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SYMMETRIC PRODUCTS AND THE STABLE
HUREWICZ HOMOMORPHISM

BY

PETER J. WELCHER

O. Introduction

Let S be the sphere spectrum. Let SPnX Xn/E, be the pth symmetric prod-
uct of the spectrum X. Let Ztp) be the localization of the spectrum Z at the
prime p, i.e. we invert all other primes. We observe that the Dold-Thom
theorem [13] lets us identify the inclusion S SPaS J, SP"S with the Hur-
ewicz map h’S--, KZ. Let i’S SPPS be the inclusion. Our main result is
then"

THEOREM 0.1.

ker (k: n,Stp - H,Stp n, SPStp))= ker (i: n,Stp Ir, SPPStp)).
This is also true for some spectra other than S; see Section 6, where we also

discuss a counter-example showing that 0.1 does not generalize well (cf. the list
of unsolved problems in [21]). It appears that S. D. Liao first suggested that
symmetrization has the effect of killing homotopy.
We now list and briefly discuss the main results of each section. We will also

indicate how they may be assembled to prove 0.1 above.
Section 1 contains general definitions and notation.
Section 2 deals with a topological version of the notion of convergentfunctor

of [19]. The basic result that we need from this section is that the functors we
deal with may be studied in a somewhat simpler fashion than what one might
first think.

THEOREM 2.1. Let SP", SP", Zn, Z--" be the various symmetric (resp. cyclic)
product functors of Section 1. Let T be any of these. Then:

(i) T extends in a certain sense to a functor of spectra.
(ii) _n, T(.’)is a homolooy theory of spectra, since for any space X,

T(S/x X) -, X/x T(S).
Thus we are really studying the much simpler functors which smash a space

or spectrum with TS.
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Section 3 recalls results from various papers and studies questions ofconnec-
tivity (at a given prime p). The techniques are classical in nature.

PROPOSITION 3.1. Let X be a strongly convergent spectrum which is homo-
logically (n- 1)-connected. Then

prSP (X)tp) SPXp) - KZ/ Xtp)
is at least (2ff + + n- 4)-connected.

This improves the classical estimate by roughly a power of p. We also show"

PROPOSITION 3.2. Let X be a spectrum. Then"
(a) (SPPX/X)tp) -w (S/SPX)e_
(b) (SPP"X/SPp-’X)tp) -w (SPVX),p);
(c) (z"x/xL - w
Note however that in general
(d) (ZPX/ZPr-’X)tp) 7w (ZPrX)tp).

PROPOSITION 3.3. Let X be a (k 1)-connected space, k > 2.
(a) The spectrum structure map f," S1/xSP"X SP"(S1/X) is at least

(2k + 1)-connected, i.e. is an isomorphism on rti for <_ 2k.
(b) S /x ZPX ZP(S / X)is at least 2k-connected.
The significance of 3.3 is that it indicates that our symmetric/cyclic product

functors of spectra "extend" space-level functors, in giving homotopy informa-
tion in a stable range. We have traded the property that T(S/x X)

_
S/x T(X),

perhaps a more natural requirement of a functor which "extends" a space-level
functor, for the properties of 2.1, which still give us stable information about
the symmetric/cyclic products of spaces, by 3.3. This stable information about
spaces was our original goal, although we will seldom spell out the space-level
implications of statements about spectra (for brevity).

PROPOSITION 4.1. 2S ,2S S/kS /xRP [17]. In general

Z-PS - S/x $1/x BZp, p prime.

PROPOSITION 4.2. SPPStp) - (S/xS /x BEp)tp).
Putting these latter results together with 3.2, we then see that the cofibre of

the inclusion Xtp) ---, SPPXtp) is S/x S/x BZp/x Xtp), up to homotopy. Thus the
Puppe map from the cofibration sequence is a map

(" (S / S A Bp)(p) S/k Sp).
The purpose of Section 5 is to identify this map.
We recall from [4, p. 49]"

THEOREM (Kahn-Priddy). Let L (S/xS/x B,p)(p).
(i) There is a map of spectra b’L Sp) which induces an isomorphism

Sonto rrep_ 3 S(p) 72p 2 /k S(p).
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(ii) Such a map is unique up to an equivalence L L.
(iii) ffqb" fL f(S/ S1)tp)= fStp)is split on the component of

the basepoint by a map of spaces

so that rtiStp) is a direct summand ofrti(S / BEp)tp) for > O. Here f is afunctor
from spectra to CW complexes defined in Section 1.
(We have changed the statement somewhat to be closer to our notation and
point of view. In particular, the statements in [4] and [18] apply to p-primary
factors, rather than p-localizations.)
We show in Section 5 that our map 6 satisfies condition (i) and thus by (ii) we

may apply (iii). Then 0.1 becomes equivalent to the Kahn-Priddy theorem. For
note that the preceding implies that there is a commutative diagram in which
the rows are cofibrations:

S(p)S- A SPPS(p) SPPS(p)

1
(S/x BZp)p)

h

Atp) S(p) KZ(p).

We note in passing that T(Xtp))
_

(TX)tp)for any convergent functor T. Taking
rt, of this diagram we get

(7,

(7,
h

rc, SPPS(p)

H,Stp).

(7, (BEp)p)

/z,A(p)

Here the rows are exact and k’ is the splitting of Kahn-Priddy. The kernel of the
Hurewicz homomorphism is the image of rt,A in (7,. So ker h

_
ker i. The

reverse inclusion is clear, as the map h factors through i.

COROLLARY 0.2. The statement 0.1 is still true ifSPp is replaced with Zp. 1
We note that the map 4) of (i) above may be given by a transfer construction,
say, as in [18]. Also, 0.1 extends to the statement that either of the groups there

is equal to the image of

t," It, B,p A Sip -+
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1. Notation and basic definitions

1.1. We will usually work in the category , of based (compactly gen-
erated) CW-complexes and continuous maps. We let be the non-degenerate
basepoint of such a complex. Also, -w means a weak homotopy equivalence,
and a, X is the stable homotopy of the space X.

1.2. As far as spectra, we use those of[l]; we also use his smash products of
spectra. Not all spectra will be useful to us. We will occasionally have to restrict
ourselves with the following.

DEFINITION 1.3 (cf. also p. 42 of [8]). A spectrum X is strongly converyent if
and only if there is an N with each X, (n + N)-connected for n >> O, and for each
q, the structure maps

fk" $1 AXk -’ Xk+l
are (q + k)-connected for almost all k.

1.4. Thejhnctor fl. Let Y be a strongly convergent spectrum with cellular
structure maps. If X is a finite CW complex, H(X)= [S A X, Y] satisfies the
axioms for Adams’ version of Brown’s Representability Theorem [2], and there-
fore is isomorphic to [X, fl Y] for some CW complex fl Y. A map of spectra
Y Z induces [X, tlY] --, [X, flZ], a natural transformation. So there is a
homotopy class of maps f: flay ---, flZ inducing this natural transformation.

If Y S A Y’ for some CW complex Y’, flY
_
flS A Y’ may be taken to be

given by the construction of Barratt-Eccles, [7].
Our only use of fl is in discussing the Kahn-Priddy theorem.

1.5. Symmetric products. Let E, be the symmetric group on n letters. Let X"
be the n-fold CW product of the CW complex X with itself (retopologized as
per 1.1). We let E, act on X" by permuting the coordinates. The nth symmetric
product of X is SP"X X"/E,, the orbit space of the action of E,. Note that
there is an inclusion of X into SP"X, given by x --, x x x x x ,. We will
not be concerned with the diayonal inclusion, x --, x x x x x x, in this paper.
Note that there is an analogous inclusion of SP"X into SP"X, rn < n. At the
end of this section we discuss the cell struc_ture of SP"X (and the other functors
we are about to introduce" SP", Z", and Z"). For now it suffices to know that
SP"X can be given a CW structure. Furthermore, we will make SP"-X a
subcomplex of SP"X. We define the nth reduced symmetric product to be

SP"X SP"X/SP"-X Xt")/E, X A’"A X//n

There is a map S A SP"X -, SP"(S A X) given by

x... x --} (t x... x (t

This means we may extend to a definition of SP" on our category of spectra.
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1.6. Cyclic products. Let Z, Z/nZ. We may analogously define the nth
cyclic product ofX to be Z"X X"/Z,. The cyclic group acts by cyclic permu-
tation of coordinates. We have X --, ZX as before. If km n, k --/= 0, then

X X X X=--+X X X X * X X2 X * X X * X X

k-1 k-1

defines a map Z=X ---, Z"X. If rn n, then it is not clear how to proceed. All this
extends to spectra as with the symmetric products.

1.7. Now SPX ),>_o SP"X, where we set the conventions SP1X X,
SPX ,. We note Deleanu’s [10] version of the Dold-Thom [13] theorem"

THEOREM 1.7. Let f: X Y be a map of connected CW-spaces. Then the
homology sequence off is naturally isomorphic with the homotopy sequence of
SPf: SPX -- Sp Y.

Note. We have obvious natural maps which make the following diagram
commute:

Z"X SP"X

Z"X SP"X

SPX

There is also a commutative diagram

X SP"X

SP"- IX SP"X

, SP"X CX

SP"X

in which the rows are cofibrations. We will show that (localized at a prime p)
the two rows are homotopy equivalent in the stable range.

1.8. Localization. We use Zp)for the localization of the spectrum Z at the
prime p (cf. [1, p. 201]).

If G is an abelian group, we use p G for the p-primary part of G.

Appendix. Symmetric and cyclic products as CW complexes

We describe how to obtain a CW structure on SP"X, given a CW complex X.
This is done in such a way that it is natural in X, SP"- aX is a subcomplex of
SP"X, and so that iff: X --, Y is cellular then so is SP"f In particular SP"X is
given cellular structure as SP"X/SP"- X. The structure for cyclic products will
have analogous properties. For all of this, note that it suffices to give a natural
cell structure to X" such that each a e E, is either the identity on a cell eor is a
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homeomorphism of e onto some other cell ea. This is the cellular analog ofthe
simplicial decomposition of [24]. We will not attempt to do more than this, as
the notation would get rather ghastly, to no real purpose.
The whole point of what we do is that the sets of fixed points of a e E, are all

subcomplexes. We arrange this by "subdividing" certain cells of X". Let A be an
indexing set for the cells of X. Recall that the cells of X" are of the form
e, e,. We wish to alter the structure we give to the images of those
cells e,, e,, with i zj for some 4: J. Up to permutation of coordin-
ates then, we have to describe what to do with a cell of the form

X X X e2 X X e2 X X

rl ?’2 rj

where Zri n. Such a cell will be given the product structure arising from the
structures we place on each

ei X X ei-- (eoq)ri.

r

The structure on (%)i will match the structure on (%)’+ under all possible
inclusions.

Specifically, what we do is describe a cellular decomposition of (I), where d
is the dimension of the cell e,. The cells in X" are the images of these cells under
the maps of the e, x e, into X. Let r ri. Triangulate (Id)ri as a simpli-
cial (hence CW) complex by taking as rd-simplices the sets of points

x-.. x i with

using the lexicographic ordering. We do this for each r @ Yr. The other cells are
to be the faces of these simplices. Note that the lowest dimension in which we
get something new is d, corresponding to the diagonal i. Cells in
lower dimensions arise from products of cells of lower dimensions. We then use
a homeomorphism

h

(Ia, i)
to tell us how to attach these new cells" map them by inclusion to I, follow by
h, and then use the map including (e,, oti) into (X’, X,e_ 1).

2. Convergent functors

In their paper [19], Kan and Whitehead present a notion of "convergent
functor", defined on the category of semisimplicial spectra. Examples include
the set functors SP", SP", Z", and Z", as extended to that category. The other
standard example is Milnor’s F, the "loops on suspension" functor. In this
section, we will discuss topological analogues of the semi-simplicial version.
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A comment on all this fuss is perhaps appropriate. One might well ask why
the semi-simplicial version isn’t good enough. The problem is that the topologi-
cal functors so not seem to be well-related to their semi-simplicial analogues
under the realization and semi-simplification functors. Also the axioms in [19]
are such as to give little hint of what sort of ingredients are essential to the
proofs, the price of being so elegantly simple.
The first requirement on a convergent functor is that it be a functor taking

spaces to spaces. It should preserve homotopy; if one wishes to have this as an
axiom then one should work in a category where the morphisms are homotopy
classes of maps. We give our axioms for a convergent functor below, after
stating what is to be proved about such a functor. The concerns of this section
have been dealt with in a number of other ways, and the proofs will be deleted
in the interest of brevity. See also [5], [6], [7], [22], and of course [19].

Properties of convergent functors. Let T be a convergent functor. Then we
wish to have the properties of Theorem 2.1 above: the functor T extends in a
certain sense to spectra, and the homotopy of T is a homology theory of spectra.
This latter follows from the property that applying T to a cofibration of spectra
gives a cofibration of spectra.
Here extending to spectra means simply that there is a natural map

S1/x TX T(S/x X)
for all spaces X. The alternative approach is to view this as giving an extension
of T, say T’, which maps spaces to infinite loop spaces, as in [22], by taking the
adjoint of the above natural map, and forming a limit construction. In all cases
the existence of such a map seems to either be one of the axioms or to follow
fairly easily from them.

All of the other properties follow by classical techniques from one hard
result, which appears as one of the axioms in [22]:

PROPOSITION. Let T be a convergent functor. Then T preserves cofibrations
in a stable range. In other words let A B be n-connected spaces and let
C B/A; then (for n > 1) 7r, TC 7 TB/TA for k < 2n 1.
To prove this, one needs some connectivity axioms. In particular, iff: X Y

is n-connected, Tf must also be n-connected. Then [19] or [7] show (in a
semi-simplicial context) how to reduce the above to the following, which seems
to be best approached by building it into the axioms:

Property. Let X be (m- 1)-connected and let Y be (n- 1)-connected.
Then the natural map TX v TY---, T(X v Y)is (m + n- 1)-connected.

Here is our version of a convergent functor: Let f, be the category ofCW
complexes with basepoint, with all continuous maps as morphisms, as in
Section 1. Let -, be the category of based compactly generated Hausdorff
spaces. Throughout this section T is a functor from qY, to , induced by a
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functor of -,. Thus given a nice space X, T gives us another space, TX; when
we add in a specific cell structure on X, we get back a specific cell structure on
TX. We assume that if A is a subcomplex of X, TA is a subcomplex of TX.

DEFINITION. Let T:, cg, be as above. T is a chain functor provided
there is a functor T’ of graded free abelian groups with C, T(.)= T’C,(’),
where C, is the cellular chains. T is diagonally continuous provided a certain
map 0 is continuous for all spaces X and Y in cg,. We define 0 as follows. Let
x X. Define ix: Y X/x Y by ix(y)= x/x y. Then O: X/x TY - T(X Ix Y) is
given by O(x/x z)- T(ix)(Z). Note that this is natural in X and Y. We say T is
convergent provided:

(1) T(,)
(2) T preserves direct limits of directed sets.
(3) (T(X v Y)),

_
p+q=, T(Xp v Yq). (n-skeleta condition).

(4) T is a chain functor.
(5) T is diagonally continuous.
Please note that the comments of Section make (3)-(5) above fairly clear

for the functors we deal with in this paper.
Note. It appears that the work of Brown-Douglas-Filmore could to some

extent be dealt with in the framework of convergent functors. On the other
hand, cellular structure for their functors would be a nuisance to define, and an
approach such as [22] might be better.

3. Basic technical connectivity results

This section contains assorted connectivity results, most of which are corol-
laries to results which may be found in several papers. These papers are
referred to at the appropriate places.
Our proofs deal with symmetric products first, followed by discussion of

properties of the cyclic products.

Proof of 3.3(a). The pertinent reference is [28]. There is a filtration

SP"(S1/X) A,
_

An_
__ __

A Sx/xSP"X.

Here A, {(tl/x) x x (t.x.)e A. there are at most different num-
bers among the tj’s}. Let

u [i1" iz iq]
be a partition of n. Let Aq,

_
Aq be the points with representatives having ix of

the tj equal to s l, i2 equal to s2, and so on, for some s >_ s2 >_"" > Sq. Then

Aq/Aq_. V (Aq,/Aq_l).

Snaith and Ucci show

Aq-----E-- Sq A (spi’x Aspiqx) v Sq Spix A H Spix Aspiqx
Aq-1 j=2
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Now SPiX is (k 1)-connected if X is, for 1 _< __< n. So Aqn/Aq_ is at least
(q + 2k- 1)-connected. Hence Aq/Aq_ is (q + 2k- 1)-connected (q _> 2).
Thus

A,,/A SP"(S /x X)/S /x SP"X

is at least (2k + 1)-connected. This proves 3.3(a).

We will need more detailed information about the SP". One of our first
concerns is the connectivity of SP"Sk"

vr(p, ,) pi (0 _<_ < p) be the p-adic decom-LEMMA3.5. Let k >_ 1. Let n /_,i=o ai a
position of n. Set

l= a k+2(p-1) pJ +aok-2.
i=1 j=0

Then (SP"Sk)(p) is at least l-connected.

Note. We haven’t defined what we mean by localization of a space. One
may use a constructive method on the (homotopy) category ofCW complexes,
as in [15]. Alternatively, one may regard the statements involving X(p)as the
obvious equivalent statement concerning the homotopy ofX modulo the Serre
class f# of torsion groups with no element having order equal to a non-zero
power of p. Either interpretation leads to the given statements concerning
localized spectra.

Proof of 3.5. This follows fairly easily from [23, Corollary 2, p. 69]. The
point is that + 2 is the least degree in which an element ofH*(SP"Sk; Zn) can
occur. So l+ 1 is the similar degree for H,. But as k > 1, SP"S is
(k + 1)-connected [24]; in particular it is 1-connected. So the Hurewicz
theorem mod p applies; note that H,(S/i"S; Z) is.either torsion prime to p or
else is detected by the mod-p homology.

as
Remark 3.6. Notethat 2(p 1) =1=0 P/= 2(P 1), so can also be written

(r(_n) )
r(p, n)

1=2n--2 a + ., aik-2.
\i=1 i=0

As ai < n, is definitely larger than n + aok 2. Thus ao =P 0, 1 already
puts us in the stable range.
We note in passing that if X is (k-1)-connected, SP"X/X is

(k + 1)-connected (at least)(cf. [24]).
We make a slight digression at this point in order to look directly at what

SP"(’) does to cofibrations at the space level. Results sharper than those of
Section 2 are possible. There is a natural map p.: SP"X/SP"A SP"(X/A),
where n > 1 and A

_
X.
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LEMMA 3.7. Let A, X, and X/A be connected spaces. Then ifX(p)and Atp are

(k 1)-connected (k >__ 1), there are recursively definable functions l(n, p, k)and
l’(n, p, k) such that SPnXtp) is at least 1-connected (n >_ 2) and the map (pn)(p) is at
least l’-connected.

Let the connectivity of SP"Sp be re(n, p, k)(see above). We have

and
l(n, p, k)= min (l"(n, p, k), m(n, p, k))

l’(n, p, k)-- l"(n, p, k)+ 1,
where we define
l"(n, p, k)= min {k + l(n 1, p, k), /(2, p, k)+ l(n- 2, p, k),

/(3, p, k) + l(n 3, p, k), l([n/2], p, k) +/([(n + 1)/2], p, k)}.

Proof We begin with n 2. The proof will then proceed by induction on n,
with a subsidiary induction on the number of cells on the CW-complexes in
question.
There is a cofibration (up to homotopy):

P2

X/A /x A Sp2x/-ffZA -p2(X/A) ....
If Atp)and Xt)are (k 1)-connected, (X/A/x A)t, is (2k 1)-connected. Thus
P2 is an isomorphism on Hi for < 2k 1. Using a result of Nakaoka men-
tioned above, SP"X/X is (k + 1)-connected [24]. Thus if X, A, and X/A are
connected, the fi2 terms above are 2-connected. In particular, the Whitehead
theorem applies, so P2 is 2k-connected. S2X(2) is (k -3

I-- 1)-connected, as may be
seen now by induction over cells and attaching maps. For p 4: 2, -PZX(p)is
(2k 1)-connected, since p2Sk is. For n > 2 we proceed inductively, suppos-
ing both results known for 2 < rn < n. Let F be the points collapsed to the
basepoint under p,, so that we have the cofibration (up to homotopy type)

F(p) - (SP"X/SP"A),p) (SP"(X/A))(p).
Filter Ftp) by letting Fk be the points of F(p)with at least k coordinates in Ap).
Then we have

Now
F,, ...c F F(p).

F,/F2 - SP"-’(X/A) A A(p),

F,_ (X/A A SP"- 1A)(p),
F,,_2/F,,_

_
(-2(X/A) ASp"-2A)(p),

and in general,

F._ 1/F,_j+, - (PJ(X/A) A SP"-JA)(p) for 1 <j<n- 1.
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Thus F(p) is at least/-connected, where is the minimum of the connectivities of
the F,_j/F,,_j + 1. This gives rise to the ugly recursive relations appearing in the
statement of the lemma, since then determines the connectivity of (p,)(p), as
indicated. |
Of course, the problem remains: we need to solve the number-theoretical

questions implicit in the definitions of the recursive functions and l’. Consider
a fixed prime p, and suppose n < p2. Then

2n+nk-2

m(n, p, k)= 2p + k 4
2n + (k 2)(n p + 1) + (n -[n/p]p)k 2

Suppose n < p now. Then

l"(n, p, k)= min {nk 1} nk 1,

so l’(n, p, k)= nk. Now

l(n, p, k)= min (nk 1, 2n + nk 1)= nk 1

l(p, p, k)= min (pk 1, 2p + k 4).
Ifk_>2thisis2p+k-4;ifk= litisp-l. This proves"

if n < p,
if n= p,
if p < n < p2.

ifn < p,

LEMMA 3.8. If n < p then l’(n, p, k)= nk. If k > 2

l(n, p, k)= Ink 1 if n < p,
t2p+k-4 ifn=p.

The same holds for n < p if k 1.
We can carry this a bit further. Suppose n > p. Then we may inductively

show that SpnX(p) is (2n + k- 4)-connected, using the definition of l". In
particular, we have"

COROLLARY 3.9. SP"X is at least (2n+k-4)-connected, if X is
(k- 1)-connected, k >_ 1.

This agrees with results obtained by Nakaoka. We restate 3.8 more
explicitly"

COROLLARY 3.10. Let 2 <_ n <_ p, p prime. Let k >_ 1. Suppose Ate) and Xt,) are
(k- 1)-connected, where A and X are connected CW-complexes. Then ’"Xtp
is (nk 1)-connected if n < p and is (2p + k 4)-connected ifn p, k >_ 2. Also

(p,)tp)" (SP"X/SP"A)tp) SP"(X/A)tp)
is nk-connected.

Corollary 3.10 leads easily to:

PROPOSITION 3.11. (SPPX/X)tp)--* SPPXto) is 2k-connected for (k- 1)-con-
nected X, k >_ 1.
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Proof of 3.2(a) and (b). The above proves (a) for strongly convergent spec-
tra. Recall our convergent functors result" SPP(.)/(.) and SPP(.) are both
convergent functors. So

(SPPX/X)(p) "w SPPS/S A Xtp -w SPPS A X(p) "w SPPX(p)
To prove (b), use the same technique. The result holds for S because if n 4: pk,

-ff"S is at least (2/- 1)-connected (3.5), and the argument of 3.11 now works.

LEMMA 3.12. nt SPp’+ iS 0 for 0 < <_ 2pr+ 3.
This is an easy corollary of 3.5.

Proof of 3.1. Due to our convergent functor results, we can consider the
question in the form

SPzS A X(p) SPaS A X(p) KZ A X(p).
The result follows from homological connectivity, due to our hypotheses on X.

We now consider the analogous results for cyclic products [25].

Proof of 3.3(b). It is fairly easy to see this for X Sk by using the known
cohomology structure. We may then finish with a filtration argument as in the
proof of 3.3(a) above, using homological information this time to verify connec-
tivity. If A X, then we are interested in the map

Z X/Z A
The point of Section 2 is that this is a homotopy equivalence in a stable range.
So we can use this to do induction over the cells of X.

Proof of 3.2(c). It suffices to consider

(z.s/s) x x.
The result follows from the fact that Z’S/S- PS is a (co-)homology iso-
morphism in a stable range. Probably the easiest way to see this fact is to use
the identification of ’S in Section 4 below, which doesn’t rely on 3.2(c).

Proof of 3.2(d). For this we need the information from Section 4 below
concerning ZPrSk. The reader may find a description ofthe cohomology of ZPrSk

in Swan [29]. It is then obvious that ZP"S has the wrong cohomology mod p to
be the cofibre of Zp’- ISk ZP’Sk, even when attention is restricted to the stable
range.

4. Identifying various spaces and spectra

This section is devoted to identifying the representing spectra ZPS(p)and
SPPStp). The reader will note that our results generalize those of[17]. The basic
technique is from Snaith-Ucci [28]. Although SPPS has the "right" cohomol-
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ogy, it is hard to identify, so our proofs start with 4.1, since the group action is
much closer to being free than with E,. We then go on to prove 4.2, which is
more central to our interests.
One interesting property here is that the fixed point set roughly corresponds

to the suspension coordinates. The situation seems to be such that the action of
Ep, in a stable context, might as well be free. Using an induction based on [24,
p. 131], one can show that the fixed point set from SPPSk is (2k 1)-connected
at p.
We also note an interesting corollary to Section 2. Let

y(k)__ y/.../ y (k times)
be the k-fold smash product. Let H

_
Ep, be the wreath subgroup p r p.

Then we have:

PROPOSITION 4.3. X’)/H - (SPPS)(r) A X(p).
This makes it easy to calculate the cohomology ofthe Liao F-product for H.

The action of the Steenrod algebra on this cohomology is clear. The appro-
priate analogs hold for SPv, Zp, and Zp, using Zp r Zp for H in the latter two
cases.

Proof of 4.3. Note that
prXtv)/H Spp... Spvxtv).

As SPPX(p) - SPaS/x X(,) by Section 2, the right hand side is just (SPPS)(r)/x X(p),
as claimed.

Finally, we also obtain the homotopy type of 2PrSk as a join:

PROPOSITION 4.4. ZPS Sr/x BZp /x BZp2 A /x BZpr /x S.
Again, this makes the cohomology easy to deal with.
4.5. The technique of Smith-Ucci [28]. Although they deal with S"Sk, note

that E, may be replaced by Z, without changing the arguments.
Let (D, S) be the unit disc and sphere in R with usual inner product

(X, y) Exiyi. If we have an orthogonal decomposition R W ) WE such
that W1-L WE, we may set Di D Wi and Si S Wi (i 1, 2). Then ifwe
let indicate the join of two spaces, we have

(o, s),
a homeomorphism of pairs. The map is given by

f([sx, y, t]) sx//1 x + y.
We now apply this with 1= nk and W1 {v e (Rk)"lvl v.}. The sym-
metric group E. acts trivially on W1, hence on D1, when considered as acting
on R"k by permuting blocks of k coordinates.
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PROPOSITION [28]. There is a homeomorphism of pairs

SP"(D S

Here/1 is the homeomorphic image (under projection to the orbit space) of
Dm. Similarly for q. By SP"(Dk, Sk- we mean the orbit space under the action
of Z, on

((D)", (D)"-1 x S-’)
(end of recollection).
We now do the obvious. Collapsing subspaces to a point we get
1 ,(S2/Z,)/; ,(S2/Z,)-SP"Sk. We have a space of the form
A, C/B, C- (A/B) , C. So

SP"Sk= Sk (S2/E.)= Sk+ / (S2/Z.).
We now note that Z, plays an illusory role in the above, and that all this works
for any subgroup of Z,. In particular, the analysis works for Zp. We therefore
get

LEMMA 4.6. 2PSk - Sk+ / ($2/Zp).
The advantage of what we’ve done so far is that we’ve isolated the diagonal

inclusion, which is what is left fixed by Zp, p prime. This is seen by the above to
correspond to the suspension coordinates.

All we have to do now is note that S2 S (’ W2 is the set of points v of (Rk)p
with Zvi 0 and ll a. Here v (vl, Vp). In particular, Zp acts freely
on $2! But $2 is a (pk-k-1)-sphere. So $2--$2/Zp corresponds to
(EZp)pR-R-1 -- (BZp)pk-k-1. Stably, this gives us a homotopy equivalence and
proves 4.1.
Note this technique fails for composite n. We will return to this technique

after identifying SPPS. Note that our natural map ZpSk/Sk -- ZPSk may now be
seen to induce homology isomorphisms in at least the stable range. Thus we
obtain the rest of the proof (see Section 3) that ZPS/S _, ZPS. Also"

COROLLARY 4.7. ,ZPSk is min (2k- 1, k + 1)-connected, k >_ 1.

Proof of 4.2. The key here is our identification of ZPS and of the cohom-
ology structures. So all we need is"

LEMMA 4.8. ZPS-- SPPS in cohomology maps the cohomology of SPPS iso-
morphically onto the summand corresponding to the factor

Thus the map

(S s/ BZ.), (S/ S / BZ.). 23 --, SPS.
induces a cohomology, hence homotopy, isomorphism.
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(Concerning the word "factor", note the wedge splitting of [16]. One of the
factors has the cohomology mod p of S/ S/ BEp.)

Proof of 4.8. We begin by noting that H*SPPS and H*ZPS map onto H’S,
so the long exact sequences in cohomology of S

_
ZPS and S

_
SPPS break

into short exact sequences. So for our purposes it suffices to look at the map
f

ZPS SPPS and see what effect fhas on integral cohomology. As H*(SPPS; Z)
is a direct summand of H*(KZ; Z), all elements have the right order, and we
may as well look at cohomology with Zp coefficients. We know the stable
zero-dimensional class maps correctly, because the corresponding homotopy
classes do" oS survives in oKZ. It remains to note that in H*(ZPS; Zp) the
corresponding Steenrod operations are also non-zero on the zero-dimensional
cohomology class. This follows from Nakaoka’s calculations [25, p. 89,
Theorem 13.2].

4.9. Proofof4.4. We first work through the case n p2. Consider applying
4.5 with W1 the subspace consisting of all vectors of the form (v 1, v2, v p, v 1,

rE, vp,...). Then Zp2 acts freely on $2, and (D1/S1)/Zp2 is homotopy equiva-
lent to ZPSk. Thus Zp2sk -- ZPS (BZp2)N, i.e.

,p2s ’ S2/ BZp / BZp2 A S.

An analogous argument works for ZP’S taking W1 to be the subspace of (Rk)pr
with

i Ypr-l+i 2pr-1+i (p-1)pr 1+i for < < pr-1

we get ZP"S
_

ZP’-IS BZp. This leads to an obvious inductive argument.
Note that the result is unstable, but we duck the question of figuring out what
skeleton of BZv we’re dealing with.

5. Identifying SPPS S / S

In Section 4 we identified the stable homotopy types of ZPS and SPPS as
S/ S1/ BZp and S/ S1/ BY,p (or rather, its p-primary component). As SPPS is
the cofibre of S -} SPPS (when we localize at p), the Puppe sequence gives us a
map

( SPPS --} S /x S

The Kahn-Priddy map k" S/x BEp --, S is also such a map (suspend once). See
Section 0. We prove that these maps are stably homotopy equivalent by show-
ing that 6 is an isomorphism on rt2p_ 3 + (the + 1 because of the extra suspen-
sion in SPPS). We now indicate how this may be done for the prime p 2; the
proof for p 4= 2 is completely analogous. We’re concerned with maps from
r RP to a, the stable 1-stem. As both are Z2, it suffices to prove that 6, is
onto. Suppose not. Then r/e r maps to r/’ =/= 0 in rt2 Sp2s/x S 1, where r/gener-
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ates al. As 2 SP"S 0 for n _> 2, and as these are all torsion groups, r/’ must
map to a non-zero class in

2 SPS / S1 H2 S1 O,

contradiction. The point is that the SP" represent what could kill r/’ in passing
from SP2 successively through the SP". Alternate proof: we really need show
the map is "the" essential map. But the fact that the Steenrod squares are
non-zero on Sp2s suffices.

6. Symmetrization is not always fatal

Our original goal was to prove the following generalization of 0.1 which is
equivalent to conjecture 84 of [21]:

Conjecture 6.1. Let h and be as in 0.1. Then

ker (h/ id: rr,Xtp 7,SPX(p) H,X(p)) ker (i/ id: rt,Xtp) - ,SPPX(p)).
Unfortunately, there are some very simple complexes on which 6.1 fails.

Counterexample 6.2. Let v represent a generator of 2 3 S , Z8. Let

T ---S k_3 C(S AS3).
We claim that 6.1 fails for X Tv. Consider the following commutative

Note that our previous work implies that the rows and columns are cofibration
sequences (up to homotopy). Passing to homotopy localized at 2 we get an
analogous diagram with exact rows and columns. Consider r/generating

5SAS4
1S Z2.

Now v,(r/)= v or/= 0, so there is an r/’ in zt5 T corresponding to r/. Also
there is generating

rt s S/ S4/x RP - cr 1RP Z2

which maps to r/. Furthermore, (v/ id), Ov which is non-zero in

zt s S/ S /x RP - tr4 RP Z2.

So if there is an rt T/ RP which maps to r/’, it has to map to as well,
contradiction. So q’ survives into rt5 spE(Tv)tp).



SYMMETRIC PRODUCTS 543

6.3. The prime 3. Unfortunately, there is no obvious low-dimensional
analog of 6.2 (perhaps the size of the prime is related to the complexity needed
in a counterexample ?). Rather, consider the following approach. Let c1 gener-
ate 3rt3 S Z3. Let o{2 generate 3rtvS Z3. The homotopy class with which
we can work a trick similar to the above is the Toda bracket (el, el, e2).
Namely, lifts in a stable situation to a map from the mapping cone of to S.
As 3 al 4 0, the above Toda bracket is zero. So we have a composition which
is zero, factoring through the cone of e 1. There is an analogous Toda bracket in
B3/BY2’s stable homotopy which is non-zero. Thus we’re in a situation like
that of 6.2 above: looking at Toda brackets as compositions of lifts ofmaps, we
have a composition zero and its analog non-zero. A diagram-chase finishes the
argument off.

Remark. As ker (6,: a,(B,p)(p) ,S(p)) =fi 0 for all p, one expects similar
counterexamples to exist for other primes.
We note the following proposition (due to G. W. Whitehead).

PROPOSITION 6.4. Let k’ be as in Section O. If deg fl < deg , then
(k’()) k’().

COROLLARY 6.5. 6.1 holds for T, the cofibre of 7 a, where is one of the
followiruj

(1) .,.
(2) p 2:q, rl2.
(3) p 3: (1, 2, ill, (X, t ill’

Proof of 6.5. Substitute 7 for v in the diagram of 6.2, fixing the dimensions
up. One then needs that 7 6 0 implies k’(6)7 0 for 6 in the stable hom-
otopy of

T/cells below top dimension
_

S/x S / SIIo
This follows from 6.4 and from checking low dimensional cases (the 6 with

161 -< I 1)by looking at tables (cf. [3], [30], or your favorite compendium of
Adams Spectral Sequence calculations).

Proofof6.4. Work unstably with the f"S", using the fact that these approxi-
mate fS.
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