SOME REMARKS ON LAX-PRESHEAFS

BY
Symeon Bozapalides

Abstract. [$\mathscr{A}^{\mathrm{op}}, \mathscr{C}$ at] is a reflective and coreflective sub-2-category of Fun ($\mathscr{A}^{\mathrm{op}} \mathscr{C}$ at). Lax ends and pointwise lax extensions can be expressed by indexed limits using the above coreflector.

1. We use the symbol \oint for generalized lax ends [3].

For 2-categories \mathscr{A} and \mathscr{B}, Fun $(\mathscr{A}, \mathscr{B})$ denotes the 2-category of lax functors, lax natural transformations and modifications from \mathscr{A} to \mathscr{B}. We then have the standard formula Fun $(\mathscr{A}, \mathscr{B})(F, G)=\oint_{A} \mathscr{B}(F A, G A)$.

Proposition. The canonical embedding $\left[\mathscr{A}^{\text {pp }}, \mathscr{C}\right.$ at $] \rightarrow$ Fun $\left(\mathscr{A}^{\text {op }}, \mathscr{C}\right.$ at $)$ has both left and right adjoints.

Proof. Given a lax-presheaf $F: \mathscr{A}^{\text {op }} \rightarrow \mathscr{C}$ at, the 2-presheafs

$$
\begin{align*}
\check{F} C & =\oint_{A} \mathscr{A}(C, A) \times F A, \tag{1}\\
\hat{F} C & =\oint_{A}[\mathscr{A}(A, C), F A] \tag{2}
\end{align*}
$$

are such that

$$
\begin{aligned}
& {\left[\mathscr{A}^{\mathrm{op}}, \mathscr{C a t}\right](H, \hat{F}) \simeq \operatorname{Fun}\left(\mathscr{A}^{\mathrm{op}}, \mathscr{C a t}\right)(H, F),} \\
& {\left[\mathscr{A}^{\mathrm{op}}, \mathscr{C a t}\right](\check{F}, H) \simeq \operatorname{Fun}\left(\mathscr{A}^{\mathrm{op}}, \mathscr{C a t}\right)(F, H)}
\end{aligned}
$$

respectively. Let us prove the first isomorphism:

$$
\begin{aligned}
{\left[\mathscr{A}^{\mathrm{op}}, \mathscr{C a t}\right](H, \hat{F}) } & =\int_{C}[H C, \hat{F} C] \\
& =\int_{C}\left[H C, \oint_{A}[\mathscr{A}(A, C), F A]\right] \\
& \simeq \int_{C} \oint_{A}[H C,[\mathscr{A}(A, C), F A]] \\
& \simeq \oint_{A} \int_{C}[H C \times \mathscr{A}(A, C), F A] \\
& \simeq \oint_{A}\left[\int^{C} H C \times \mathscr{A}(A, C), F A\right] \\
& \simeq \oint_{A}[H A, F A] \\
& =\operatorname{Fun}\left(\mathscr{A}^{\mathrm{op}}, \mathscr{C} \mathrm{at}\right)(H, F) .
\end{aligned}
$$

Comments (1) For \mathscr{A} a category, Giraud [4, pp. 37-41] shows that the inclusion of $\left[\mathscr{A}^{\text {op }}, \mathscr{C}\right.$ at $]$ into the pseudo-functors and pseudo-natural transformations has both adjoints.

Formulas (1) and (2) cover this case if, instead of generalized lax ends, we take iso-lax ends (all 2-cells are invertibles).
(2) The result of this section is equivalent to a statement in [6 pp. 31-32]. However the proof here is quite different.
(3) In [8], Street establishes the existence of \hat{F}, for a lax functor F. Also, Street's 2 -functor $L_{A}[9$, p. 171] is just 1 , where 1 denotes the constant at 1 presheaf.
2. At the level of 2-categories there are three equivalent notions of limit: (i) lax limits, (ii) lax ends, (iii) indexed limits. In fact, by [9, Theorem 14], the existence of (i) implies that of (iii) and the converse comes from [9, Theorem 11].

On the other hand if a 2-category has lax limits then it has lax ends [7 pp. 52-53] and conversely [2, Remark a].

Now, there is a short path to pass from (iii) to (ii). Precisely, if $T: \mathscr{A}^{\mathrm{op}} \times \mathscr{A} \rightarrow \mathscr{B}$ is a 2 -functor we have

$$
\lim (\mathscr{A}(-,-), T)=\oint_{A} T(A, A)
$$

either side existing if the other does. In fact

$$
\begin{aligned}
\mathscr{B}(B, \lim (\mathscr{A}(-), T)) & =\int_{C, D}[\mathscr{A}(C, D), \mathscr{B}(B, T(C, D))] \\
& \simeq \int_{C, D}\left[\oint^{A} \mathscr{A}(C, A) \times \mathscr{A}(A, D), \mathscr{B}(B, T(C, D))\right] \\
& \simeq \oint_{A} \int_{C, D}[\mathscr{A}(C, A) \times \mathscr{A}(A, D), \mathscr{B}(B, T(C, D))] \\
& \cong \oint_{A} \int_{C^{\prime}}[\mathscr{A}(C, A),[\mathscr{A}(A, D), \mathscr{B}(B, T(C, D))]] \\
& \simeq \oint_{A} \int_{C}\left[\mathscr{A}(C, A), \int_{D}[\mathscr{A}(A, D), \mathscr{B}(B, T(C, D))]\right] \\
& \cong \oint_{A} \int_{C}[\mathscr{A}(C, A), \mathscr{B}(B, T(C, A))] \\
& \simeq \oint_{A} \mathscr{B}(B, T(A, A)) .
\end{aligned}
$$

The last member may be identified with the category of lax wedges of vertex B over T.
3. A lax natural transformation

is said to exhibit R as a right lax extension of G along K when pasting ε at R determines an isomorphism of categories $[\mathscr{C}, \mathscr{B}](S, R) \simeq \operatorname{Fun}(\mathscr{A}, \mathscr{B})(S K, G)$.

We say that (I) is pointwise if it is respected by the 2 -representables

$$
\mathscr{B}(B,-): \mathscr{B} \rightarrow \mathscr{C} \text { at }
$$

for each $B \in \mathscr{B}$.
We have the following limit-formulas for R.
(i) For each $C \in \mathscr{C}$, let d_{C} be the canonical projection from the comma 2-category $[\lceil C, K]$ to \mathscr{A}.

If $l \lim G \cdot d_{C}$ exists, then R exists and we have $R C=l \lim G \cdot d_{C}$ [5], [6]
(ii) Suppose now that for each $C \in \mathscr{C}$ the $\oint_{A}[\mathscr{C}(C, K A), G A]$ exists; then R exists and $\left.R C=\oint_{A}[\mathscr{C}(C, K A), K A), G A\right][2$, Theorem 7].
(iii) As far as the indexed limit version we have the following result.

Proposition. The pointwise right lax extension of G along K exists if and only if, for each $C \in \mathscr{C}$, the indexed limit $\lim (\mathscr{C}(C, K), G)$ exists. In this case

$$
\begin{equation*}
R C=\lim (\check{\mathscr{C}}(C, K), G) \tag{*}
\end{equation*}
$$

Proof. We first prove that R defined by $(*)$ is a right lax extension:

$$
\begin{aligned}
{[\mathscr{C}, \mathscr{B}](S, R) } & =\int_{C} \mathscr{B}(S C, R C) \\
& =\int_{C} \mathscr{B}(S C, \lim (\check{\mathscr{C}}(C, K), G)) \\
& =\int_{C, A}[\check{C}(C, K A), \mathscr{B}(S C, G A)] \\
& =\int_{C, A} \oint_{\bar{A}}[\mathscr{A}(\bar{A}, A) \times \mathscr{C}(C, K \bar{A}), \mathscr{B}(S C, G A)] \\
& =\oint_{\bar{A}} \int_{A}\left[\mathscr{A}(\bar{A}, A), \int_{C}(\mathscr{C}(C, K \bar{A}), \mathscr{B}(S C, G A)]\right] \\
& =\oint_{\bar{A}} \int_{A}[\mathscr{A}(\bar{A}, A), \mathscr{B}(S K \bar{A}, G A)] \\
& =\oint_{\bar{A}} \mathscr{B}(S K \bar{A}, G \bar{A}) \\
& =\mathrm{Fun}(\mathscr{A}, \mathscr{B})(S K, G) .
\end{aligned}
$$

The preservation property is evident.
Conversely, if (I) is pointwise then for each $B \in \mathscr{B}$ and each $Q: \mathscr{C} \rightarrow \mathscr{C}$ at we have

$$
[\mathscr{C}, \mathscr{C} \text { at }](Q, \mathscr{B}(B, R)) \simeq \operatorname{Fun}(\mathscr{A}, \mathscr{C} \text { at })(Q K, \mathscr{B}(B, G)) .
$$

For $Q=\mathscr{C}(C,-)$, the above isomorphism gives

$$
[\mathscr{C}, \mathscr{C} \text { at }](\mathscr{C}(C,-), \mathscr{B}(B, R)) \simeq \operatorname{Fun}(\mathscr{A}, \mathscr{C} \text { at })(\mathscr{C}(C, K), \mathscr{B}(B, G))
$$

or

$$
\mathscr{B}(B, R C) \simeq[\mathscr{A}, \mathscr{C} \text { at }](\check{\mathscr{C}}(C, K), \mathscr{B}(B, G)),
$$

that is $R C=\lim (\check{\mathscr{C}}(C, K), G)$ as desired.
Remarks (1) It is clear that \hat{F} and \check{F} are lax extensions along an identity 2 -functor.
(2) Recall the formula for ordinary (= Cat) right extensions: $R C=\lim (\mathscr{C}(C, K), G)([1$, Theorem 8.3] with Street's notation). So, we see that the symbol \vee gives the measure of laxness for extensions.

References

1. F. Borceux and G. M. Kelly, A notion of limit for enriched categories, Bull. Austral. Math. Soc., vol. 12 (1975), pp. 49-72.
2. S. Bozapalides, Les fins cartésiennes, C.R. Acad. Sci. Paris, Sér. A, t. 281 (1975), pp. 597-600.
3. ———, Théorie formelle des bicatégories, thèse 3^{me} cycle, Esquisses Mathématiques, vol 24 (1976), pp. 1-151.
4. J. Giraud, Cohomologie non abélienne, Springer-Verlag, New York (1971).
5. J. W. Gray, Formal category theory, Lecture Notes in Mathematics, vol. 391, Springer-Verlag (1974).
6. -, Closed categories, lax limits and homotopy limits, J. Pure and Applied Algebra, to appear.
7. -_, The existence and construction of lax limits, Trans. Amer. Math. Soc., to appear.
8. R. Street, Two constructions on lax functors, Cahiers Topologie Géom. Differentielle XIII-3, (1972), pp. 217-264.
9. - Limits indexed by category-valued 2-functors, J. Pure and Applied Algebra, vol. 8 (1976), pp. 141-181.

University of Ioannina
Ioannina, Greece

