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ON THE ISOMORPHISM PROBLEM FOR
INCIDENCE RINGS

BY

EDWARD R. VOSS

Incidence rings were first defined by G. C. Rota in [10]. Given a locally finite
partially ordered set X (see Section 1) and a ring A, the incidence ring I(X, A)
is, loosely speaking, the ring ofX by X matrices that have arbitrary elements of
A in the (x, y) position if x _< y, and 0 in the (x, y) position otherwise. If X is
finite, then I(X, A) is just a tic-tac-toe ring in the sense orB. Mitchell [5, p. 229].
R. P. Stanley proved in [3] (also a sketch of proof appeared in [11]) that if A is a
field and X and Y are locally finite partially ordered sets such that I(X, A)
I(Y, A), then X is order isomorphic to Y. P. Ribenboim [9] has recently gener-
alized Stanley’s result to commutative noetherian rings in a graph theoretic
setting. W. Belding [2] and N. A. Nachev [7] extended the definition of in-
cidence rings for locally finite pre-ordered sets and proved that if A is simple
artinian, then I(X, A) I(Y, A) implies that X is order isomorphic to Y as
pre-ordered sets. Such theorems are partial answers to what Belding [2] called
the isomorphism problem for incidence rings. In this paper, the methods of
non-commutative ring theory allow us to modify Stanley’s proof to obtain the
more general results:

(1) If X and Y are locally finite partially ordered sets and A is a rin9 that is
indecomposable modulo the radical, then I(X, A) - I(Y, A) implies that X and Y
are order isomorphic.

(2) IfX and Y are locally finite pre-ordered sets and A is a rin9 that is simple
artinian modulo the radical, then I(X, A) - I(Y, A) implies that X and Y are
order isomorphic.

Moreover we are able to generalize the Stanley-Belding-Nachev results in
quite another direction by extending J. Hashimoto’s results [4] on partially
ordered sets in order to prove"

(3) If X and Y are locally finite pre-ordered sets and A is an indecomposable
semiperfect (e.g., indecomposable artinian) ring, then I(X, A) I(Y, A)implies
that X and Y are order isomorphic.
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1. Preliminaries

A set X is said to be partially ordered provided X has a relation _< that is
reflexive, transitive, and antisymmetric (that is, x _< y and y _< x x y). If <_
is only reflexive and transitive, then X is said to be pre-ordered. In either case, X
is locally finite provided each interval {z X Ix <_ z <_ y} has a finite number of
elements. If X is a pre-ordered set, the relation --, given by x y if and only if
x _< y and y < x, is an equivalence relation on X. The equivalence classes
[x] e X/ form a partially ordered set with [x] .<_ [y] if and only if x _< y.
We shall denote elements of X by Greek letters , fl, 7, etc.

Let X be a locally finite pre-ordered set and let A be a ring (with identity).
The incidence tin9 I(X, A) of X over A consists of all functions f: X X A
such that f(x, y) is zero whenever x ; y. Iff, 9 I(S, A) then f + 9 and f9 are
defined by

(f + g)(x, y)=f(x, y)+ 9(x, y), (fg)(x, y)= E f(x, z)9(z, y).
x<_z<y

We will say that a ring A respects pre-order if, given locally finite pre-ordered
sets X and Y, I(X, A) I(Y, A) implies that X is order isomorphic to Y. If we
only require that X and Y be partially ordered, then we say that A respects
partial order. Unless otherwise specified, X, Y, and Z will always denote locally
finite pre-ordered sets in this paper.

Although our purpose is to prove that certain classes of rings respect pre-
order (or partial order), we first give a simple construction that provides a large
class of rings that do not respect even partial order. Let Z be any locally finite
pre-ordered set and let Zo be an arbitrary element of Z. Define Z’) to be the set
of all sequences of elements from Z that eventually have constant value Zo. For
a, r Z’), letting a < r if and only if a < ri for 1, 2, gives a locally finite
pre-ordering of Z’). The product of two pre-ordered sets X and Y is defined to
be the Cartesian product X x Y with the ordering (x, y) <_ (x’, y’) if and only if
x < x’ and y < y’. If X and Y are locally finite, then so is X x Y and it is
evident that

I(X, I(Y, A)) -- (X , A),
for any ring A, via f- 9 where

g((x, y), (x’, y’))= [f(x, x’)](y, y’).

These remarks allow us to prove"

PROPOSITION l. Let Z be a locally finite pre-ordered set. Then there exists a

ring F such that F I(Z, F).

Proof It is easily seen that Z x Z’) is order isomorphic to Z’) via
(z, (z, z2, ...))- (z, z, z2, ...). Let A be any ring and let F I(Z’, A). Then

r I(Z a) -- l(Z, t(z a))= t(z, r).
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Notice that if consists of more than one equivalence class and if
F I(Z, F) then F does not respect partial order. Indeed if we take Z {1, 2,

n} with the usual partial ordering, Proposition provides us with a ring F
that not only does not respect partial order but is also isomorphic to the ring of
n n upper triangular matrices over itself.

In order to obtain the results promised above we shall need some facts about
how certain idempotents of an incidence ring relate to its Jacobson radical. Let
X be a locally finite pre-ordered set, let A be a ring, and as before, let ){ X.
For each xeX we define the idempotent exeI(X,A) by ex(U,v)=l if
u v x and e,(u, v) 0 otherwise. For each e ) we define the idempotent
e= I(X, A) by e=(u, v) if u v e and e=(u, v) 0 otherwise. Notice that

e= is just the sum of the efor x e . It is not difficult to check that the orderings
of X and are intimately related to these idempotents as follows"

x < y in X if and only if el(X, A)ey 4:0
and

0 < fl in ) if and only if e=I(X, A)ee :/: 0.

Intuitively, iff I(X, A), e=fee corresponds to the (a, fl) block offwhen viewed
as an X X block matrix. In fact,

!f(x,y) if xeaandyfl
fee(x, Y)e= 0 otherwise.

In this context the following lemma says that we may multiply elements of the
incidence ring by block matrix multiplication.

LEMMA 2. Let , fl )?, with <_ fl and let f, g !(X, A). Then

e(fg)ea Z (efe)(eroea).

Proof Let x, y X. Unless x a and y fl, both sides of the above equa-
tion are zero when evaluated at (x, y). Hence we may assume x e a and y ft.
Then e=hee(x, y)= h(x, y) for each h I(X, A). Thus we have

[e=(fg)ee](x, y)= (fg)(x, y)

Z f(x, z)g(z, y)
x<_z<y

E Z f{x, z)g{z, y)

=<_7<_1t

Z y). !
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We devote the remainder of this section to calculating the Jacobson radical
of the incidence ring I(X, A). Since we will use the quasi-regular characteriza-
tion of the radical, we will first need to determine the invertible elements of
I(X, A). Rota [8, Proposition 1] showed that if A is a field and ( e I(X, A)
where ((x, y)-- if x < y and ((x, y)= 0 otherwise, then
which he called the M6bius function for X. Extending Rota’s method of direct
calculation to block matrices, we are able to determine the invertible elements
of I(X, A) for any ring A (cf. [2, Theorem 1.16] and [9, Proposition 1]).

PROPOSITION 3. Let X be a locally finite pre-ordered set and let A be a ring.
Then an elementfofR I(X, A)is left (right)invertible ifand only ifefeis left
(riyht) invertible in the ring eRefor each

Proof. () Assume gf= lg for some R. If then by Lemma 2 we
have

(ege)(e fe) e(gf)e e.
Since e is the identity of eRe, ege is a left inverse of e fe.
() For each a, fl e with a < fl we define r

let r be a left inverse of efe in eRe. Now fix a, let fl > a, and assume that
we have defined r,z for each a __< < ft. Then let

ra rr(ee fea) ra.
<_<

Now define g e R by

g(x, y) tra(x’ y) ifx_<yandxea, yefl

t0 otherwise.

Intuitively, this makes a matrix out of the blocks rl, that is, egee ra for
_</3. Let x, y e X and let , fl e ) such that x e and y e fl. If fl, thenby

Lemma 2,

9f (x, y)= e(gf)e(x, y)= (ege)(efe)(x, y)

r(efe)(x, y)= e(x, y)= 1R(X, y).

If a < fl then again by Lemma 2,

(ege)(e fet (x, y)9f(x, y)= e,(gf)et(x, y)

E<_<e(refea)+raetfetl(x,y)=O,
after inserting the definition of r,a. Hence gf= 1R. For right invertible, the
proof is analogous. |
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For partial order, the Jacobson radical of I(X, A) has been calculated in [3,
Proposition 3.3] when A is a field. Nachev [8, Theorem l] determined the
radical of I(X, A) when X is a pre-ordered set and A is a semisimple ring. For
any ring A we have:

PROPOSITION 4. Let X be a locally finite pre-ordered set and let A be a ring.
Let R be the incidence rin9 I(X, A). IfS is the Jacobson radical J(A) of A, then
the Jacobson radical of g is J(R) f R If(x, y) S if x y}.

Proof Let I denote the above set, which is a (two-sided) ideal of R. If e 3{,
then e Re is isomorphic to the ring M,(A) of n x n matrices over A, where
n card 0, via efe-(Aij) where Aij-f(i,j) for i, j . Since this isomor-
phism takes eIe onto M,(N)= J(M,(A)) we have J(eRe)= ele. Hence
forf e I, each e fe is quasi-regular in e Re, that is, e(1 -f)e is invertible in

e Re. Then f is invertible by Proposition 3. Thus I is a quasi-regular ideal,
so I c_ J(R). Using quasi-regularity and Proposition 3, it is also immediate that
eJ(R)e

_
J(eRe)= ele for each e J. It then follows easily from the

definition of I that iff e J(R) then f I. Hence J(R) I. |

Notice that a useful consequence of Proposition 4 is that iff e R and e,fe
J(R) when c e , then f J(R). Roughly speaking, a matrix belongs to the
radical of I(X, A) if and only if the blocks on the main diagonal are matrices
over N J(A).

2. Incidence rings over a ring that is indecomposable modulo the radical

Stanley [11] proved that fields respect partial order. In this section, we shall
prove (Theorem 1) that all rings which are indecomposable modulo the radical
(e.g., the integers or a primitive ring) respect partial order. As a consequence,
we prove (Theorem 2) that rings which are simple artinian modulo the radical
(e.g., local rings) respect pre-order. This generalizes the result of Belding [2] and
Nachev [7] that simple artinian rings respect pre-order.

THEOREM 1. Let A be a ring that is indecomposable modulo J(A). Let X and
Y be locally finite pre-ordered sets such that I(X, A) I(Y, A). Then is order
isomorphic to Y. In particular, A respects partial order.

Proof Let R=I(X,A), S=I(Y,A) andlet 0"RSbetheringisomor-
phism. Also let {e10 e J(} and {f I/3 e I?} be the idempotents for R and S,
respectively, as defined in Section 1. The proof relies on the well-behaved
structure of R/J(R) and S/J(S). Indeed iff R and e e J? then ef-fe, J(R)
since for every ’ e , e,(ef-fe)e, 0 e J(R). Hence each e, + J(R) is a
central idempotent of R/J(R). Furthermore, as rings, we have

(eRe + J(R))/J(R)- eRe/eJ(R)e-- M,(A)/M,(J(A))- M,(A/J(A))
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where n card e, because e Re and M,(A) are isomorphic via e
where Aij=f(i,j) for i,j o, and this isomorphism takes eJ(R)e onto
M,(J(A)). Since ideals of M,(A/J(A)) are of the form M,(K) where K is an ideal
of A/J(A)[1, exercise 1.8], we know that M,(A/J(A))is indecomposable and
therefore that e + J(R) is a primitive central idempotent of R/J(R) (see [1,
Theorem 7.9]). In fact, the e + J(R) for e J are the only primitive central
idempotents in R/J(R). For indeed, iff + J(e) is a primitive central idempotent
of R/J(R), then efe cannot belong to J(R) for every e since f : K(R).
Hence for some e e 3{, (e + J(R))(f + J(R))4: 0; but in any ring, two primi-
tive central idempotents with nonzero product must be equal. Therefore

{e+J(R)]2} and {ft +J(S)]fl
are precisely the primitive central idempotents of R/J(R) and S/J(S), respec-
tively. Since 0" R - S is an isomorphism, there is a set bijection a" J -* I2 such
that if a() fl then

O(e) + J(S)=f + J(S).
Thus if a(a)= fl, we have

SO(e)/J(S)O(e) - Sf/J(S)f
as left S-modules. But then (see [1, Proposition 17.18])

SO(e) Sf and O(e)S -fSas left and right S-modules respectively. Now let a < ’ in J and let fl a(a)
and fl’= a(a’). Then ene, :/= 0 and hence O(e)SO(e,)=/= O. The above two
isomorphisms apply, first to give O(e)Sf, :/= 0 and then thatf Sf/, --/= O. There-
fore fl _< fl’. Similarly a-1 is order preserving, hence a" J - I? is the required
order isomorphism. |

The hypothesis of Theorem does not imply that A respects pre-order, even
if A is simple, as the following example shows" Let V be a vector space of
countably infinite dimension over a field F. Let

I {f Endv V ldim (Im f) is finite}.
Then I is the unique maximal ideal of Endv V [1, exercise 14.13]. Hence
A=(Endv V)/I is a simple ring. Since V(R)V V we have Endv V
Endv (V (R) V). Thus if I’ is the unique maximal ideal of Endv (V @ V), then

A (Endv V)/l - Endv (V V)/I’ Mz(Endv V)/M2(I - Mz(A).
So if X {1, 2} with _< 2 and 2 _< and Y {1}, then I(X, A) M2(A)
A I(Y, A), and the simple ring A does not respect pre-order.

THEOREM 2. Let A be a ring that is indecomposable modulo J(A). Then A
respects pre-order if and only if M,.(A)- M,(A)implies m n for any positive
integers m and n.
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Proof () Let X and Y be locally finite pre-ordered sets and let R I(X, A)
and S I(Y, A). If 0" R S is an isomorphism, then by the proof of Theorem
1, there is an order isomorphism a" I2 such that if a()= fl then
SO(e) Sfa as left S-modules. By [1, Theorem 4.15], O(e,)SO(e)ftSft as
rings. Since O(e)SO(e) - e, Re - M,(A)where n card e, andf/ Sft - Mm(A
where m card/3, we have, by hypothesis, card e card ft. Thus r lifts to an
order isomorphism r" X --, Y.
() Let M,,(A) - M,(A) and let X {1, 2,..., m} and Y {1, 2,..., n} with

pre-orderings such that J and I each have only one element. Since Mm(A)
I(X, A) and M,(A) I(Y, A), by hypothesis X and Y are order isomorphic,
that is, m n. |

COROLLARY 3.
respects pre-order.

If A is a rin9 that is simple artinian modulo J(A), then A

Proof Let M,.(A) M.(A). Then M,.(A/J(A)) - M.(A/J(A)) and since
A/J(A) is isomorphic to Mk(D for some positive integer k and division ring D,
we have M,.+k(D) M.+k(D). By the Jordan-H61der Theorem, m + k n + k,
so m n. Now use Theorem 2. |

3. A cancellation result for pre-ordered sets

In Section 4 we shall prove that indecomposable semiperfect rings respect
pre-order. To do this, however, we need a result about cancellation of pre-
ordered sets. A pre-ordered set X is said to be connected if for every x, x’ e X
there exists a sequence x xl, xr x’ from X such that xi is comparable to

xi+ for 1 r 1. The purpose of this section is to prove that if X, Y, and
Z are locally finite pre-ordered sets and Z is finite and connected, then
X x Z Y x Z implies X Y. (Here means order isomorphism.) We
remark that this result follows easily from Theorem 2 of Hashimoto [4] in case
X, Y, and Z are partially ordered sets.

Recall that if X is a pre-ordered set, we have defined an equivalence relation
on X via x x’ if and only if x < x’ and x’ < x. Elements X X/.. may

also be considered to be pre-ordered subsets of X. If P is a set of ordered pairs,
then P will denote the set of first coordinates of pairs in P, and P 2 will denote
the set of second coordinates. The following lemma is an adaptation of
Lemmas 1, 2, and 3 of Hashimoto [4].

LEMMA 1. Let X, Y, U, and V be pre-ordered sets and let X be connected. If
O: X x U Y x V is an order isomorphism, then O(X x 7)=0(X x 7)1 x
O(X x 7)z for every 3; .

Proof First we assume that X, Y, U, and V are partially ordered. Although
this is just Hashimoto’s result, we shall give the proof for the sake of com-
pleteness. Let u e U. Then, to prove that

o(x {u})= o(x o(x
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we need only show that

(Yl, vl), (Y2, v2) O(X {u}) implies (Yl, v2)e O(X {u}).
First assume there is a (y’, v’) O(X {u})such that (Y l, v l)_> (y’, v’)_<
(Y2, v2). Then we have

(Yl, vl) > (Yl, v’) > (y’, v’) and (y’, v’) _<_ (y’, v2)< (Yz, vz).
By applying 0-1 to the above, we see that the second coordinates of 0-1 (yl,
and 0-l(y,, v2) must be u. Hence (Yl, v’) and (y’, v2) belong to O(X x {u}). Let
0-1(yl, v2)= (x’, u’) and let 0-1(yl, v’)= (x", u). Since (Yl, v2) _> (Yl, v’) we
have, upon applying 0-1, (x’, u’) _> (x’, u) _> (x", u). Therefore, we have

(y, ) _> 0t’, ) _> ty, ’).
In a similar way, since (Yl, v2) _> (y’, v2), we see that

(y, ) >_ 0(’, .) _> (y’, ).
These two inequalities imply that the first coordinate of O(x’, u) is yl and that
the second coordinate is vz, that is, (Yl, vz) e O(X x {u}). Similarly if (Y l, vl) <
(y’, v’) > (Yz, vz) we may show that (Yl,/2) G O(X {U}). Since X is connected,
so is X {u}, and therefore O(X {u})is connected since connectedness is
preserved by order isomorphisms. Hence, in general, when (Yl, vl)and (Y2, v2)
belong to O(X {u}), there is a sequence (or its dual)

(y, ) (y’, i) -- (y’, ) <- (y;, ;) >-
_< (y’._ , ’._ ) >_ (y’._ ,, ._ ) _< (y., ’.)= (y, )

each term of which belongs to O(X {u}). Assume by induction that (yl, v2)
O(X {u})when (Yl, vl)and (Yz, vz)are connected by shorter sequences. Then
(y], v,_ z), (Y, v,), and (Yz, v,_ 1)all belong to O(X {u}). Since

(yl, .-) -> (y, .-,) -< (y;, .),

we have, as shown earlier, (Yl, v2)= (y’, v’,) e O(X x {u}).
Now assume that X, Y, U, and V are pre-ordered sets. For each e e . and

; e t, it is easy to show that there is a unique / e l? and fi e I2 such that
0( x ;)=/ x 6. Thus 0(, 7)= (/, 6) defines an order isomorphism
0" x --, I? x I2. By the above,

for every 7 e 0, since is connected. What we want to show is that

O(X )= O(X ) O(X ).
Let (Yl, vl) and (Y2, v2) belong to O(X x 7), and let Yl e//1, Y2 //2, vl 61,
and v2 62 where/ 1, 2 e I? and 61, 62 I2. Since (//1, 61) and (/2, 62) must
then belong to 0(. x {7}), (//1, 62) must also belong to 0( x {7}). Hence
(Yl,/)2) G O(X x 7), which completes the proof of the lemma. |
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A locally finite pre-ordered set is trivial if it consists of only one equivalence
class under the relation . We continue to use Greek letters , fl, 7,... to
denote trivial pre-ordered sets. Of course, two trivial pre-ordered sets are iso-
morphic if and only if they have the same cardinality.

LEMMA 2. If X, Y and 7 are locallyfinite pre-ordered sets and y is trivial, then
X ;: Y 7impliesX- Y.

Proof Let O’X x 7 Y x 7 be the order isomorphism. Then for each
e e 2 there is a unique/ e f" such that 0(e x 7) fl x 7 and card e card ft.
Letting ()= fl, we obtain an order isomorphism " J? --, I7. Since t}(e)= fl
implies that card card fl, this isomorphism lifts to an order isomorphism
d?’XY. |

A connected locally finite pre-ordered set is said to be irreducible if it is not
isomorphic to the product of two non-singleton pre-ordered sets. For example,
a trivial pre-ordered set is irreducible if and only if its cardinality is prime. If X
is a finite pre-ordered set, define 9cd(X) to be the greatest common divisor of
{card I J}. Let In] denote a trivial pre-ordered set with n elements. Then
clearly X [gcd (X)] Y for some finite pre-ordered set Y with gcd (Y) 1.
From number theory,

gcd{mil 1,...,r}-gcd{njlj 1, s}
=gcd{minJ i= 1, r

Hence if X and Y are finite pre-ordered sets,

and j 1,..., s}.

gcd (X x Y)= gcd (X)gcd (Y)
since {card 717 e XxY)= {card e. card file e 3{ and fl e I7}. This device
helps us to prove the following.

LEMMA 3. Let o, Z, U, and V befinite pre-ordered sets where is trivial and Z
is irreducible. Then x Z - U x V implies that either U or V is trivial.

Proof Since Z is irreducible, gcd (Z)= 1. Also U -[gcd (U)] U’ and
V [gcd (V)] x V’ for some finite pre-ordered sets U’ and V’ such that
gcd (U’)= and gcd (V’)= 1. Since e x Z U x V, we have carde=
gcd ( x Z)= gcd (U)gcd (V). Hence

xZ U x V[gcd (U) gcd (V)] x U’ x V’ x U’ x V’

and therefore Z U’ x V’ by Lemma 2. Since Z is irreducible, either U’ or V’ is
a singleton set. Thus either U = [gcd (U)] or V [gcd (V)], that is, either U or
V is trivial. I
Now we are ready to prove our cancellation result.
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THEOREM 4. Let X, Y, and Z be locally finite pre-ordered sets where Z is

finite and connected. Then X Z Y Z implies X - Y.

Proof. First we shall assume in addition that X and Y are connected and Z
is irreducible. By Lemma 2 we may assume that Z is not trivial. Let 0: X x Z- Y Z be the order isomorphism. Choose any , and 7 ,,; then there
exists a (unique) fl I9 and fi such that 0( x 7) fl x 6. Now by Lemma
1,

0( x Z)= 0( x Z)I x 0( x Z)2.
Since 0 is an order isomorphism, Lemma 3 implies that either 0( x Z) or
0( x Z)2 is trivial. Because 0( x Z) and 0( x Z)2, this means that
either 0( x Z), or 0( x Z)2 .

First we consider the case 0( x Z) . That is,

) 0( z)= 0( z) z.
By Lemma 1 we have 0-(fl x Z)= 0-1(fl x Z) x 0-(fl x Z)2. Hence by
Lemma 3, either O-(fl x Z) a or O-l(fl x Z)2 7. If the latter is true, then

o( z) z otx ).
But by (1), fl x 0(a x Z)2 0(a x Z) and therefore

o( z) o(x ) o( z)= o( )= .
Then we would have 0( x Z)2 6 which contradicts (1), since Z is not trivial.
Thus we must have 0-(fl x Z)I and

(2) 0-(fl x Z)= x 0-’(fl x Z)2 x Z.

Putting (1) and (2) together, we obtain

(3) 0( z)= z.
Since card Z is finite, this gives us card card ft. Hence card 7 card 6 and
7 6, because 0( x 7) fl x 6. By Lemma 1,

o(x )= o(x ), o(x ).
Therefore fl x O(X x 7)2 O(X x 7) and so by (3),

o(x ) o(x ) o( z)= 0( )= 6.

Thus O(X x 7)2 6 and

(4) o(x )= o(x ) Y .
Similarly,

() o-’(Y )= o-(Y ) x .
Then (4) and (5) together gives us O(X x 7) Y and since , we have
X x 7 Yx 7-Lemma2nowgivesX Y.
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Secondly we consider the case 0( Z)2 t, that is,

(6) 0(z Z)= 0(a
By Lemma 1, O-(fl Z)= O-(fl Z)I O-(fl Z)2, and so

O 0-1( Z)2 0-1( Z).
Then (6) implies that

0-1( Z)2
__

0-1(fl Z)c30-’(Y b)- z 7.

Hence 0-(fl Z)2 y and

(7) O-’(fl x Z)=O-’(fl x Z), x 7-X x 7.

Again by Lemma 1, we have O(X x 7)= O(X x 7), x O(X x 7)2 which implies
that O(X x 7)2 Z, since by (7) O(X x ,)

_
flx Z. Hence,

(s) o(x o(x z
and similarly,

(9) O-’(Y )= O-’(Y ), Z.

Then by (8), 0-’(O(X x ), 6)_ O-’(O(X x ?), x Z)= X x and by, (9),
O-’(O(X 7), 3)_0-’(Yx 6)=0-’(Yx ), Z.

Therefore we obtain

(10) O-’(O(X x y), x 3)_ O-’(Y x ), x ?.

In the same way, using (9) and (8), we have

(11) O(O-’(Y
Hence both (10) and (11) must be equalities. By (8),

X x x 6O(X x ?) xxZ,
and by (9),

Y x 6 x 7 0-1(Y x 6) x ? x Z.

Then X x 7 x 6 Yx x 7 since by (10) or (l 1), O(X x ?)x x
6 0-(Y x 6) x ,. Because ? x 6 - x ? is trivial, Lemma 2 implies that
X Y. This completes the proof, provided X and Y are connected and Z
is irreducible.

If Z is finite and connected then Z is order isomorphic to a finite product
Z x x Z, of irreducible finite connected pre-ordered sets. So by the above
proof, X x Z x x Z Y x Z x x Z, implies

X x Z x... x Z_ Yx Z x.-. x Z,_

and so on, until by induction we arrive at X - Y. Here we are still assuming
that X and Y are connected.
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Now let X and Y be arbitrary locally finite pre-ordered sets. A connected
component of X is a maximal connected subset of X. Every element of X
belongs to a unique connected component and X is the disjoint union of its
connected components. It is clear that an order isomorphism between two
pre-ordered sets must take connected components of the first onto connected
components of the second in a one-to-one fashion. Let {XI A} and
{Y, lfl B} be the connected components of X and Y respectively. Let Z be a
finite connected pre-ordered set such that X x Z Y x Z. Then
{X x Z I e A} and {Y, x Z I/3 e B} are the connected components ofX x Z
and Y x Z respectively and there exists a set bijection tr: A ---, B such that for
each A, X, x Z Y,t,) x Z. Therefore by the above, X Y,t) for every, e A. Since no element of X= is comparable to any element of X,, when

4: ’, we may assemble these isomorphisms to obtain X Y. I
For incidence rings we have the following result which, since M,(A)

l([n], A), shows that the property "A respects pre-order" is inherited by the
matrix rings M,(A).

COROLLARY 5. If Z is a finite connected pre-ordered set and A respects
pre-order then so does I(Z, A).

Proof If X is a locally finite pre-ordered set then, as we remarked before
Section 1, Proposition 1, I(X, I(Z, A)) I(X x Z, A). Now we use Theorem
4. |

4. Incidence rings over indecomposable semiperfect rings

In this section we shall prove that indecomposable semiperfect rings respect
pre-order. Unless otherwise specified, A will denote a semiperfect ring with
radical N and complete set of primitive orthogonal idempotents el, e,.
Then as a left A-module, A Ael 03"" 03 Ae,. Also each eiAe is a local ring
and each Aei/Nei is a simple left A-module (see [1, proof of Theorem 27.6]). We
define the associated pre-ordered set of A to be the set Z {e, e.} with the
pre-ordering ei < ej if and only if there is a sequence ei ekl,..., eke ej in Z
such that ekl Aek2 4 O, ek,_ Aek, 4: O. The associated pre-ordered set Z
relates to the ring A as follows.

LEMMA 1. If A is indecomposable then Z is a connected pre-ordered set.

Proof Define another relation p on Z by ei pej if and only if there exists an

ek in Z such that ekAe 4= 0 and ekAej 4: O. By the Block Decomposition
Theorem (see [1, Theorem 7.9]), the transitive closure of p must have only one
equivalence class. That is, for any ei, e Z there exists a sequence e ehl,...,

eh, ej in Z such that eh Peh2 p Peh. Using the definition of p we obtain
another sequence ek ek,_ in Z such that ek Aeh --/= 0, ekl Aeh2 4 O,
ekp_ Aehp_ =/= O, ekp_ Aeh 4 O. But thisjust means ei ehl
ehp_ ekp_ eh ej. Hence Z is connected. |
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Let X be a locally finite pre-ordered set and let R I(X, A). For each x e X
and 1, n we define an idempotent exi R by

e:,i(u, v) !ei ifu=v=x

t0 otherwise.

We shall need the following lemma, describing the ordering on X x Z in terms
of the idempotents exi.

LEMMA 2. Let Z be the associated pre-ordered set ofa. Then (x, e i) <_ (x’, e,)
in X x Z ifand only if there is a sequence x x 1,..., x, x’ in X and a sequence

ei eil, ei, ei, in Z such that exli RexEi2 =/: O, ex,_ lir_l Rex,i, =/= O.

Proof It suffices to show that x < x’ and eiAei 4:0 if and only if
exiRex,i, 4: O. If x < x’ and eidei, 4:0 for some d e A, then by letting f be any
element of R such that f(x,x’)=edei,, we see that exifex,i,(x,x’)=
ei f (x, x’)ei, ei dei 4: O. Conversely if exi fex, i, 4:0 for somef R then, since

exi fex,i,(u, v)= 0 unless u x and v x’, we have exi fe;;(x, x’)4= O. Thus
e f(x, x’)e i, =/= 0 and x < x’. |

We are now ready to prove the main result of this section.

THEOREM 3. Let A be an indecomposable semiperfect ring. Then A respects
pre-order.

Proof Let X and Y be locally finite pre-ordered sets and let R I(X, A)
and S I(Y, A). We must show that if 0" R S is an isomorphism then X and
Y are order isomorphic. Let ei (x X and l, n) be the above defined
idempotents of R and let fvj (y Y and j l, n) be those for S. The proof
relies on the well behaved structure of the left socle of R/J(R) and S/J(S) which
is, by definition, the sum of the minimal left ideals. For x e X and n
we know that ex Rexi is a local ring because ei Rexi is isomorphic to eAei via

ei fexi e f(x, x)e i.

Thus by [1, Corollary 17.20], Re/J(R)e is a simple left R-module. Hence
(Rexi +  (ntl/ (nt Rei/J(R)e, is a minimal left ideal og n/J(nt. We claim
that the left socle of R/J(R) is

Soc R/J(R)= @ (Re,i + J(R))/J{R).
xeX,i=l

Here the sum is direct because the e, + J(R) are orthogonal idempotents of
R/J(R). We already have the inclusion. To prove the other, let T/J(R) be a
minimal left ideal of R/J{R). For some x X and < <_ n, ex r J(R) since
otherwise we would have T

_
J(R) by Section l, Proposition 4. It then follows

that

T/J(R) (Rei + J(R))/J{R).
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If also ex,i, T J(R), then we obtain

(Rexi + J(R))/J(R)’ (Rex, ,, + J(R))/J(R)
which implies that Rexi Rex,i, by [1, Proposition 17.18]. Then ex,i, Rexi 4:0
and exi Rex,i, --P O, and by Lemma 2 above, x x’. Let a N be the equivalence
class containing x. Since e,= Ee,j (uca and j= 1, n), we have
e T J(R) and ea T

_
J(R) if fl 4: a. Hence e T equals T modulo J(R)and

recalling from Section 2 that e is central modulo the radical, we see that

T/J(R) (e T + J(R))/J(R)
_
(Re + J(R))/J(R)

(Re,2 + J(R))/J(R)
a,j=

and so T/J(R)
_

(Rexi + J(R))/J(R) (x X and/= 1,..., n), proving our
claim. Similarly the left socle of S/J(S) is

Soc S/J(S)= (Sfyj + J(S))/J(S).
yeY,j=l

Let O" R/J(R) S/J(S) be the isomorphism given by f + J(R)- O(f + J(S).
Since 0 must take the socle of R/J(R) onto the socle of S/J(S),

(SO(exi) + J(S))/J(S)-- (Sfyj + J(S))/J(S).
X,i y Y,j=

By [1, Exercise 11.11] these two semisimple decompositions are equivalent, that
is, letting Z {el, e,} be the associated pre-ordered set for A, there exists a
set bijection a" X Z Y Z such that

(SO(exi) + J(S))/J(S) - (Sfrj + J(S))/J(S) when a(x, el)= (y, ey).
These isomorphisms lift to (see [1, Proposition 17.18])

SO(exi - Sfj and O(exi)S frjS when a(x, ei) (y, ej),
as left and right S-modules respectively. Hence, as in the proof of Section 2,
Theorem 1, when a(x, ei) (y, ey) and a(x’, ei,) (y’, e,) we have exiRex,i, --/: 0
implies that fjSfr,y, 4: O. Then by Lemma 2, a is order preserving. Since

a(x, ei) (y, ej) implies that

(Rexi + J(R))/J(R)- (RO-l(fyj) + J(R))/J(R),
a similar argument shows that a- preserves order. Thus a" X Z Y Z is
an order isomorphism. Now by Lemma 1, Z is connected. Hence X is order
isomorphic to Y by Section 3, Theorem 4. |

Remarks. The condition that Z be finite and connected in Section 3,
Theorem 4 may be weakened to the assumption that Z consists of a finite
number of finite connected components which are pairwise order isomorphic
to each other. The proof of this follows by grouping the components ofX Z
and Y Z into isomorphism classes and applying Section 3, Theorem 4. This
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allows us to modify the above Theorem 3 to Show that if A is a finite product of
indecomposable semiperfect rings which have pairwise order isomorphic asso-
ciated pre-ordered sets, then A respects pre-order. If those associated pre-
ordered sets are only pairwise order isomorphic modulo , then A respects
partial order.

For example, a semisimple ring or a finite product of indecomposable serial
rings that are not factors of upper triangular matrix rings respects partial order,
because each factor has a singleton associated pre-ordered set modulo (see
Murase [6]). We remark that we do not know whether the class of rings that
respect partial order is closed under finite products. Hence it is an open
question whether (decomposable) artinian rings respect partial order.
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