A REMARK ON FIBRE HOMOTOPY EQUIVALENCES

BY

KOUZOU TSUKIYAMA

1. Introduction

Let $\mathscr{L}(E)$ denote the group of all (non-based) fibre homotopy classes of fibre homotopy equivalences of the fibration (E, p, B). Y. Nomura [7] has studied this group when (E, p, B) is a principal fibre space in the restricted sense, and established some exact sequences.

In this note we study this group for the relative principal fibration

$$(P_f, p, B) \quad (p^{-1}(*) = \Omega Y),$$

and generalize Nomura's result. We obtained the following result.

THEOREM. The following sequence of groups and maps is exact:

$$1 \to \text{Ker } i^* \xrightarrow{\Delta} \mathscr{L}_0(P_f) \xrightarrow{J_0} \mathscr{E}(\Omega Y), \text{ where } i^* \colon [P_f, \Omega_D Z]_D \to [\Omega Y, \Omega Y].$$

In particular, if Y = K(G, n + 1) $(n \ge 1)$, the sequence of groups and homomorphisms

$$1 \to H^n(B; G) \xrightarrow{\Delta} \mathscr{L}_0(P_f) \xrightarrow{J_0} \mathscr{E}(\Omega Y) = \operatorname{Aut} G$$

is exact, where $H^n(B; G)$ is the local coefficient cohomology induced by $\phi: \pi_1(B) \to \text{Aut } G$ and $\mathscr{L}_0(P_f) = \mathscr{L}(P_f)$ if $n \ge 2$.

These results apply to a fairly large class of fibrations (cf. [6]), especially to the stage of Postnikov-systems of non-simple spaces and fibrations. Specific examples are worked out in Section 5.

All spaces have well-pointed base points. Maps and homotopies preserve base points unless otherwise stated. All spaces are assumed to have the homotopy type of a connected CW-complex.

The author is grateful to the referee for helpful comments and suggestions.

2. Based fibre homotopy equivalences

Let $\mathscr{L}_0(E)$ denote the group of based fibre homotopy classes of based fibre homotopy equivalences of the fibration (E, p, B) $(p^{-1}(*) = F)$. Then we have the following:

Received September 29, 1978.

⁽c) 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

PROPOSITION 2.1. $\pi_1(F)$ operates on $\mathcal{L}_0(E)$ on the right, and $\mathcal{L}(E)$ is isomorphic to the quotient.

Proof. This follows from standard arguments along the lines of [9, p. 380].

3. Relative principal fibrations

Let $Z \to D$ be the arbitrary Hurewicz fibration; let $Z \in \text{Top} (D = D)$ and $P_D Z \to Z \in \text{Top} (D = D)$ be the canonical path-loop fibration in the category. Let $B \in \text{Top} (* \to D)$ and $f: B \to Z \in \text{Top} (* \to D)$. Then f induces a fibration $p: P_f = B \times_Z P_D Z \to B$, which is called a relative principal fibration. This is a fibration with fibre ΩY , where Y is the fibre of $Z \to D$ (cf. [4], [5], [15] and [1]).

LEMMA 3.1 (cf. [13, Lemma 1.7]). P_f is well-pointed.

Proof. If Y is well-pointed, the mapping space Y^{I} is well-pointed [11, Lemma 4]. Also the fibre of the fibration

$$Y^{I} \rightarrow Y \times Y: \lambda \rightarrow (\lambda(0), \lambda(1)),$$

that is, ΩY is well-pointed since $Y \times Y$ is well-pointed [11, Lemma 6]. Since ΩY and B are well-pointed, P_f is well-pointed [10, Theorem 12]. Q.E.D.

Because (P_f, p, B) is a relative principal fibration, we have a *D*-map $v: \Omega_D Z \times_D P_f \to P_f$ that defines the following action for any *B*-space X (cf. [4] and [5]):

(3.2)
$$v_* \colon [X, \Omega_D Z]_D \times [X, P_f]_B \to [X, P_f]_B.$$

Also we have a D-map $h: P_f \times_B P_f \to \Omega_D Z$, which is called a relative primary difference (cf. [1]). The map h induces a map

(3.3)
$$h_*: [X, P_f]_B \times [X, P_f]_B \to [X, \Omega_D Z]_D.$$

Given a *B*-map $v: X \to P_f$, we define the mappings Δ_v and Γ_v by

$$\Delta_v = v_*(, [v])$$
 and $\Gamma_v = h_*([v],)$

PROPOSITION 3.4 (cf. [1, Theorem (2.2.11)]). Let $u: X \to B$ be a (based) map. If u has a lifting $v: X \to P_f$, the map Δ_v gives a bijection between $[X, \Omega_D Z]_D$ and $[X, P_f]_B$. *Proof.* It is easy to check that Δ_v and Γ_v are inverse bijections. Q.E.D.

Let $u = p: P_f \to B$ and $v = 1: P_f \to P_f$. Then we have the following corollary, which is a generalization to relative principal fibrations of the result of D. W. Kahn [3].

COROLLARY 3.5 (cf. [3, Lemma 2.3]). Δ_1 gives a 1-1 correspondence between $\mathscr{L}_0(P_f)$ and a subset of $[P_f, \Omega_D Z]_D$. Also $\mathscr{L}_0(P_f)$ is equivalent to

 $\{[w] \in [P_f, \Omega_D Z]_D | i^*w + 1_{\Omega Y} : \Omega Y \to \Omega Y \text{ is a homotopy equivalence} \}.$

Consider the following sequence of groups:

(3.6)
$$[\Omega Y, \Omega Y] \xleftarrow{i^*} [P_f, \Omega_D Z]_D \xleftarrow{p^*} [B, \Omega_D Z]_D.$$

We define the map Δ : Ker $[i^*: [P_f, \Omega_D Z]_D \to [\Omega Y, \Omega Y]] \to \mathcal{L}_0(P_f)$ by

$$\Delta(a) = v_{*}\{a, 1_{P_{f}}\} \quad (a \in [P_{f}, \Omega_{D}Z]_{D}).$$

$$\Omega Y \xrightarrow{\{\bar{a}, 1\}} \quad \Omega Y \times \Omega Y \xrightarrow{\bar{v}} \quad \Omega Y$$

$$\downarrow i \qquad \qquad \downarrow i \qquad \qquad \downarrow i$$

$$P_{f} \xrightarrow{\{a, 1\}} \quad \Omega_{D}Z \times_{D}P_{f} \xrightarrow{\bar{v}} \quad P_{f}$$

$$\downarrow p \qquad \qquad \downarrow p \qquad \qquad \downarrow p \qquad \qquad \downarrow p$$

$$B \xrightarrow{1} \qquad B \qquad \xrightarrow{1} \qquad B \qquad \xrightarrow{1} \qquad B$$

Since $\bar{a}: \Omega Y \to \Omega Y$ is null-homotopic, the restriction of the map $v_*\{a, 1_{P_f}\}$ to the fibre ΩY is homotopic to the identity. Hence $v_*\{a, 1_{P_f}\}$ is a fibre homotopy equivalence by the theorem of A. Dold [2, Theorem 6.3]. Since P_f is well-appointed by Lemma 3.1, this map is a based fibre homotype equivalence (cf. [1, Lemma (1.1.9)]). Therefore the map Δ is well defined.

We have the sequence of groups and maps

Ker
$$i^* \xrightarrow{\Delta} \mathscr{L}_0(P_f) \xrightarrow{J_0} \mathscr{E}(\Omega Y),$$

where $\mathscr{E}(\Omega Y)$ is a group of based homotopy classes of based homotopy equivalences of ΩY .

PROPOSITION 3.7. The map Δ is injective.

Proof. By Corollary 3.5, $\mathcal{L}_0(P_f)$ is equivalent to a subset of $[P_f, \Omega_D Z]_D$. By definition, Δ is injective. Q.E.D.

4. Proof of the theorem

THEOREM 4.1. Im $\Delta = \text{Ker } J_0$.

Proof. $J_0 \Delta = 1$ is evident. Take a based fibre homotopy equivalence $g: P_f \to P_f$ such that $J_0(g) \simeq 1$ rel *. By Proposition 3.4, there exists a *D*-map $\omega: P_f \to \Omega_D Z$ such that $v\{\omega, 1_{P_f}\}$ is based fibre homotopic to g. Then

$$v\{\omega i, i\} = v\{\omega, 1_{P_f}\}i \simeq gi = ig_0 \simeq i$$
 (: based fibre homotopic).

By Proposition 3.4, $v_*($, [i]): $[\Omega Y, \Omega Y] = [\Omega Y, \Omega_D Z]_D \rightarrow [\Omega Y, P_f]_B$ is a bijection. Therefore $\omega i \simeq *$ rel *, that is, $\omega \in \text{Ker } i^*$. Q.E.D.

THEOREM 4.2. Δ is a homomorphism of groups on the image of $p^*: [B, \Omega_D Z]_D \rightarrow [P_f, \Omega_D Z]_D.$

Proof. The proof is the same as that of Theorem 3.5 in [13] by using Lemma 1.6 in [15]. Q.E.D.

THEOREM 4.3 (cf. [7, Theorem 2.2]). The following sequence of groups and maps is exact:

$$1 \longrightarrow \text{Ker } i^* \xrightarrow{\Delta} \mathscr{L}_0(P_f) \xrightarrow{J_0} \mathscr{E}(\Omega Y).$$

Im J_0 is the subgroup of all elements of $\mathscr{E}(\Omega Y)$ which extend to the fibre homotopy equivalence from P_f to P_f .

Let $\phi: \pi_1(B) \to \text{Homeo}(K(G, n+1), *)$ be the action of $\pi_1(B)$ on K(G, n+1). Let $K = K(\pi_1(B), 1)$ and consider the universal covering $\tilde{K} \to K$ and the usual action of $\pi_1(B)$ on \tilde{K} . Then we have a Hurewicz fibration

 $K(G, n+1) \longrightarrow L = \tilde{K} \times_{\pi_1(B)} K(G, n+1) \longrightarrow K$

Since $\tilde{K} \times_{\pi_1(B)} * = K$, we have the canonical cross section s: $K \to L$. Hence $L \in \text{Top}(K = K)$. Let Z = L and D = K in Section 3. Then we have the following:

COROLLARY 4.4. The following sequence of groups and homomorphisms is exact for $n \ge 1$:

$$1 \longrightarrow H^n(B; G) \xrightarrow{\Lambda} \mathscr{L}_0(P_f) \xrightarrow{J_0} \mathscr{E}(\Omega K(G, n+1)) = \operatorname{Aut} G,$$

where $H^n(B; G)$ is the local coefficient cohomology induced by $\phi: \pi_1(B) \to \text{Aut } G$, and $\mathscr{L}_0(P_f) = \mathscr{L}(P_f)$ if $n \ge 2$.

Proof. The following sequence is exact (cf. [4, p. 4]):

$$[\Omega Y, \Omega Y] \longleftarrow [P_f, \Omega_K L]_K \longleftarrow [B, \Omega_K L]_K \longleftarrow 0.$$

also $[B, \Omega_K L]_K = H^n(B; G)$. Apply Theorem 4.2. Q.E.D.

Remark. The above exact sequence seems to be closely related to the extension for the essential term $E_1^{p, -p}$ of the spectral sequence obtained by W. Shih [8].

COROLLARY 4.5 [12, Proposition 2.9]. If $H^n(B; G) = 0$, then the map J_0 is monic.

Let $\{X_n\}$ be the Postnikov-system of a CW-complex X. Every X_n is wellpointed, since X_n is a mapping track of the inclusion $X \to X_{n-1}$ (cf. [12, p. 219], [11, p. 439]). And every $p_n: X_n \to X_{n-1}$ $(p^{-1}(*) = F)$ is a relative principal fibration (cf. [4]).

THEOREM 4.6. The following sequence of groups and homomorphisms is exact for every $n \ge 2$:

 $1 \longrightarrow H^n(X_{n-1}; \pi_n(X)) \xrightarrow{\Delta} \mathscr{L}(X_n) \xrightarrow{J_0} \mathscr{E}(F) = \operatorname{Aut} \pi_n(X),$

where $\pi_1(X) = \pi_1(X_{n-1})$ acts on $\pi_n(X)$ usually. Im J_0 is contained in the equivariant subgroup od Aut $\pi_n(X)$ under the action of $\pi_1(X)$ on $\pi_n(X)$, and $\mathscr{L}(X_n) = \mathscr{L}_0(X_n)$.

Let $\mathscr{E}_{\#}(X)$ be the group of all based homotopy classes of based homotopyequivalences of X inducing the identity automorphisms of all homotopy groups.

COROLLARY 4.7 [12, Theorem 1.3]. Assume that the connected CW-complex X satisfies $\pi_i(X) = 0$ (i > N) or dim X = N, for some integer N, and that the cohomology groups of the local coefficients are $H^n(X_{n-1}; \pi_n(X)) = 0$ $(1 < n \le N)$. Then $\mathscr{E}_{\#}(X) = 1$.

Proof. Let $f: X \to X$ be a based homotopy equivalence which induces the identity automorphisms of all homotopy groups. Then f induces a based homotopy equivalence $f_n: X_n \to X_n$ for every $n \ge 1$ up to homotopy (cf. [13, Proposition 2.3]). Every f_n induces the identity automorphisms of all homotopy groups by the definition of the Postnikov-system. Assuming $\mathscr{E}_{\#}(X_{n-1}) = 1$, then $f_{n-1} \simeq 1$ and f_n can be deformed to a based fibre homotopy equivalence f'_n , that is, $f'_n \in \mathscr{L}_0(X_n)$. Since $H^n(X_{n-1}; \pi_n(X)) = 0$, $f'_n \simeq 1$ by Theorem 4.6. Hence $f_n \simeq 1$. Note that $\mathscr{E}(X) = \mathscr{E}(X_N)$ and $\mathscr{E}_{\#}(X_1) = \mathscr{E}_{\#}(K(\pi_1(X), 1)) = 1$. The result is shown by induction on n. Q.E.D.

COROLLARY 4.8. The following sequence of groups and homomorphisms is exact:

 $1 \longrightarrow \mathscr{E}_{\#}(X_2) \longrightarrow \mathscr{L}(X_2) \longrightarrow \operatorname{Aut} \pi_2(X)$

Proof. Let $k \in H^3(X_1; \pi_2(X))$ be the Postnikov k-invariant. Then by [14, Theorem 2.2], $\Delta: H^2(X_1; \pi_2(X)) \to \mathscr{E}_{\#}(X_2)$ is an isomorphism, where $\Delta(a) = v_*(a, 1_{P_k})$ in (3.2). Q.E.D.

5. Examples

Example 5.1. If $\pi_2(X_2) = Z_2$, then $\mathscr{L}_0(X_2) = \mathscr{L}(X_2) = H^2(\pi_1(X); Z_2)$. *Proof.* Aut $Z_2 = 1$, and use Corollary 4.8. Q.E.D.

In this example, if $\pi_1(X) = Z$, then $\mathscr{L}(X_2) = \mathscr{L}_0(X_2) = 1$.

Example 5.2 (cf. [12, Example 4.1]). Let G be a finite group, which acts on the odd dimensional sphere S^{2n-1} , and let $X = S^{2n-1}/G$. Then $\mathcal{L}_0(X_{2n-1}) = \mathcal{L}(X_{2n-1})$ is a subgroup of Aut $Z = Z_2$.

Proof. Apply Corollary 4.8, since $\mathscr{E}_{\#}(X_2) = H^{2n-1}(G; Z) = 0.$ Q.E.D.

Example 5.3 (cf. [12, Example 4.3]). If $\pi_1(X)$ is a free group, $\mathscr{L}_0(X_2) = \mathscr{L}(X_2)$ is a subgroup of Aut $\pi_2(X)$.

Proof. If
$$\pi_1(X)$$
 is a free group, $H^2(X_1; \pi_2(X)) = 0.$ Q.E.D.

Example 5.4 (cf. [12, Example 4.4]). Let X be simple and acyclic. Then $\mathscr{L}_0(X_n) = \mathscr{L}(X_n)$ is a subgroup of Aut $\pi_n(X)$ for every n.

Proof. If X is simple and acyclic, $H^n(X_{n-1}; \pi_n(X)) = 0$ for every n. Apply Theorem 4.6. Q.E.D.

REFERENCES

- 1. H. J. BAUES, Obstruction theory, Lecture Notes in Math., vol. 628, Springer-Verlag, 1977.
- 2. A. DOLD, Partitions of unity in the theory of fibrations, Ann. of Math., vol. 78 (1963), pp. 223-255.
- 3. D. W. KAHN, The group of homotopy equivalences, Math. Zeitschr., vol. 84 (1964), pp. 1-8.
- 4. J. F. MCCLENDON, Obstruction theory in fibre space, Math. Zeitschr., vol. 120 (1971), pp. 1-17.
- 5. ——, Relative principal fibrations, Bol. Soc. Math. Mexicana, vol. 19 (1974), pp. 38-43.
- 6. -----, Reducing towers of principal fibrations, Nagoya Math. J., vol. 54 (1974), pp. 149-164.
- 7. Y. NOMURA, A note on fibre homotopy equivalences, Bull' Nagoya Inst. Tech., vol. 17 (1965), pp. 66-71.
- 8. W. SHIH, On the group $\mathscr{E}(X)$ of homotopy equivalence maps, Bull. Amer. Math. Soc., vol. 70 (1964), pp. 361-365.
- 9. E. SPANIER, Algebraic topology, McGraw-Hill, New York, 1966.
- 10. A. STRØM, Note on cofibrations II, Math. Scand., vol. 22 (1968), pp. 130-142.
- 11. ——, The homotopy category is a homotopy category, Arch. Math., vol. 23 (1973), pp. 435-441.
- 12. K. TSUKIYAMA, Note on self-maps inducing the identity automorphisms of all homotopy groups, Hiroshima Math. J., vol. 5 (1975), pp. 215–222.
- Mote on self-homotopy-equivalences of the twisted principal fibrations, Mem. Fac. Educ. Shimane University, vol. 11 (1977), pp. 1–8.
- 14. ——, Self-homotopy-equivalences of a space with two nonvanishing homotopy groups, Proc. Amer. Math. Soc., to appear.
- 15. T. YASUI, The enumerations of liftings in fibrations and the embedding problem I, Hiroshima Math. J., vol. 6 (1976), pp. 227–255.

SHIMANE UNIVERSITY

MATSUE, SHIMANE, JAPAN