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INEQUALITIES FOR POTENTIALS OF
PARTICLE SYSTEMS

BY

J. R. BAXTER

1. Let xl, x, be points in R3. Suppose that a (positive or negative)
charge ei is placed at each xi. The total energy of the system of charges is
V= l_<<_<,eiej ]xa-xj] -. V may be negative. We are interested in
finding lower bounds for V. If the charges approach a smooth distribution f,
then V approaches

(1/2) ff f(x)lx- yl-f(y) >_ o.

As a tool in attacking the general case, it is useful to consider an intermediate
situation in which the negative charges are replaced by a smooth distributionf,
but the positive charges remain discrete, say positive charges z l, zm at
points y, Ym" We may write the energy V in this case as

P(f; z,, Zm; Yl, Ym)"
It is convenient to make a slight generalization and replace both the positive
and negative charges by measures /tx, / and v respectively, while still
omitting the self energies of the/i. Then V can be written as P(v; lal, ...,/am). In
Section 2 we prove a decomposition theorem for P and deduce a simple inequa-
lity for our original discrete energy V. In Section 3 a version of the no binding
theorem [7], [13] is obtained.

2. For any bounded signed measures/ and v on R3, let

provided that the double integral has a well defined finite or infinite value.
Define the potential of/ by Pot/(y) Ix y l-lla(dx). Then of course

(/, v) (Pot/) dv f (Pot v)d/.
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If p has a densityfwe will sometimes write Pot f instead of Pot #. Suppose v,
/1, #m are bounded nonnegative measures with (/i, v) finite for each i. Let

(2.1) P(v;
i=1 <i<j<m

If v has a density f we may write P(v;/tl,

THEOREM 1. Let v and/ti, 1,..., m, be bounded nonnegative measures on
R3. Suppose that Pot v is finite v-almost everywhere. Then there exist nonnega-
tire measures v l, 1, m + 1, such that"

(2.2)

(2.3)

(2.4)

(2.5)

m+l

i=1

Pot vi < Pot/t on a3, i-- 1, m,

vi(R3) i(R3), 1, m,

Pot vi Pot #i, vj-almost everywhere,

forj=i+ 1,...,m+ 1, i= 1,...,m.

In proving Theorem we need only the following known fact from potential
theory" [10], [12], [9], [5]"

THEOREM 2. Let # and v be bounded nonnegative measures on R3. Suppose
that Pot v is finite v-almost everywhere. Then there exists a nonnegative measure
2, such that"

t .6t
(2.7)

(2.8)

<S V, (R3)
Pot 2 __< Pot/ on R3,

Pot 2 Pot I, (v 2)-almost everywhere.

One might say loosely that 2 screens/t, as far as v 2 is concerned.

Proof of Theorem 2. As in [9, Section 2], let tr be the measure, 0 < a < v,
such that (Pot tr) dm is the r6duite of (Pot (v-/t)) dm, where m is Lebesgue
measure on R3. Since the value of a potential at a point is the limit of its mean
values over balls shrinking to the point, the equation (Pot a)dm >
(Pot (v -/)) dm implies Pot _> Pot 2 on R3, if we define 2 v tr. Thus
(2.7) holds. As a consequence of (2.7), or by proposition 4 of[9], 2(R3) _</(R3).
Thus (2.6) holds.

Since Pot tr is finite a-almost everywhere, Lusin’s theorem implies that there
exists a pairwise disjoint sequence of compact sets K, such that R3 Un= K,
is a-null and such that Pot tr is continuous on each K,. Define the measure
by tr,(A) a(A K,). Since potentials are lower semicontinuous, each Pot
is continuous on K,, and hence on R by the theorem of Evans and Vasilesco.
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Let a. be the supremum of Pot a. on R3, b. (2"(1 + a.))-1, ’m= bn(vn.
Then 7 is bounded, a . 7, 7 a, and Pot 7 is continuous and bounded on R3.
Let f Pot 7.
By Proposition 6 of [9] there exists a sequence 9, of superharmonic functions

such that 0 , fand 9,d(v ) f da as n . Let ,be the meas-
ure such that 9, Pot 7,. We have

Thus . d f d as n . Hence g. f in (a). By choosing a sub-
sequence and relabelling, we may assume g,f a-almost everywhere, hence
g, f 7-almost everywhere.

Fix x R3 and e > 0. Sincef(x)= Pot 7(x) < m, there exists 6 > 0 such that
if B is any Borel set with 7(R 3 B) < 6 then Pot 7,(x) 2 f(x) e, where 7n is
the measure defined by 7(A) 7(A B). Choose B compact and N > 0 such
that 7(R B) < 6 and 9, 2f- e everywhere on B for all n 2 N. By the dom-
ination principle g,(x) Pot 7,(x)- f(x)- 2e for n N.
Hence 9,f pointwise everywhere on R3. Therefore 9, d(v-)

fd(v-p), so thatfd(v-p)=fda, orfd2=fdp, or(Potp-
Pot 2) d7 0. Hence Pot p Pot 2 v-almost everywhere, so (2.8) holds and
Theorem 2 is proved.

Other versions of Theorem 2 are given in [10], [12 Theorem 6], [5 Theorem
2.1], [2]. Theorem 2 actually holds for a wide class of potential kernels, includ-
ing of course the classical kernel on Ru, N 3. We restrict ourselves to R3 for
the sake of simplicity.
The work of Rost [12] gives a probabilistic interpretation for the measure 2

of Theorem 2, in terms of the filling scheme stopping time. The filling scheme
was used originally by Chacon and Ornstein in their proof of the ratio ergodic
theorem 1 ].

Proof of Theorem 1. Follows at once by induction from Theorem 2.

Now let vi, 1,..., m + be any system ofnonnegative measures satisfying
(2.2)-(2.5). Suppose ,i, v) is finite for i= 1, m. Clearly, for any l,
l<l<m,

(2.9) P(v; ,,,..., ,,,)= P vi; ,1, ,l +" p ill; ,l+ 1, "m -’F" Q,
i=1 i=

where the remainder term Q is nonnegative. We have

(2.10) Q 2 (("i, "j> (Vi, "j>) "- 1/2(’m+ 1, "Vm+ 1>"
i=1 j=/+l

Iterating (2.9), we have in particular,

(2.11) P(v;
i=1 i=1
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As an application of (2.11), consider negative charges -q 1,..., -q,at points
xl x,, together with positive charges z 1,..., z,, at points Y 1,..., Ym" The
total energy is

(2.12) V-- E qiqj] xi xj1-1 E qizl xi yl
l<_i<j<n i=1 j=l

+
<i<j<m

Suppose zj < z for j 1, m. Let R, inr{] x,- yj]’j ,..., m}.

PROPOSITION 1. V >_ ’= q’Z,/Ri ’= 2qiz/Ri. In particular
qi z, Ri > R. 1,..., n, we have

(2.13) V >_ 3n/R.

/f

Proof For 1, n, let 7i denote the measure of total mass qi uniformly
distributed on the surface of the sphere with centre xi and radius R/2. Let/ be
the measure with mass z concentrated at ys. Clearly Pot 7i(Y) < qil Y xi]-1
for all y in R3, with equality holding when Y- xil > R/2. Hence (7i, 7i) <
qiqjlxi- Xj1-1 and (])i, j) qiZjlXi- Yj]-1. Thus

(2.14) V >
<<_i<j<n i=1 j=l <i<j<m

Let v ’--1 7, Since (7i, 7i) 2qR 1, we can rewrite (2.14) as

(2.15) V >_ q2i/Ri-l- P(v; 1, m)"
i=1

By (2.11), for some vi >_ O, i= 1,..., m, with i% vi < v, we have

(2.16) P(v; ]1, ]m)
i=1

-1 when x is inLet g(x)= sup {Pot/j(x) j 1,..., m}. Clearly g(x) < 2zR
the support of 7i. We have

i=1

f Pt tidvi <- 1 f g dvi < j g dv= g dTi <_ 2qizR-1.
i=1 i=1

This proves Proposition 1.
The constant 3 in (2.13) is not sharp, as a slight change in the proof shows.

On the other hand the best constant cannot be less than 1.5, by a trivial
example. It would be of interest to find the best possible value.
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Proposition may be compared to an inequality of Onsager [11]. In the
notation of Proposition 1, if we let St= inf{Ix yjl’i n}, Onsager’s
inequality reads

(2.17) V > qZi/Ri- Z z/S2.
i=l j=l

A more general inequality is given in [3, Theorem 6].
If we let qi 1 z, R >_ R, S > R for all and j, (2.17) becomes

(2.18) V >_ -(m + n)/R.
The bound in (2.18) depends on m + n rather than n as in (2.13), but the

constant is smaller.
The proof of (2.17) is similar to that of Proposition 1, except that (2.1 1) is not

used. Instead, the positivity of the self-energy plays a similar role. This positi-
vity may be expressed as follows" if/* and v are bounded nonnegative measures
with (/*, v) finite, then

(2.19) (/*- v,/*- v) >_ 0.

We note that (2.11) implies (2.19). Indeed, fix integral m > 0, and let
/*i =/*/m, 1,..., m. Without loss of generality we may assume that (/*,/*)
and (v, v) are finite. Let vi be as in Theorem 1. By (2.11)and (2.3),

(2.20) P(v; /*,, ...,/*,,) >_ (/*i, vi) >_ (/*i, /*i) (/*,/*).
i=1 i=1

But (/*- v,/*- v) 2P(v;/’1, ...,/*,,) + ’=1 (/*i,/*i), so

(/, v, v --/.5 _> (l/m)(/,,/.5.

Letting m o proves (2.19). Thus one may regard (2.11) as an extension of
(2.19).

3. Let 56 be a space of Lebesgue integrable functions f> 0 on R3 with

f < . (We shall not distinguish functions that differ on a null set.) Suppose
56 is closed under addition, and such that iff is in 56, 9 measurable, and
0 < g < f then g is in 56. As a consequence 56 is also closed under multiplica-
tion by nonnegative numbers.

Let " 56 ---, [0, ) be a nonnegative functional with the property that

(f + f2) > (fl) + (f2) for all fl, f2 in 56.

Clearly then (0)= 0 and (9) < (f) whenever f g are in 56 with g __< f
We shall assume also that (of, f} is finite for all f in 56.
Let/.1 /*m be nonnegative bounded measures with compact support such

that (/*i,/*) is finite for 4= j. For any number a >_ 0, let

(3.1) F(a;/.1, .--,/*,,) inf {I)(f)+ P(f;/*1 /*m)’f 56, f=a.
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We will write F(a)= F(a; IXl, IX")" Clearly - F < o. We note"

(3.2) F is nondecreasing on [z, ), where z Z IXi(R3)
i=1

To see this, fix a > z, and b > a. Letfbe in 5a with f b.fis the density of
a measure v. Let vi, 1, m + be the measures of Theorem 1. By (2.4) we
can find some c, 0 < c < 1, such that 7’=, vi(R3) + cv,,+ ,(R 3) a. Let 9 be the
density of ,i= vi + cv,.+ 1. Then 9 < f so 9 e . We have j 9 a. Consider
(2.9) and (2.10) with v,,+, replaced by cv,,+, and v replaced by
.=, vi + cv"+,. We see at once that

P(f; IX1, IX") P(O; IX1, IX") + (1 c2)1/2<v"+ 1, Vm+ 1>,

and hence that O(f) + P(f; IX,,..., Ixm) >-- O(g) + P(9; IX,,..., IX,.). Hence

O(f) + P(f; IX,,..., IX,.)>_ F(a),
and thus F(b) >_ F(a). This proves (3.2).

In the Thomas-Fermi case (see (3.4) below), (3.2)is proved in [7].
Now fixl, <l<m. For any a _> 0,1et

F,(a) F(a; IX,,..., IX,), F2(a)= F(a; IX,+I Ixm).
Let z, ff’l= IXi(R3), z2 ,=t+ IXi(R3)

PROPOSITION 2. For any a > O,

(3.3) F(a) >_ inf{Fl(xl) + F2(x2)’0_< x, < zl,0 _< x2 _< z2, Xl + x2 < a}.
Proof Let f be in with f=a. Letvi, i= 1,...,m+ 1, be the measures

of Theorem 1. Let f, be the density of l=, vi, f2 the density of 7’=/+ vi. Let
fl Xl, f2 x2. By (2.4), x, < Zl, and x2 < z2. By (2.2), x, + x2 < a. By

(2.9),

Thus

SO

P(f; IX,,..., IX,.) > P(f, IX,, IX,)+ P(f2; IX+ ,,..., IX,.).

*(f) + P(f; IX,,..., IX,.) > *(f,) + P(f,;/tl, IXt)

+ O(f2)+ P(f2; IX,+ ,,..., IX,.),

*(f) + P(f; IX,, IX,.) > F,(x,) + F2(x2).

Then (3.3) follows at once, so Proposition 2 is proved.
If we take

(3.4) q {f: f measurable, f > O, f fs/3 andf ffinite}, O(f) c f f5/3,
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then all the assumptions of this section are satisfied. H61der’s inequality gives

(3.5) Pot f __< (constant) ]1/2 1/6

on R3.

By completing a square, (3.5) implies

(3.6) F(a) > Z (]2i /gj) (constant)z2a 1/3,
<i<j<_m

for all a in [0, ).
Considering f ZR, where B is a large ball, gives

(3.7) F(a) <_ Z (/ai, /ai).
<i<j<m

(3.6) and (3.7) show F is continuous at 0. Since and P are convex in f, F is
convex on [0, o), and hence F is continuous on (0, o). Thus F is continuous
on [0, ). Since F is convex and bounded above, F is nonincreasing on [0, oz).
Thus, by (3.2), F is constant on [z, o).

Since F1 and F2 in (3.3)are now continuous, one can rewrite (3.3)as

(3.8) F(a) > Fl(al)+ Fz(a2),
where a, and a 2 are chosen to minimize F(x1)+ F(x2) 0 x 21,
0 < x2 < z2,0 < xl + x2 <a. (Ifa z thenax zl, a2 z2by monotonicity.)

If we assume (3.4), and in addition assume that the measures /i are point
measures, we are dealing with the Thomas-Fermi atomic model. The /i are
nuclei, f is the electronic charge density, P(f;/, ...,/,,) is the classical elec-
trostatic energy, and q)(f) is an approximation to the kinetic energy of the
electrons. Then F(a) is an approximation to the lowest energy level under the
constraint that the total electronic charge is a. See [6], [7], [8], [13]. Proposition
2 is a version of the no binding theorem [7], [13] for the Thomas-Fermi model.
Many other properties of this model, in addition to those mentioned here, are
given in [7].
One reason for interest in the no binding theorem is that it was used by Lieb

and Thirring, together with their estimate for the average kinetic energy of a
system of fermions, to give an elegant proof of the stability of matter [8]. A
discussion of the relations between the stability theorem of Lieb and Thirring
and the original stability theorem of Dyson and Lenard [3], [4] is given in [8].
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