G)).
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(g)

(h)
(i)

If G is a component of G, then G1 is simply connected. Moreover,
r.: D-,G1 is a conformal map, then z is a weak* 9enerator of
H H(D).
R(G-) is a Dirichlet algebra.
[ c3G, the restriction of [t to egG, is absolutely continuous with respect to
harmonic measure for G-.

Although this theorem is not stated in this way in [16], it is easily derivable
from the main result there. The reader may also consult [6] and [15]. The pair
(G,/) is called the Sarason hull of
The next result is an immediate consequence of Theorem 1.4, Theorem 1.5,

and Theorem 2.1 of [6].

1.6 THEOREM. Let $1, S2 be subnormal operators with minimal normal exten-
sions N1, N2, let/1, It2 be scalar-valued spectral measures for N 1, N2, and let
(G 1,/1) and (G 2,/2) be the corresponding Sarason hulls. If$1 and $2 are quasisi-
milar, then:

(a) fll 1 a/3d fiE ft2 are mutually absolutely continuous.
(b) G G2

(c) The identity map on the polynomials extends to an isometric isomorphism
 om omo p  ,m.

Actually, condition (c) of the preceding theorem is a consequence of (a) and
(b); it is only stated for emphasis.

2. The pure and normal parts of quasisimilar subnormal operators

Some of the results of this section will be needed in the following one. In
addition, they seem to be sufficiently interesting by themselves to merit separ-
ate consideration.
The following result is due to Radjavi and Rosenthal [14, p. 655]. Several

generalizations and variations have also appeared in the literature [2], [18].

2.1 LEMMA. If Sj ?3(/;/{j) (j 1, 2), X: 12 is quasi-invertible, S
and $2 are subnormal, and XS $2 X, then $1 and $2 are normal and unitarily
equivalent.

An easy consequence of Lemma 2.1 (obtained below) is the fact that if two
subnormal operators are quasisimilar and one is pure (that is, it has no normal
direct summand), then so is the other. However, it does not follow that the pure
parts are quasisimilar, as the following example illustrates.

Let A {z C" ]z < 1/2} and let L2(A)denote the Bergman space of analytic
functions defined on A that are square integrable with respect to area measure.
Let

L (0, })(R) L2(o, })(R)...,
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and put

Denote the identity function on (0, ) by t; that is, t(a)= a. If f=
f2,...) ., g (9a, 92,...) e if, and h L(A), define Sj (g;j) by

S(f@ h @ g) zf@ zh @ tg

(zf, zji,...) @ zh @ (tg, tO2,...),
s:(f@ ) f@

Define Xu" ] (i, j 1, 2) by

i x,(f@ @ g) 0, tenf= 0, g 0, an 0 on (0, ); since is analytic,
0. Uen er x, (0). Similarly,r x, (0). Clearly ran X, ontain

so X2 is quasi-invertible. Similarly, ran X2 contains

{f@ p @ g" j , g , and p is a polynomial};

hence, ran X2 is dense and X2 is quasi-invertible. It is an easy matter to
check that X2S=S2X2 and X2S2=SX2; hence S and $2 are
quasisimilar.

Let be the pure part o S (j , 2). So S, where
L(A), 2 . It is claimed that T and T2 are not quasisimilar. In fact,
suppose there is a quasi-invertible operator Z" 2 such that
ZT T Z. Let

m [Z((0)@ ())]- ..
It ollows tat , Lat T2 an A2 TI is an isometry. Let W: L(A)
be defined by Wh Z(O h). Then W is quasi-invertible and WA A 2 W,
where A is multiplication by z on (A). This contradicts Theorem 1.1, and,
hence, no such Z can exist. Another example of this phenomenon can be found
in Hastings [8].
What is true is that quasisimilar subnormal operators must have unitarily

equivalent normal parts. To show this, the following analogue of the
Schroeder-Bernstein Theorem is needed. The result is due to Kadison and
Singer [11] and the proof will not be presented.

2.2 LEMMA. IfA, 2 are operators o,2 sch that there exists red,c-

ing subspaces , 2 with A unitarily equivalent to A 2 2 a A2 unitarily
equivalent to A , then A a A2 are unitarily equivalent.
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In the above lemma, if1 and 2 are only assumed to be invariant and not
reducing, the above argument is not valid. It might be of interest to study this
more restrictive equivalence relation. (Is it more restrictive ?) Notice that if L#
and (2 are only assumed to be invariant and A and A 2 are normal, then it
follows that 5Pl and (2 are reducing subspaces.
To facilitate the exposition, the following notation is useful. S S 2 means

$1 and $2 are unitarily equivalent; $1 S means $1 and $2 are similar;
$1 Sz means $1 and $2 are quasisimilar.

2.3 PROPOSITION. For j 1, 2, let S be a subnormal operator on and
suppose ’ _J+’ such that A/ reduces S, N SI is normal, and
SjI.Y- is pure. If $1 S2, then N1 - N2.

Proof Let Xij: j fi (i,j 1, 2) be quasi-invertible operators such that
XijS= SiXij. It follows that ,#2 [X21 /1]- is an invariant subspace for
$2. Also X X2 1: /V - /g2 is quasi-invertible and XN ($2
By Lemma 2.1, $2 ,//Z2 is normal and N1 - $212. Hence
is unitarily equivalent to a part of N2. Similarly, N2 is unitarily equivalent to a
part of N1. By Lemma 2.2, N1 _- N2.

This result was obtained independently by Hastings [8] for the more general
dominant operators.

If $1 and $2 are cyclic subnormal operators and $1 $2, then not only are
the normal parts unitarily equivalent, but the pure parts must be quasisimilar.
To prove this the following lemma is needed.

2.4 LEMMA. If S1, S2 are subnormal operators on o-1, 2, Xij: t’;j-- i
are operators with dense range such that XijSj SiXij, and ifS is cyclic, then
$2 is cyclic and each Xj is injective. In particular, S1 $2.

Proof If p is a polynomial, then X2 p(S1)= p(S2)X2. So if el is a cyclic
vector for S 1, then X 21 e e 2 is a cyclic vector for S 2. Thus, it may be assumed
that Sj is multiplication by z on H2(p) for some compactly supported measure
on the plane [3].

}’.Now X2 X21 {$1 By Yoshino’s Theorem [19], there is a function q in
H2(/1) c L(/I)such that X12 X21 M,, multiplication by 4. Since Xlzand
X21 have dense range, so does M,. in particular, 4 cannot vanish on a set with
positive p measure. Therefore, M, is injective. But ker X 21 ker X 12 X 21

ker M, (0), so X21 is injective. Similarly, X12 is injective. |

2.5 PROPOSITION. If $1, S2 are cyclic subnormal operators on :;g;1, 2,
Sj Ni ( T on oY# ....’ Y-), where N) is normal and Tj is pure, then S $2
!ff N Nz and T1 T2.
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Proof Suppose Xij: j i are quasi-invertible operators such that
XijSj Si Xij (i, j 1, 2). Let Qj be the projection of ,ufj onto 0j, and define
Y/j: -j -i by Y/j QiXij[ --j. If y e --i, then there is a sequence {x,} in j
such that Xijx. y as n o. Let x. w. + t., w. lj and t. --j. From
the proof of Proposition 2.3, Xij Vj

_
Yi; so Xj w, e ,/V. Hence

Yiijt, QiXijt, QiXijx,- Qiy y.

So ran Y/j is dense. Also Q {S i}’, so Y/j Tj T/Y/j. Because $1 is cyclic, it
follows that T1 is cyclic. By the preceding lemma, Yj is injective and T1 T2.
Since N1 N2 by Proposition 2.3, this completes the proof of half this
proposition.
The proof of the converse is straightforward. |

It should be mentioned that for similarity these difficulties do not arise.

2.6 PROPOSITION. With the notation the same as in Proposition 2.5, S $2
ffS - S2 and T1 T2

Proof Suppose S - $2, and let R: 1 2 be an invertible operator
such that RS1 $2 R. As in the proof of Proposition 2.3, R(I/ 1) - ,g’2. Also
R-l(,/V2) ,/V’I, so that R(,/I/’2)=

If 52 R(-a), then 2 is an invariant subspace for $2 and Ta $212.

Because R is invertible and ,/t2 R,, 52 ,/1/2 (0) and
2 /2 + 2 (not an orthogonal sum). Let Q2 be the orthogonal projection
of 2 onto 2, and define A: -- -, -2 by A Q 2 R y- . It is easy to check
that A is injective. If 2 0-2, then 2 Y2 q- n2 for unique vectors Y2 in
and n2 in 2. Let xl =R-lt2=tl +nl, where tle,l and n la,
Y2 -F n2 2 Rx1 Rtl + Rnl, and Rtl and Rnl ,/t/2 Hence
t2 Q2t2--Q2 Rx1- Q2 Rtl Ate, and so A is surjective. Therefore A is
invertible. Because Q2 e {$2}’, A T A-1 T2. So T T2.
The converse is straightforward. |

This result also follows from Lemma 1 of [14].

3. Parts of a normal operator

If N is a normal operator on a Hilbert space ,, a part ofN is the restriction
of N to one of its invariant subspaces . So if N I0 is a part of N, NI is
subnormal. It is a standard fact that NI is normal iff ovg reduces N. If does
not reduce N, then N I( is called a simple part of N.
We make the following definitions. Say that N satisfies .(a) Condition (U) if

any two simple parts are unitarily equivalent; (b) Condition (S)if any two
simple parts are similar; (c) Condition (QS) if any two simple parts are
quasisimilar.
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Notice that it is pointless to make a restriction on the nonsimple parts of N.
Indeed, if it were required that all parts of N be unitarily equivalent, then, by
considering the restriction ofN to its spectral subspaces, it would follow that N
is a multiple of the identity.
There are normal operators that satisfy Condition (U) in a vacuous way;

that is, they have no simple parts. Such operators are called reductive since each
invariant subspace reduces N. A necessary and sufficient condition for N to be
reductive is that P(t) L(), where is a scalar-valued spectral measure for
N. In other words, N is reductive iff the Sarason hull of its scalar-valued
spectral measure is (C], 0).
A nontrivial example of a normal operator that satisfies Condition (U) is the

bilateral shift of multiplicity one. If co is normalized arc length measure on the
unit circle cD and N is multiplication by z on L2(co), then a simple part N of
N must be an isometry that has N as a unitary extension. Since N] is not
unitary, it must be a unilateral shift of multiplicity one. Hence N satisfies
Condition (U).

If q e H, then 05 is a weak* generator of H if the weak* closed algebra
generated by 4 is H. Thus, b is a weak* generator of H iff there is a net of
polynomials {p} such that P(4))---’ z weak* in H

_
L (o0). The weak* genera-

tors of H where characterized by Sarason [15]. If N is the bilateral shift of
multiplicity one and 4) is a weak* generator of H, then it is easy to see that a
subspace ;4 of L2(o)is invariant for N iff it is invariant for b(N). Also, #g is
reducing for N if is reducing for 4(N). It follows that 4(N) also satisfies
Condition (U), since all its simple parts are unitarily equivalent to the analytic
Toeplitz operator T on H2. It will now be shown that, up to unitary equi-
valence, these are the only normal operators satisfying Condition (U). In fact,
these are the only normal operators satisfying Condition (S) or Condition
(QS).

3.1 THEOREM. IfN is a nonreductive normal operator, then the following are
logically equivalent statements:

(a) N satisfies Condition (U)
(b) N satisfies Condition (S)
(c) X satisfies Condition (QS)
(d) There is a weak* generator dp ofH such that N is unitarily equivalent to

multiplication by dp on L2(o).

Proof Using the remarks preceding the statement of the theorem and
disposing of certain trivial implications, it is easy to see that to complete the
proof it is only necessary to prove that (c)implies (d). So suppose N satisfies
Condition (QS). Let/ be a scalar-valued spectral measure for X. So ,(X)=
{b(N): b e P(/)}.

3.2 Claim. If (G,/) is the Sarason hull of/, then G is connected and/ =/.
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If/ 4: t, then there is a nontrivial reducing subspace , for N such that
is a scalar-valued spectral measure for NI and/ is a scalar-valued spectral
measure for N +/- (see Theorem 7.1 of [6], for example). Since po(/ _/)
L(/ -/), N] is reductive. Also N]+/- has no reductive direct summand. By
Theorem 9.3 of [6], there is a nonreducing invariant subspace ////for N +/-.
Moreover, ////can be chosen such that N is the minimal normal extension
of N]. Hence [6, Theorem 2.1] 0(N]//) and 0’(N) are isomorphic
algebras, and they are isomorphic to P(/). But N //g and N ( (R) ////)are
both simple parts of N, and (Nl0g and (N](R)
sg(Nl////) are not isomorphic. By Theorem 1.4, N]/// and N] ,/// cannot
be quasisimilar, contradicting Condition (QS). Therefore

If G is not connected and Ca, G2 are distinct components of G, then their
characteristic functions belong to P() by Theorem 1.5. Therefore, there are
reducing subspaces eE and ,0_02 of N such that ’(N] 1)and s’(N] fl)2)are
isomorphic to H(R)(G1)and H(R)(G2). But [6, Theorem 9.3] there are simple
invariant subspaces /1, //2 of ?h’l, 2 such that NI and NI2 are the
minimal normal extensions of N]/// and N[////2. Hence (N /)is isomor-
phic to ’(Ul), and -(U////2)is isomorphic to ,N’(NI2). Since
Ga c G2 V-l, (N] //a)and o(U 2)cannot be isomorphic. By Theorem
1.4, N] /// and N] ////2 cannot be quasisimilar, contradicting (c).

Therefore, Claim 3.2 is established.

3.3 Claim. N is cyclic.

If N z dE(z) is the spectral decomposition of N, there is a vector eo in
such that/(A) IlE(A)eo ]12 for every Borel subset A of C [7, p. 110]. Let

,;,Uo [N*kN"eo: k, n >_ 0].
Thus, S(o reduces N, N I,o is a cyclic normal operator, and/ is a scalar-
valued spectral measure for U lfo. In particular, both 0(U)and
are isomorphic to H(G), or P(/). By Proposition 9.6 of [6], there is an
invariant subspace ///of N I,o such that NI//is a pure subnormal operator
and N I,_o is the minimal normal extension of N I///. Now N I,/h and
N (///(R) (, @ 0)) are both simple parts of N, the first is pure, and the
second is not unless , @ 3(o (0). Hence they cannot be quasisimilar unless

3(o (0) (Proposition 2.3). By (c), ,o 3 and N is cyclic.

3.4 Claim. lu(G)= O.

If/t(G) > 0, then there is a compact subset K of G with/(K) > 0. Let U be an
open set with K

_
U
_
U- G. If v =/ (G-/U), then the Sarason hull of v is

(G, v) [14]. Let ////be an invariant subspace for N such that ,////_ LZ(v)and
N I,////is pure [6, Proposition 9.6]. If ,g (R) LZ(lalK), then N o///and
are two parts that cannot be quasisimilar by Proposition 2.3. This establishes
the claim.
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Let e e G and let r/be harmonic measure for G- defined at the point z. Let 4
be the conformal map of D onto G such that 4)(0) e and ’(0) > 0. Denoting
normalized arc length measure on c3D by co, 4 induces an isomorphism of the
measure space (0D, co) with (cqG, r/) [16, p. 6]. Let Me denote multiplication by
4 on L2(co). Since q is a weak* generator of H (Theorem 1.5), meis cyclic. By
the preceding comments, r/is a scalar-valued spectral measure for Me. Since
Me is cyclic, Me is unitarily equivalent to the position operator on LZ(q). But
since (G,/) is the Sarason hull of/ and/(G)- 0,/ =/ c3G and r/must be
mutually absolutely continuous. So N is unitarily equivalent to the position
operator on LZ(r/), and hence N Me. |

4. Quasisimilar and similar cyclic subnormal operators

It is known [3] that a cyclic subnormal operator is unitarily equivalent to S ,,
the operator given by multiplication by z on H2(/,), the closure of the polyno-
mials in L2(tt), for some compactly supported measure on the plane. The next
result says that if two cyclic subnormal operators are quasisimilar, then the
corresponding measures can be chosen in such a way that the quasi-invertible
intertwining operators have simple representations.

4.1 PROPOSITION. If $1 and $2 are cyclic subnormal operators, then St $2
iff there are compactly supported measures la and 2 such that $1
$2 - S,z, and there are constants c and c2 and a function dp in n2(/,)
such that:

(a) {qSp: p is a polynomial} is dense in Hz(/t,);
(b) for every polynomial p,

Proof Suppose S $2 and let Yj: j -+ i be quasi-invertible operators
such that YjSj Si Yj. If e is a cyclic vector for S, then it follows that
e2 Y2 el is a cyclic vector for $2. Choose compactly supported measures/t
and/*2 on C such that there are isomorphisms Ua: - H2(/tj)with Ujej-- 1
and UjSjUf= S.. Let Xij UiYiUf . So Xii" H2(/j) -* H2(/q)is quasi-
invertible. Moreover, it is straightforward to verify that XijSI SlaiXij.

If p is a polynomial, then

X2p XzIp(Su,)l p(S,2)X211 p(S,2)U2 Yzel p(S,2)l p.

If c, IIX2, , this shows that 5 P 12 d/2 __< c, I P d[-/l"
To find the constant c2, notice that X2 X21 commutes with S,,. By Yosh-

ino’s Theorem [191, there is a function 4) in H2(#)m L()such that

X2X21 f=f for every f in H2(/). Hence, for a polynomial p,
4)p-- X12 X21 p X12 p. Let c2 Ilx12 I1-2.
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For the converse, suppose/ 1, t 2, c 1, C2, and q5 are given. If X21P and X 12 P
are defined for polynomials p by X21 p p and X12 p bp, then it is easy to
see that X21 and X 12 extend to bounded linear maps Xij: H20tj)- H2(i) such
that XijSuj S,iXj. Clearly ran Xij is dense. By Lemma 2.4, the operators Xj
are injective. Hence $1 $2. I

In his thesis [5], Clary proved the following theorem. We give a different
proof that the conditions are necessary.

4.2 THEOREM. A subnormal operator S is quasisimilar to the unilateral shift
iff S S, where It is a measure such that"

(a) support/t

_
D-,

(b) v =/13D << 09,

(c) log (dv/do9)
Suppose S S. By Proposition 4.1 there are compactly supported and

f12 such that S, S,,, S S2 and and f12 satisfy the restrictions enunciated
there. Let 2, v dD. By Theorem 1.6, the Sarason hull of
and v << 16]. So (a) and (b) hold.

Because S, S,o, and are mutually absolutely continuous, and Szego’s
Theorem [9] implies that log (d/d) Lx(). If n 1 and p is a polynomial
without constant term, then

I 1=1 a -pl d,= I 1=1 -plZlzlZ"dl
D D

C2

Letting n m, we get

""?D C2 ?D

By Szego’s Theorem,

.,,’ log dm inf .f 0exp

--c inf I-pl dv" p(O)= O

But

exp (log(dV)

( dill) dl)log 14) 12 -- 2 log I1 / log

since S,, S implies that H2() L () P() H, and, hence, that
log I] e LI() Thus, (c)holds.
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The converse is proved as in [5]. |

For similarity, a statement analogous to, but stronger than, Proposition 4.1
is possible.

4.3 PROPOSITION. If $1 and $2 are cyclic subnormal operators, then S S 2

!ff there are compactly supported measures #1 and it2 and constants cl and c2,
such that $1 - S,1, $2 - S2, and for every polynomial p

c= .( Ipl d, _< f Ipl 2 d,2 < c f IPl dt.

The proof of this proposition follows the lines of the proof of Proposition 4.1
and will be left to the reader.
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