REPRESENTATIONS OF INTEGERS BY POSITIVE DEFINITE FORMS OVER ARITHMETIC PROGRESSIONS

BY

CHUNGMING AN AND ALAN H. STEIN

1. In previous works, the authors have analyzed Dirichlet series associated to positive definite integral forms $F(x)$ and applied the results to obtain asymptotic estimates for $\sum_{F(y)\leq y} 1$. In this note, we refine our estimates and analyze the behavior of $F(\gamma)$ as the components of γ vary over arithmetic progressions.

Let F be a positive definite integral form of degree d in n variables and let

(1.1)
$$
\zeta(F,\,\beta,\,s)=\sum_{\gamma\,\in\,\mathbb{Z}^n-\{0\}}F(\gamma)^{-s}e(\langle\beta,\,\gamma\rangle)
$$

where $s=\sigma+it$, $\beta \in R^n$, \langle , \rangle indicates the standard inner product on R^n and $e(a) = \exp(2\pi i a)$.

In [2] it has been shown that $\zeta(F, \beta, s)$ can be continued analytically as a meromorphic function of s with only a simple pole at $s = n/d$ occurring when $\beta \in \mathbb{Z}^n$. It was shown [4] that if $\beta \in \mathbb{Z}^n$ and $|t| \geq 2$ then

$$
(1.2) \quad \left| \zeta(F,\,\beta,\,\sigma+it) \right| \ll \begin{cases} \frac{|t|^{n-\sigma d}}{(n-\sigma d)(n-1-\sigma d)} & \text{if } \frac{n-1}{d} < \sigma < \frac{n}{d} - \frac{1}{\log|t|} \\ \log|t| & \text{if } \sigma > \frac{n}{d} - \frac{1}{\log|t|} \end{cases}
$$

We shall prove that the restriction on β can be removed.

THEOREM 1. If $\beta \in R^n$ and $|t| \geq 2$, then (1.2) holds. Let $\gamma = (\gamma_1, \ldots, \gamma_n), A = (A_1, \ldots, A_n), B = (B_1, \ldots, B_n) \in \mathbb{Z}^n$. Let $\gamma \equiv B \pmod{A}$ mean $\gamma_i \equiv B_i \pmod{A_i}$ for $i = 1, \ldots, n$. Let $A^* = \prod_{i=1}^n A_i$, $\lambda = \text{Res}_{s=n/d} \zeta(F, 0, s).$

We shall use Theorem ¹ to prove the following:

THEOREM 2.

(1.3)
$$
\sum_{\substack{F(y) \le y, \\ y \equiv B \pmod{A}}} 1 = \frac{\lambda}{A^*} \frac{d}{n} y^{n/d} + O(y^{(n-1/2)/d} \log y), \quad y > e^d.
$$

2. Since we know (1.2) holds if $\beta \in \mathbb{Z}^n$, we shall assume $\beta \notin \mathbb{Z}^n$. Without loss of generality, we assume $0 < \beta_1 < 1$.

Received October 26, 1978.

⁽C) 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

If $x = (x_1, ..., x_n) \in R^n$, let $\bar{x} = (x_2, ..., x_n)$. Let $K = [[t], ||\gamma|| = \max |\gamma_i|$ and assume $\sigma > (n-1)/d$. Since the series representation for $\zeta(F, \beta, s)$ is valid for $\sigma > (n-1)/d$ [3], we may write

$$
(2.1) \qquad \zeta(F, \beta, s) = \sum_{0 \leq ||\gamma|| \leq K} F(\gamma)^{-s} e(\langle \beta, \gamma \rangle) + \sum_{||\gamma|| \geq K} F(\gamma)^{-s} e(\langle \beta, \gamma \rangle).
$$

The first term is bounded by $\sum_{0 \leq ||y|| \leq K} F(y)^{-\sigma}$. Since

$$
F(\gamma)^{-\sigma} \ll \|\gamma\|^{-\sigma d} \quad \text{and} \quad \sum_{\|\gamma\| = m} 1 \ll m^{n-1}
$$

we obtain

$$
\sum_{0 < \| \gamma \| < K} F(\gamma)^{-\sigma} \ll \sum_{m < K} m^{-\sigma d + n - 1}
$$

which is bounded by the right hand side of (1.2). So we are left to consider the second term of (2.1). To that end, let $C_m = e(m\beta_1)/(e(\beta_1)-1)$. Thus $e(m\beta_1) = C_{m+1} - C_m$ and $C_m = O(1)$. Since

(2.3)
$$
e(\langle \beta, \gamma \rangle) = e(\langle \overline{\beta}, \overline{\gamma} \rangle)(C_{\gamma_1+1} - C_{\gamma_1})
$$

we can rewrite the second term of (2.1) as

$$
(2.4) \quad \sum_{\max (\|\overline{\gamma}\|,|m|)\geq K} e(\langle \overline{\beta}, \overline{\gamma} \rangle) C_{m+1} (F(m, \overline{\gamma})^{-s} - F(m+1, \overline{\gamma})^{-s}) + \sum_{0 \leq \|\gamma\| \leq K} e(\langle \overline{\beta}, \overline{\gamma} \rangle) (C_{-K+1} F(-K+1, \overline{\gamma})^{-s} - C_{K-1} F(K-1, \overline{\gamma})^{-s}).
$$

The second term of (2.4) is clearly $\ll |t|^{n-1-\sigma d}$, so we need concentrate only on the first term, which is bounded by

(2.5)
$$
S = \sum_{\max (\|\bar{\gamma}\|, |\mathbf{m}|) \geq K} |F(m, \bar{\gamma})^{-s} - F(m+1, \bar{\gamma})^{-s}|.
$$

Furthermore,

$$
(2.6) \qquad F(m,\bar{\gamma})^{-s}-F(m+1,\bar{\gamma})^{-s}=s\int_m^{m+1}F(u,\bar{\gamma})^{-s-1}\frac{\partial}{\partial u}F(u,\bar{\gamma})\ du.
$$

Since

$$
|F(u, \bar{\gamma})^{-s-1}| \ll ||(u, \gamma)||^{(-\sigma-1)d}
$$
 and $\frac{\partial}{\partial u}F(u, \bar{\gamma}) \ll ||(u, \bar{\gamma})||^{d-1}$,

we obtain

$$
(2.7) \tF(m, \bar{\gamma})^{-s} - F(m+1, \bar{\gamma})^{-s} \ll |t| \int_{m}^{m+1} \|(u, \bar{\gamma})\|^{-\sigma d-1} du.
$$

The integral is certainly $\ll ||(m, \overline{\gamma})||^{-\sigma d-1}$ yielding

(2.8)
$$
S \ll |t| \sum_{\|y\| \geq K} \|y\|^{-\sigma d - 1} \ll |t| \sum_{m > K} m^{n - \sigma d - 2}.
$$

Since $K \approx |t|$, the right hand side of (2.8) is \ll the right hand side of (1.2), completing the proof of Theorem 1.

3. Let $A, \beta \in \mathbb{Z}^n$ be fixed. We use the following lemma to prove Theorem 2.

LEMMA.

$$
(3.1) \sum_{\substack{F(y) \le y, \\ y \equiv B \pmod{A}}} \left(1 - \frac{F(y)}{y}\right) = \frac{\lambda y^{n/d}}{\frac{n}{d} \left(\frac{n}{d} + 1\right) A^*} + O(y^{(n-1)/d} \log^2 y), \quad y > e^d.
$$

Proof. Let \sum' represent a sum over all $\alpha \in Q^n$ where $\alpha_i = p_i/A_i$, $p_i \in Z$ and $0 \leq p_i < A_i$. Let

(3.2)
$$
\zeta_{B/A}(F, s) = \sum' e(-\langle \alpha, B \rangle) \zeta(F, \alpha, s).
$$

We easily conclude from our knowledge of $\zeta(F, \alpha, s)$ that $\zeta_{B/A}(F, s)$ is meromorphic with only a simple pole of residue λ at $s = n/d$ and that, for $\sigma > (n-1)/d, |t| \geq 2,$

$$
(3.3) \qquad \zeta_{B/A}(F,s) \ll \begin{cases} \frac{|t|^{n-\sigma d}}{(n-\sigma d)(n-1-\sigma d)} & \text{if } \sigma \leq \frac{n}{d} - \frac{1}{\log |t|} \\ \log |t| & \text{if } \sigma \geq \frac{n}{d} - \frac{1}{\log |t|} \end{cases}
$$

If $\sigma > n/d$ we can write

(3.4)
$$
\zeta_{B/A}(F, s) = \sum' e(-\langle \alpha, B \rangle) \sum_{\|\gamma\| \neq 0} e(\langle \alpha, \gamma \rangle) F(\gamma)^{-s}.
$$

Since the series representation for $\zeta(F, \alpha, s)$ converges absolutely if $\sigma > n/d$, we can interchange summations, obtaining

(3.5)
$$
\zeta_{B/A}(F, s) = \sum_{\|\gamma\| \neq 0} F(\gamma)^{-s} \sum' e(\langle \alpha, \gamma - B \rangle).
$$

If $\gamma - B \equiv 0 \pmod{A}$ then it is clear that $\sum' e(\langle \alpha, \gamma - B \rangle) = A^*$. Suppose $\gamma - B \not\equiv 0 \pmod{A}$. We may assume, without loss of generality, that $\gamma_1 - B_1 \neq 0$ (mod A_1). We can then factor out

$$
\sum_{\rho_1=0}^{A_1-1} e\left(\frac{\gamma_1-B_1}{A_1}\rho_1\right)=0.
$$

We thus obtain

(3.6)
$$
\zeta_{B/A}(F, s) = A^* \sum_{0 \neq \gamma \equiv B \pmod{A}} F(\gamma)^{-s} \text{ if } \sigma > n/d.
$$

Consider

(3.7)
$$
I = \frac{1}{2\Pi i} \int_{\rho - iy}^{\rho + iy} \frac{\zeta_{B/A}(F, s)y^s}{s(s+1)} ds \text{ where } \beta = \frac{n}{d} + \frac{1}{\log y}.
$$

Using (3.6) we obtain

(3.8)
$$
I = A^* \sum_{\mathbf{0} \neq \gamma \equiv B \pmod{A}} \frac{1}{2 \Pi i} \int_{\beta - iy}^{\beta + iy} \frac{(y/F(\gamma))^s}{s(s+1)} ds.
$$

Since

$$
\frac{1}{2\Pi i} \int_{\beta - iy}^{\beta + iy} \frac{z^s}{s(s+1)} ds = \begin{cases} O(z^{\beta / y}) & \text{if } z \le 1 \\ 1 - 1/z + O(z^{\beta} / y) & \text{if } z \ge 1 \end{cases}
$$

(cf. $[5]$), we obtain

$$
(3.9) \qquad I = A^* \sum_{\substack{\mathfrak{d} \neq \gamma \equiv B(\text{mod }A), \\ F(\gamma) \leq y}} \left(1 - \frac{F(\gamma)}{y}\right) + O\left(\sum_{\substack{\mathfrak{d} \neq \gamma \equiv B(\text{mod }A)}} y^{\beta - 1} / F(\gamma)^{\beta}\right).
$$

The error term is

$$
\begin{aligned}\n&\leq y^{n/d} \sum_{\gamma \neq 0} F(\gamma)^{-\beta} \\
&\leq y^{n/d-1} \sum_{m=1}^{\infty} m^{-\beta d + n - 1} \\
&\leq \frac{y^{n/d-1}}{n - \beta d} \\
&\leq y^{n/d-1} \log y\n\end{aligned}
$$

yielding

(3.10)
$$
I = A \sum_{\substack{\mathbf{0} \neq y \equiv B(\text{mod } A) \\ F(y) \leq y}} \left(1 - \frac{F(y)}{y}\right) + O(y^{n/d - 1} \log y).
$$

We now estimate I via contour integration. Let $\beta' = (n - 1)/d + 1/\log y$, C₁ be the straight line contour from $\beta + iy$ to $\beta' + iy$, C_2 be the straight line contour from $\beta' + iy$ to $\beta' - iy$ and C_3 be the straight line contour from $\beta' - iy$ to $\beta - iy$. Let C_0 be $C_1 + C_2 + C_3$ + the straight line contour from $\beta - iy$ to β + iy. Let

(3.11)
$$
I_j = \frac{1}{2\Pi i} \int_{C_j} \frac{\zeta_{B/A}(F, s) y^s}{s(s+1)} ds \text{ for } j = 0, 1, 2, 3.
$$

Then $I = I_0 - (I_1 + I_2 + I_3)$. Since the only singularity of $[\zeta_{B/A}(F, s)y^{s}]/[s(s + 1)]$ inside C_0 comes from the pole of $\zeta_{B/A}(F, s)$ at $s = n/d$, we obtain

(3.12)
$$
I = \frac{\lambda y^{n/d}}{\frac{n}{d}(\frac{n}{d} + 1)} - (I_1 + I_2 + I_3).
$$

Along C₁, (3.3) implies that $\zeta_{B/A}(F, s)y^s = O(y^{1 + (n-1)/d} \log y)$. Since

$$
\frac{1}{s(s+1)} = O\left(\frac{1}{y^2}\right)
$$

along C_1 , we obtain

(3.13)
$$
I_1 = O(y^{(n-1)/d} \log y/y).
$$

The same estimate clearly holds for I_3 . To estimate I_2 , we first observe that

$$
I_2 = \int_{C_2, |t| \geq 2} \frac{\zeta_{B/A}(F, s) y^s}{s(s+1)} ds + O(y^{(n-1)/d})
$$

We again use (3.3) to estimate $\zeta_{B/A}(F, s) = O(|t| \log y)$ if seC_2 , $|t| \geq 2$, obtaining

$$
(3.14) \tI_2 \ll y^{(n-1)/d} \log y \int_{C_2, |t| \geq 2} \frac{|t|}{|t|^2} dt + O(y^{(n-1)/d}),
$$

so that

(3.15)
$$
I_2 = O(y^{(n-1)/d} \log^2 y).
$$

We combine (3.12) , (3.13) , and (3.15) to obtain

(3.16)
$$
I = \frac{\lambda y^{n/d}}{\frac{n}{d}(\frac{n}{d} + 1)} + O(y^{(n-1)/d} \log^2 y).
$$

Combining (3.10) and (3.16) completes the proof of the lemma.

4. Let a_k represent the number of solutions to $F(\gamma) = k$ for which $\gamma \equiv B \pmod{A}$. Then we may write

(4.1)
$$
\sum_{\substack{F(y) \leq y, \\ y \equiv B \pmod{A}}} \left(1 - \frac{F(y)}{y}\right) = \sum_{k \leq y} a_k \left(1 - \frac{k}{y}\right).
$$

Combining (3.1) , (4.1) and multiplying by y yields

(4.2)
$$
\sum_{k \leq y} a_k (y-k) = \frac{\lambda y^{1+n/d}}{A^* \frac{n}{d} \left(\frac{n}{d} + 1 \right)} + O(y^{1+(n-1)/d} \log^2 y).
$$

If we let $A(z) = \sum_{k \leq z} a_k$ and assume y is an integer, then (4.2) becomes

(4.3)
$$
\sum_{k \leq y} A(k) = \frac{\lambda y^{1+n/d}}{A^* \frac{n}{d} (\frac{n}{d} + 1)} + O(y^{1+(n-1)/d} \log^2 y).
$$

It is clear that (4.3) must also hold if y is not an integer. Now let

 $\alpha = 1 - y^{-1/2d} \log y$.

Then

$$
(4.4) \quad \sum_{\substack{xy \le k < y}} A(k) = \frac{\lambda}{A^* \frac{n}{d} \left(1 + \frac{n}{d}\right)} y^{1 + n/d} (1 - \alpha^{1 + n/d}) + O(y^{1 + (n - 1)/d} \log^2 y)
$$
\n
$$
\le (1 - \alpha) y A(y).
$$

Since $1 - \alpha^{1 + n/d} = (1 + n/d)(1 - \alpha) + O((1 - \alpha)^2)$, if we divide by $1 - \alpha$ we obtain

(4.5)
$$
A(y) \geq \frac{\lambda}{A^*} \frac{d}{n} y^{n/d} + O(y^{n/d}(1-\alpha)) + \frac{O(y^{(n-1)/d} \log^2 y)}{1-\alpha}
$$

With our choice for α , (4.5) becomes

(4.6)
$$
A(y) \geq \frac{\lambda}{A^*} \frac{d}{n} y^{n/d} + O(y^{(n-1/2)/d} \log y).
$$

Letting $\beta = 1 + y^{-1/2d} \log y$ and considering $\sum_{y \le k < \beta y} A(k)$ we obtain

(4.7)
$$
A(y) \leq \frac{\lambda}{A^* n} y^{n/d} + O(y^{(n-1/2)/d} \log y).
$$

Combining (4.6) and (4.7) yields Theorem 2.

5. We observe the relationship between Theorem 2 and the corresponding result

(5.1)
$$
\sum_{F(y)\leq y} 1 = \frac{d}{n} \lambda y^{n/d} + O(y^{(n-1/2)/d} \log y).
$$

in [4].

Indeed, Theorem 2 essentially combines (5.1) with the fact that $F(\gamma)$ behaves similarly as γ varies over different congruence classes. The latter can be expected since $F(\gamma)/\|\gamma\|^{n/d}$ is bounded. A related question is whether the values of $F(\gamma)$ are evenly distributed over different congruence classes, i.e., is

$$
\sum_{\substack{F(\gamma) \leq y, \\ F(\gamma) \equiv B \text{ (mod } A)}} 1 \sim \frac{\lambda}{A^* n} y^{n/d}?
$$

This leads one to investigate

$$
\sum_{0 \neq \gamma} F(\gamma) e\left(\frac{B}{A} F(\gamma)\right).
$$

It has been shown [3] that such functions can be continued analytically with at most a simple pole at $s = n/d$, but effective bounds have not yet been computed.

The authors would like to thank the referee for his or her helpful suggestions.

REFERENCES

- 1. C. AN, On a generalization of the gamma function and its application to certain Dirichlet series, Bull. Amer. Math, Soc., vol. 75 (1969), pp. 562-568.
- 2. A generalization of Epstein's zeta function, Michigan Math. J., vol. 21 (1974), pp. 45-48.
- 3. ----, On the analytic continuation of certain Dirichlet series, J. Number Theory, vol. 6 (1974), pp. 1-6.
- 4. C. AN and A. H. STEIN, Representations of integers by positive definite forms, Bull. Inst. Math. Acad. Sinica, vol. 6 (1978), pp. 7-14.
- 5. R. AYOUB, An introduction to the analytic theory of numbers, Amer. Math. Soc., Providence, 1963.

SETON HALL UNIVERSITY SOUTH ORANGE, NEW JERSEY

UNIVERSITY OF CONNECTICUT AT WATERBURY WATERBURY, CONNECTICUT