INEQUALITIES FOR POTENTIALS OF PARTICLE SYSTEMS ${ }^{1}$

BY

J. R. Baxter

1. Let x_{1}, \ldots, x_{n} be points in \mathbf{R}^{3}. Suppose that a (positive or negative) charge e_{i} is placed at each x_{i}. The total energy of the system of charges is $V=\sum_{1 \leq i<j \leq n} e_{i} e_{j}\left|x_{1}-x_{j}\right|^{-1}$. V may be negative. We are interested in finding lower bounds for V. If the charges approach a smooth distribution f, then V approaches

$$
(1 / 2) \iint f(x)|x-y|^{-1} f(y) \geq 0
$$

As a tool in attacking the general case, it is useful to consider an intermediate situation in which the negative charges are replaced by a smooth distribution f, but the positive charges remain discrete, say positive charges z_{1}, \ldots, z_{m} at points y_{1}, \ldots, y_{m}. We may write the energy V in this case as

$$
P\left(f ; z_{1}, \ldots, z_{m} ; y_{1}, \ldots, y_{m}\right)
$$

It is convenient to make a slight generalization and replace both the positive and negative charges by measures μ_{1}, \ldots, μ_{m} and v respectively, while still omitting the self energies of the μ_{i}. Then V can be written as $P\left(v ; \mu_{1}, \ldots, \mu_{m}\right)$. In Section 2 we prove a decomposition theorem for P and deduce a simple inequality for our original discrete energy V. In Section 3 a version of the no binding theorem [7], [13] is obtained.
2. For any bounded signed measures μ and v on \mathbf{R}^{3}, let

$$
\langle\mu, v\rangle=\int|x-y|^{-1} \mu(d x) v(d y)
$$

provided that the double integral has a well defined finite or infinite value. Define the potential of μ by Pot $\mu(y)=\int|x-y|^{-1} \mu(d x)$. Then of course

$$
\langle\mu, v\rangle=\int(\operatorname{Pot} \mu) d v=\int(\operatorname{Pot} v) d \mu .
$$

[^0]If μ has a density f we will sometimes write Pot f instead of Pot μ. Suppose v, μ_{1}, \ldots, μ_{m} are bounded nonnegative measures with $\left\langle\mu_{i}, v\right\rangle$ finite for each i. Let

$$
\begin{equation*}
P\left(v ; \mu_{1}, \ldots, \mu_{m}\right)=\left(\frac{1}{2}\right)\langle v, v\rangle-\sum_{i=1}^{m}\left\langle\mu_{i}, v\right\rangle+\sum_{1 \leq i<j \leq m}\left\langle\mu_{i}, \mu_{j}\right\rangle . \tag{2.1}
\end{equation*}
$$

If v has a density f we may write $P\left(v ; \mu_{1}, \ldots, \mu_{m}\right)$ as $P\left(f ; \mu_{1}, \ldots, \mu_{m}\right)$.
Theorem 1. Let v and $\mu_{i}, i=1, \ldots, m$, be bounded nonnegative measures on \mathbf{R}^{3}. Suppose that $\operatorname{Pot} v$ is finite v-almost everywhere. Then there exist nonnegative measures $v_{1}, i=1, \ldots, m+1$, such that:

$$
\begin{gather*}
\sum_{i=1}^{m+1} v_{i}=v \tag{2.2}\\
\text { Pot } v_{i} \leq \operatorname{Pot} \mu_{i} \text { on } \mathbf{R}^{3}, \quad i=1, \ldots, m \tag{2.3}\\
v_{i}\left(\mathbf{R}^{3}\right) \leq \mu_{i}\left(\mathbf{R}^{3}\right), \quad i=1, \ldots, m \tag{2.4}\\
\text { Pot } v_{i}=\operatorname{Pot} \mu_{i}, \quad v_{j} \text {-almost everywhere, } \tag{2.5}\\
\text { for } j=i+1, \ldots, m+1, \quad i=1, \ldots, m
\end{gather*}
$$

In proving Theorem 1 we need only the following known fact from potential theory: [10], [12], [9], [5]:

Theorem 2. Let μ and v be bounded nonnegative measures on \mathbf{R}^{3}. Suppose that Pot v is finite v-almost everywhere. Then there exists a nonnegative measure λ, such that:

$$
\begin{gather*}
\lambda \leq v, \quad \lambda\left(\mathbf{R}^{3}\right) \leq \mu\left(\mathbf{R}^{3}\right) \tag{2.6}\\
\operatorname{Pot} \lambda \leq \operatorname{Pot} \mu \text { on } \mathbf{R}^{3}, \tag{2.7}\\
\operatorname{Pot} \lambda=\operatorname{Pot} \mu, \quad(v-\lambda) \text {-almost everywhere. } \tag{2.8}
\end{gather*}
$$

One might say loosely that λ screens μ, as far as $v-\lambda$ is concerned.
Proof of Theorem 2. As in [9, Section 2], let σ be the measure, $0 \leq \sigma \leq v$, such that $(\operatorname{Pot} \sigma) d m$ is the reduite of $(\operatorname{Pot}(v-\mu)) d m$, where m is Lebesgue measure on \mathbf{R}^{3}. Since the value of a potential at a point is the limit of its mean values over balls shrinking to the point, the equation ($\operatorname{Pot} \sigma$) $d m \geq$ $(\operatorname{Pot}(v-\mu)) d m$ implies Pot $\mu \geq \operatorname{Pot} \lambda$ on \mathbf{R}^{3}, if we define $\lambda=v-\sigma$. Thus (2.7) holds. As a consequence of (2.7), or by proposition 4 of [9], $\lambda\left(\mathbf{R}^{3}\right) \leq \mu\left(\mathbf{R}^{3}\right)$. Thus (2.6) holds.

Since Pot σ is finite σ-almost everywhere, Lusin's theorem implies that there exists a pairwise disjoint sequence of compact sets K_{n} such that $\mathbf{R}^{3}-\bigcup_{n=1}^{\infty} K_{n}$ is σ-null and such that Pot σ is continuous on each K_{n}. Define the measure σ_{n} by $\sigma_{n}(A)=\sigma\left(A \cap K_{n}\right)$. Since potentials are lower semicontinuous, each Pot σ_{n} is continuous on K_{n}, and hence on \mathbf{R}^{3} by the theorem of Evans and Vasilesco.

Let a_{n} be the supremum of Pot σ_{n} on $\mathbf{R}^{3}, b_{n}=\left(2^{n}\left(1+a_{n}\right)\right)^{-1}, \gamma=\sum_{n=1}^{\infty} b_{n} \sigma_{n}$. Then γ is bounded, $\sigma \ll \gamma, \gamma \ll \sigma$, and Pot γ is continuous and bounded on \mathbf{R}^{3}. Let $f=\operatorname{Pot} \gamma$.

By Proposition 6 of [9] there exists a sequence g_{n} of superharmonic functions such that $0 \leq g_{n} \leq f$ and $\int g_{n} d(v-\mu) \rightarrow \int f d \sigma$ as $n \rightarrow \infty$. Let γ_{n} be the measure such that $g_{n}=\operatorname{Pot} \gamma_{n}$. We have

$$
\int g_{n} d(v-\mu)=\int \operatorname{Pot}(v-\mu) d \gamma_{n} \leq \int \operatorname{Pot} \sigma d \gamma_{n}=\int g_{n} d \sigma \leq \int f d \sigma .
$$

Thus $\int g_{n} d \sigma \rightarrow \int f d \sigma$ as $n \rightarrow \infty$. Hence $g_{n} \rightarrow f$ in $\mathscr{L}^{1}(\sigma)$. By choosing a subsequence and relabelling, we may assume $g_{n} \rightarrow f \sigma$-almost everywhere, hence $g_{n} \rightarrow f \gamma$-almost everywhere.

Fix $x \in \mathbf{R}^{3}$ and $\varepsilon>0$. Since $f(x)=$ Pot $\gamma(x)<\infty$, there exists $\delta>0$ such that if B is any Borel set with $\gamma\left(\mathbf{R}^{3}-B\right)<\delta$ then $\operatorname{Pot} \gamma_{B}(x) \geq f(x)-\varepsilon$, where γ_{B} is the measure defined by $\gamma_{B}(A)=\gamma(A \cap B)$. Choose B compact and $N>0$ such that $\gamma\left(\mathbf{R}^{3}-B\right)<\delta$ and $g_{n} \geq f-\varepsilon$ everywhere on B for all $n \geq N$. By the domination principle $g_{n}(x) \geq \operatorname{Pot} \gamma_{B}(x)-\varepsilon \geq f(x)-2 \varepsilon$ for $n \geq N$.

Hence $g_{n} \rightarrow f$ pointwise everywhere on \mathbf{R}^{3}. Therefore $\int g_{n} d(v-\mu) \rightarrow$ $\int f d(v-\mu)$, so that $\int f d(v-\mu)=\int f d \sigma$, or $\int f d \lambda=\int f d \mu$, or $\int(\operatorname{Pot} \mu-$ $\operatorname{Pot} \lambda) d \gamma=0$. Hence $\operatorname{Pot} \mu=\operatorname{Pot} \lambda \gamma$-almost everywhere, so (2.8) holds and Theorem 2 is proved.

Other versions of Theorem 2 are given in [10], [12 Theorem 6], [5 Theorem 2.1], [2]. Theorem 2 actually holds for a wide class of potential kernels, including of course the classical kernel on $\mathbf{R}^{N}, N \geq 3$. We restrict ourselves to \mathbf{R}^{3} for the sake of simplicity.

The work of Rost [12] gives a probabilistic interpretation for the measure λ of Theorem 2, in terms of the filling scheme stopping time. The filling scheme was used originally by Chacon and Ornstein in their proof of the ratio ergodic theorem [1].

Proof of Theorem 1. Follows at once by induction from Theorem 2.

Now let $v_{i}, i=1, \ldots, m+1$ be any system of nonnegative measures satisfying (2.2)-(2.5). Suppose $\left\langle\mu_{i}, v\right\rangle$ is finite for $i=1, \ldots, m$. Clearly, for any l, $1<l \leq m$,

$$
\begin{equation*}
P\left(v ; \mu_{1}, \ldots, \mu_{m}\right)=P\left(\sum_{i=1}^{l} v_{i} ; \mu_{1}, \ldots, \mu_{l}\right)+P\left(\sum_{i=l+1}^{m} v_{i} ; \mu_{l+1}, \ldots, \mu_{m}\right)+Q \tag{2.9}
\end{equation*}
$$

where the remainder term Q is nonnegative. We have

$$
\begin{equation*}
Q=\sum_{i=1}^{l} \sum_{j=l+1}^{m}\left(\left\langle\mu_{i}, \mu_{j}\right\rangle-\left\langle v_{i}, \mu_{j}\right\rangle\right)+\frac{1}{2}\left\langle v_{m+1}, v_{m+1}\right\rangle . \tag{2.10}
\end{equation*}
$$

Iterating (2.9), we have in particular,

$$
\begin{equation*}
P\left(v ; \mu_{1}, \ldots, \mu_{m}\right) \geq \sum_{i=1}^{m} P\left(v_{i} ; \mu_{i}\right) \geq-\sum_{i=1}^{m}\left\langle\mu_{i}, v_{i}\right\rangle . \tag{2.11}
\end{equation*}
$$

As an application of (2.11), consider negative charges $-q_{1}, \ldots,-q_{n}$ at points x_{1}, \ldots, x_{n}, together with positive charges z_{1}, \ldots, z_{m} at points y_{1}, \ldots, y_{m}. The total energy is

$$
\begin{align*}
V= & \sum_{1 \leq i<j \leq n} q_{i} q_{j}\left|x_{i}-x_{j}\right|^{-1}-\sum_{i=1}^{n} \sum_{j=1}^{m} q_{i} z_{j}\left|x_{i}-y_{j}\right|^{-1} \tag{2.12}\\
& +\sum_{1 \leq i<j \leq m} z_{i} z_{j}\left|y_{i}-y_{j}\right|^{-1} .
\end{align*}
$$

Suppose $z_{j} \leq z$ for $j=1, \ldots, m$. Let $R_{i}=\inf \left\{\left|x_{i}-y_{j}\right|: j=1, \ldots, m\right\}$.
Proposition 1. $V \geq-\sum_{i=1}^{n} q_{i}^{2} / R_{i}-\sum_{i=1}^{n} 2 q_{i} z / R_{i}$. In particular if $q_{i}=1=z, R_{i} \geq R . i=1, \ldots, n$, we have

$$
\begin{equation*}
V \geq-3 n / R \tag{2.13}
\end{equation*}
$$

Proof. For $i=1, \ldots, n$, let γ_{i} denote the measure of total mass q_{i} uniformly distributed on the surface of the sphere with centre x_{i} and radius $R_{i} / 2$. Let μ_{i} be the measure with mass z_{j} concentrated at y_{j}. Clearly Pot $\gamma_{i}(y) \leq q_{i}\left|y-x_{i}\right|^{-1}$ for all y in \mathbf{R}^{3}, with equality holding when $\left|y-x_{i}\right| \geq R_{i} / 2$. Hence $\left\langle\gamma_{i}, \gamma_{i}\right\rangle \leq$ $q_{i} q_{j}\left|x_{i}-x_{j}\right|^{-1}$ and $\left\langle\gamma_{i}, \mu_{j}\right\rangle=q_{i} z_{j}\left|x_{i}-y_{j}\right|^{-1}$. Thus

$$
\begin{equation*}
V \geq \sum_{1 \leq i<j \leq n}\left\langle\gamma_{i}, \gamma_{j}\right\rangle-\sum_{i=1}^{n} \sum_{j=1}^{m}\left\langle\gamma_{i}, \mu_{j}\right\rangle+\sum_{1 \leq i<j \leq m}\left\langle\mu_{i}, \mu_{j}\right\rangle . \tag{2.14}
\end{equation*}
$$

Let $v=\sum_{i=1}^{n} \gamma_{i}$, Since $\left\langle\gamma_{i}, \gamma_{i}\right\rangle=2 q_{i}^{2} R_{i}^{-1}$, we can rewrite (2.14) as

$$
\begin{equation*}
V \geq-\sum_{i=1}^{n} q_{i}^{2} / R_{i}+P\left(v ; \mu_{1}, \ldots, \mu_{m}\right) \tag{2.15}
\end{equation*}
$$

By (2.11), for some $v_{i} \geq 0, i=1, \ldots, m$, with $\sum_{i=1}^{m} v_{i} \leq v$, we have

$$
\begin{equation*}
P\left(v ; \mu_{1}, \ldots, \mu_{m}\right) \geq-\sum_{i=1}^{m}\left\langle\mu_{i}, v_{i}\right\rangle . \tag{2.16}
\end{equation*}
$$

Let $g(x)=\sup \left\{\operatorname{Pot} \mu_{j}(x): j=1, \ldots, m\right\}$. Clearly $g(x) \leq 2 z R_{i}^{-1}$ when x is in the support of γ_{i}. We have

$$
\begin{aligned}
& \sum_{i=1}^{m}\left\langle\mu_{i}, v_{i}\right\rangle \\
& \quad=\sum_{i=1}^{m} \int \operatorname{Pot} \mu_{i} d v_{i} \leq \sum_{i=1}^{m} \int g d v_{i} \leq \int g d v=\sum_{i=1}^{n} \int g d \gamma_{i} \leq \sum_{i=1}^{n} 2 q_{i} z R_{i}^{-1} .
\end{aligned}
$$

This proves Proposition 1.
The constant 3 in (2.13) is not sharp, as a slight change in the proof shows. On the other hand the best constant cannot be less than 1.5, by a trivial example. It would be of interest to find the best possible value.

Proposition 1 may be compared to an inequality of Onsager [11]. In the notation of Proposition 1, if we let $S_{j}=\inf \left\{\left|x_{i}-y_{j}\right|: i=1, \ldots, n\right\}$, Onsager's inequality reads

$$
\begin{equation*}
V \geq-\sum_{i=1}^{n} q_{i}^{2} / R_{i}-\sum_{j=1}^{m} z_{j}^{2} / S_{j} \tag{2.17}
\end{equation*}
$$

A more general inequality is given in [3, Theorem 6].
If we let $q_{i}=1=z_{j}, R_{i} \geq R, S_{j} \geq R$ for all i and j, (2.17) becomes

$$
\begin{equation*}
V \geq-(m+n) / R \tag{2.18}
\end{equation*}
$$

The bound in (2.18) depends on $m+n$ rather than n as in (2.13), but the constant is smaller.

The proof of (2.17) is similar to that of Proposition 1, except that (2.11) is not used. Instead, the positivity of the self-energy plays a similar role. This positivity may be expressed as follows: if μ and v are bounded nonnegative measures with $\langle\mu, v\rangle$ finite, then

$$
\begin{equation*}
\langle\mu-v, \mu-v\rangle \geq 0 \tag{2.19}
\end{equation*}
$$

We note that (2.11) implies (2.19). Indeed, fix integral $m>0$, and let $\mu_{i}=\mu / m, i=1, \ldots, m$. Without loss of generality we may assume that $\langle\mu, \mu\rangle$ and $\langle v, v\rangle$ are finite. Let v_{i} be as in Theorem 1. By (2.11) and (2.3),

$$
\begin{equation*}
P\left(v ; \mu_{1}, \ldots, \mu_{m}\right) \geq-\sum_{i=1}^{m}\left\langle\mu_{i}, v_{i}\right\rangle \geq-\sum_{i=1}^{m}\left\langle\mu_{i}, \mu_{i}\right\rangle=-\left(\frac{1}{m}\right)\langle\mu, \mu\rangle \tag{2.20}
\end{equation*}
$$

But $\langle\mu-v, \mu-v\rangle=2 P\left(v ; \mu_{1}, \ldots, \mu_{m}\right)+\sum_{i=1}^{m}\left\langle\mu_{i}, \mu_{i}\right\rangle$, so

$$
\langle\mu-v, v-\mu\rangle \geq-(1 / m)\langle\mu, \mu\rangle
$$

Letting $m \rightarrow \infty$ proves (2.19). Thus one may regard (2.11) as an extension of (2.19).
3. Let \mathscr{L} be a space of Lebesgue integrable functions $f \geq 0$ on \mathbf{R}^{3} with $\int f<\infty$. (We shall not distinguish functions that differ on a null set.) Suppose \mathscr{L} is closed under addition, and such that if f is in \mathscr{L}, g measurable, and $0 \leq g \leq f$ then g is in \mathscr{L}. As a consequence \mathscr{L} is also closed under multiplication by nonnegative numbers.

Let $\Phi: \mathscr{L} \rightarrow[0, \infty)$ be a nonnegative functional with the property that

$$
\Phi\left(f_{1}+f_{2}\right) \geq \Phi\left(f_{1}\right)+\Phi\left(f_{2}\right) \quad \text { for all } f_{1}, f_{2} \text { in } \mathscr{L}
$$

Clearly then $\Phi(0)=0$ and $\Phi(g) \leq \Phi(f)$ whenever f, g are in \mathscr{L} with $g \leq f$.
We shall assume also that $\langle f, f\rangle$ is finite for all f in \mathscr{L}.
Let μ_{1}, \ldots, μ_{m} be nonnegative bounded measures with compact support such that $\left\langle\mu_{i}, \mu_{j}\right\rangle$ is finite for $i \neq j$. For any number $a \geq 0$, let

$$
\begin{equation*}
F\left(a ; \mu_{1}, \ldots, \mu_{m}\right)=\inf \left\{\Phi(f)+P\left(f ; \mu_{1}, \ldots, \mu_{m}\right): f \in \mathscr{L}, \int f=a\right\} \tag{3.1}
\end{equation*}
$$

We will write $F(a)=F\left(a ; \mu_{1}, \ldots, \mu_{m}\right)$. Clearly $-\infty \leq F<\infty$. We note:

$$
\begin{equation*}
F \text { is nondecreasing on }[z, \infty) \text {, where } z=\sum_{i=1}^{m} \mu_{i}\left(\mathbf{R}^{3}\right) . \tag{3.2}
\end{equation*}
$$

To see this, fix $a \geq z$, and $b \geq a$. Let f be in \mathscr{L} with $\int f=b$. f is the density of a measure v. Let $v_{i}, i=1, \ldots, m+1$ be the measures of Theorem 1. By (2.4) we can find some $c, 0 \leq c \leq 1$, such that $\sum_{i=1}^{m} v_{i}\left(\mathbf{R}^{3}\right)+c v_{m+1}\left(\mathbf{R}^{3}\right)=a$. Let g be the density of $\sum_{i=1}^{m} v_{i}+c v_{m+1}$. Then $g \leq f$ so $g \in \mathscr{L}$. We have $\int g=a$. Consider (2.9) and (2.10) with v_{m+1} replaced by $c v_{m+1}$ and v replaced by $\sum_{i=1}^{m} v_{i}+c v_{m+1}$. We see at once that

$$
P\left(f ; \mu_{1}, \ldots, \mu_{m}\right)=P\left(g ; \mu_{1}, \ldots, \mu_{m}\right)+\left(1-c^{2}\right)^{\frac{1}{2}}\left\langle v_{m+1}, v_{m+1}\right\rangle
$$

and hence that $\Phi(f)+P\left(f ; \mu_{1}, \ldots, \mu_{m}\right) \geq \Phi(g)+P\left(g ; \mu_{1}, \ldots, \mu_{m}\right)$. Hence

$$
\Phi(f)+P\left(f ; \mu_{1}, \ldots, \mu_{m}\right) \geq F(a)
$$

and thus $F(b) \geq F(a)$. This proves (3.2).
In the Thomas-Fermi case (see (3.4) below), (3.2) is proved in [7].
Now fix $l, 1 \leq l \leq m$. For any $a \geq 0$, let

$$
F_{1}(a)=F\left(a ; \mu_{1}, \ldots, \mu_{l}\right), \quad F_{2}(a)=F\left(a ; \mu_{l+1}, \ldots, \mu_{m}\right)
$$

Let $z_{1}=\sum_{i=1}^{l} \mu_{i}\left(\mathbf{R}^{3}\right), z_{2}=\sum_{i=l+1}^{m} \mu_{i}\left(\mathbf{R}^{3}\right)$.
Proposition 2. For any $a \geq 0$,

$$
\begin{equation*}
F(a) \geq \inf \left\{F_{1}\left(x_{1}\right)+F_{2}\left(x_{2}\right): 0 \leq x_{1} \leq z_{1}, 0 \leq x_{2} \leq z_{2}, x_{1}+x_{2} \leq \dot{a}\right\} \tag{3.3}
\end{equation*}
$$

Proof. Let f be in \mathscr{L} with $\int f=a$. Let $v_{i}, i=1, \ldots, m+1$, be the measures of Theorem 1. Let f_{1} be the density of $\sum_{i=1}^{l} v_{i}, f_{2}$ the density of $\sum_{i=l+1}^{m} v_{i}$. Let $\int f_{1}=x_{1}, \int f_{2}=x_{2}$. By (2.4), $x_{1} \leq z_{1}$, and $x_{2} \leq z_{2}$. By (2.2), $x_{1}+x_{2} \leq a$. By (2.9),

$$
P\left(f ; \mu_{1}, \ldots, \mu_{m}\right) \geq P\left(f_{1} ; \mu_{1}, \ldots, \mu_{l}\right)+P\left(f_{2} ; \mu_{l+1}, \ldots, \mu_{m}\right)
$$

Thus

$$
\begin{aligned}
\Phi(f)+P\left(f ; \mu_{1}, \ldots, \mu_{m}\right) \geq & \Phi\left(f_{1}\right)+P\left(f_{1} ; \mu_{1}, \ldots, \mu_{l}\right) \\
& +\Phi\left(f_{2}\right)+P\left(f_{2} ; \mu_{l+1}, \ldots, \mu_{m}\right)
\end{aligned}
$$

so

$$
\Phi(f)+P\left(f ; \mu_{1}, \ldots, \mu_{m}\right) \geq F_{1}\left(x_{1}\right)+F_{2}\left(x_{2}\right)
$$

Then (3.3) follows at once, so Proposition 2 is proved.
If we take

$$
\begin{equation*}
\mathscr{L}=\left\{f: f \text { measurable, } f \geq 0, \int f^{5 / 3} \text { and } \int f \text { finite }\right\}, \quad \Phi(f)=c \int f^{5 / 3} \tag{3.4}
\end{equation*}
$$

then all the assumptions of this section are satisfied. Hölder's inequality gives

$$
\begin{equation*}
\text { Pot } f \leq(\text { constant })\left[\int f^{5 / 3}\right]^{1 / 2}\left[\int f\right]^{1 / 6} \text { on } \mathbf{R}^{3} \tag{3.5}
\end{equation*}
$$

By completing a square, (3.5) implies

$$
\begin{equation*}
F(a) \geq \sum_{1 \leq i<j \leq m}\left\langle\mu_{i}, \mu_{j}\right\rangle-(\text { constant }) z^{2} a^{1 / 3} \tag{3.6}
\end{equation*}
$$

for all a in $[0, \infty)$.
Considering $f=\alpha \chi_{B}$, where B is a large ball, gives

$$
\begin{equation*}
F(a) \leq \sum_{1 \leq i<j \leq m}\left\langle\mu_{i}, \mu_{j}\right\rangle . \tag{3.7}
\end{equation*}
$$

(3.6) and (3.7) show F is continuous at 0 . Since Φ and P are convex in f, F is convex on $[0, \infty)$, and hence F is continuous on $(0, \infty)$. Thus F is continuous on $[0, \infty)$. Since F is convex and bounded above, F is nonincreasing on $[0, \infty)$. Thus, by (3.2), F is constant on $[z, \infty)$.

Since F_{1} and F_{2} in (3.3) are now continuous, one can rewrite (3.3) as

$$
\begin{equation*}
F(a) \geq F_{1}\left(a_{1}\right)+F_{2}\left(a_{2}\right) \tag{3.8}
\end{equation*}
$$

where a_{1} and a_{2} are chosen to minimize $F\left(x_{1}\right)+F\left(x_{2}\right), 0 \leq x_{1} \leq z_{1}$, $0 \leq x_{2} \leq z_{2}, 0 \leq x_{1}+x_{2} \leq a$. (If $a=z$ then $a_{1}=z_{1}, a_{2}=z_{2}$ by monotonicity.)

If we assume (3.4), and in addition assume that the measures μ_{i} are point measures, we are dealing with the Thomas-Fermi atomic model. The μ_{i} are nuclei, f is the electronic charge density, $P\left(f ; \mu_{1}, \ldots, \mu_{m}\right)$ is the classical electrostatic energy, and $\Phi(f)$ is an approximation to the kinetic energy of the electrons. Then $F(a)$ is an approximation to the lowest energy level under the constraint that the total electronic charge is a. See [6], [7], [8], [13]. Proposition 2 is a version of the no binding theorem [7], [13] for the Thomas-Fermi model. Many other properties of this model, in addition to those mentioned here, are given in [7].

One reason for interest in the no binding theorem is that it was used by Lieb and Thirring, together with their estimate for the average kinetic energy of a system of fermions, to give an elegant proof of the stability of matter [8]. A discussion of the relations between the stability theorem of Lieb and Thirring and the original stability theorem of Dyson and Lenard [3], [4] is given in [8].

References

1. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math., vol. 4 (1960), pp. 153-160.
2. A. Cornea and G. Licea, Order and potential, resolvent families of kernels, Lecture Notes in Mathematics no. 494, Springer-Verlag, Berlin 1975.
3. F. J. Dyson and A. Lenard, Stability of matter I, J. Math. Phys., vol. 8 (1967), pp. 423-434.
4. A. Lenard and F. J. Dyson, Stability of matter II, J. Math. Phys., vol. 9 (1968), pp. 698-711.
5. H. Lewy and G. Stampacchia, On the smoothness of superharmonics which solve a minimum problem, J. Analyse Math., vol. 23 (1970), pp. 227-236.
6. E. H. Lieb, The stability of matter, Rev. Modern Phys. vol. 48 (1976), pp. 553-569.
7. E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules, and solids, Advances in Math., vol. 23 (1977), pp. 22-116.
8. E. H. Lieb and W. E. Thirring, A bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., vol. 35 (1975), pp. 687-689.
9. P. A. Meyer, Le schéma de remplissage en temps continu, Séminaire de Probabilitiés V, Lecture Notes in Mathematics no. 258, Springer-Verlag, Berlin 1972, pp. 130-150.
10. G. Моковоdzki, Densité relative de deux potentiels comparables, Séminaire de Probabilitiés IV, Lecture Notes in Mathematics no. 124, Springer-Verlag, Berlin 1970, pp. 170-194.
11. L. Onsager, Electrostatic interaction of molecules, J. Phys. Chem., vol. 43 (1939), pp. 189-196.
12. H. Rost, The stopping distributions of a Markov process, Invent. Math., vol. 14 (1971), pp. 1-16.
13. E. Teller, On the stability of molecules in the Thomas-Fermi theory, Rev. Mod. Phys., vol. 34 (1962), pp. 627-631.

University of Minnesota
Minneapolis, Minnesota

[^0]: Received November 20, 1978.
 ${ }^{1}$ Research supported in part by a National Science Foundation grant.

