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HOLOMORPHIC RETRACTS IN COMPLEX n-SPACE
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L. F. HEATH AND T. J. SUFFRIDGE

1. Introduction

Let B denote the unit ball in C with sup norm (i.e., B is the unit polydisk in
C centered at the origin) and let/" be its closure. A holomorphic retract of B.
or (/].) is a subset D of B. (or/.) such that the identity function on D can be
extended to a holomorphic function F" B. D (or a continuous function F"
/. D that is holomorphic on B). Thus F(B.) D(F() D) and F F F.
The function F is called a holomorphic retraction on B (or/). In [3] Rudin
gives the example (z, w) (z, h(z)) (where h is an arbitrary holomorphic func-
tion fro,m the unit disk into itself) as an example of a retraction on B2 and he
points out that the retracts of B. are unknown, n > 3. In this paper, we show
that the retracts of B are all essentially of the type given in Rudin’s example. In
particular, let J be a subset of {1, 2, n} of cardinality p < n and let
M {z B" zj 0 ifj J} B,. For 1 < j < n, let Fj be holomorphic on M
and bounded by 1 with F(z) z whenever j J. If

(1) O {(Fx(z), F2(z), F.(z))’z M}
then clearly D is a retract of B.. What is not so clear is that conversely, ifD is a
retract of B. then D has the form (1).

Notice that, as in the case of the Euclidean ball in C" [3], even though the
retracts of B. are rather simple--aside from a permutation they are the graphs
of holomorphie functions from B to B._ ---the retractions may be quite com-
plicated. For example, if 0 < < 1 and F(z, w) is an arbitrary holomorphic
function (complex valued) on B2 such that IF(z, w)l < t(1- t)/2 when
(z, w) B2 the function

(2) [(1 t)z + tei’w + (z e"w)2F(z, w)](1, e-’)
is a holomorphic retraction of B2 onto {z(1, e-"): Izl < 1).
The holomorphic retracts of . are also given by (1) except of course the

functions F are continuous on/. and the possibility exists that some of the F
may be constants of modulus 1. A non-trivial example of a holomorphic retract
on B2 is the map

(3) (z, w)---)(1, zw).
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In [4] Shields proves that iff and 9 are continuous functions on the closed
disk of the complex plane and are holomorphic on the open disk and map the
closed disk into itself and iff 9 9 f, then f and 9 have a common fixed
point. This result was extended to polydisks in C2 by Eustice [2] and to the unit
ball of a finite dimensional complex inner product space by Suffridge [5]. In
each ease, the method of proof was to consider the closure of the iteratesf f,
f2 f f, f, =fof.- off (denoted by F(f)) and to conclude that this
compact topological semigroup (F(f))contains a unique idempotent. The
problem thus reduces to a study of idempotents in the semigroup of maps that
are holomorphic on the open unit ball, continuous on the closed ball and map
the closed ball into itself. The operation in this semigroup is, of course, function
composition. It is clear that the idempotents in this semigroup are retractions
of the closed unit ball and conversely.

In this paper, we find all holomorphic retracts of B and/ (as remarked
above). We also find all holomorphic retractions on B and/, i.e., we find all
holomorphic idempotents on B. and B as described above, and we extend the
result of Shields concerning common fixed points of commuting holomorphic
maps to C".

2. Linear retractions on B.
Let b" B. B, be a biholomorphic map (i.e., is holomorphic and one-to-

one, maps B. onto B. and has a holomorphic inverse). As observed by Eustice
[2], F" B, B. is a retraction if and only if 4-a F b is a retraction. Given
a B,, it is well known and easy to see that the function qa defined by

(4)
is a biholomorphic map of B. onto B. and tp: b_,. If F is a retraction and
0 F(B,,), then F(0) 0 (because F is the identity on F(B,,)). Otherwise, assume
a F(B,,) and replace F by G tp- F tp. so that G(0) 0. Thus, in order
to determine the retractions of B,, it is sufficient to determine all those retrac-
tions F such that F(0) 0. Note also that if F and G are as above, then F(B,) is
of the form (1) if and only if G(B,)is of the form (1).
Assuming F is such a retraction of B, i.e., F(0) 0) we may expand F in a

power series F(z) L(z) + (1/2)D2F(O)(z, z) +... where L DF(0): C" ---} C" is
linear. Clearly, F F F L L L. Further, applying Schwarz’s lemma we
see that IIF(z)[I <-Ilz[I (the norm is sup norm) so for z
complex, 0 < 2 < 1, we have

IIF(;(z/llzll)) <- I’ll and II( /;)F(;(z/llzll))ll <- 1.

Letting 2 0 we conclude IIL(z)ll -< Ilzll so L (restricted to B,)is a retraction of
B.. As we will see, the nature of F is determined by L so we first determine all
linear retractions of B,.

Consider a linear map constructed as follows. Let {J, J2, Jr+ 1} be a
partition of {1, 2, n}. Let Mk {z Cn"

zj 0 ifj Jk}, k 1, 2,..., + 1
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and write C" M1 + M2 "+" "+- Mr+ 1. For each k, 1 < k < we wish to
choose a vector k from Mk that satisfies

{ ifjCJk
k (,, 72k, .), Ijkl

ifj 6 J,
(we are ignoring Mr+ for the moment). Also, for each k, 1 < k < we wish to
define a linear functional on C" that is 0 on M1 ifj # k. Let {a: j J,} be a
finite sequence of positive numbers such that j j, a, 1 and let

(5) Tk(Z) ’, ’kajkZ,i
CJk

where / denotes the complex conjugate of /. Note that

Also, if we replace z on the right hand side of (5) by T(z) we obtain

?,,(,()) 2 () ().
jJ jJ

Thus we have shown that the linear map r(z) = T(z) is a retraction of
B.. Further, if we now change the coordinate , j J+ , 1 k so that

=x ] 1, j J+ , then T is still a retraction of B.. We will show that
every linear retraction is of this form.

THEOREM 1. IfL (restricted to B,) is a linear retraction ofB. then there exists
(i) a partition {J1, J2, Jr+ 1} of{i, 2, n}for some (we allow Jt+ 0

but JR # 0 if 1 < k </),
(ii) vectors Yk (Ylk, Y2R,-", Y.R), 1 < k < such that

I])jkl 0 ifj Jk L) Jt+l and I])jkl 1 ifj Jt+l-tl ifj JR k=l

and
(iii) linear functionals TR, 1 < k < l, 9iven by Tk(Z) gkagkZg where

agk > 0 ifj Jk and agk 1 such that

(6) L(z) E TR(Z)yR.
k=l

In case L =- O, we take 0 so that (ii) and (iii) above are vacuous and the rifht
hand side of (6) is taken to be O.

Proof If L 0, choose w L(B.), Ilwll > 0 and let J = {1, 2,..., n} be such
that j J =:, wgl IIwll, For 1 < j < n, let Lg denote the jth coordinate func-
tion of L. Then Lj(z) "k=l jkZk and IL,<z) _< Ilzll. Thus, IIL -< 1 and
’,,=1 fljk < 1. However, wg Lg(w)so j J implies

(7) Iwl IL(w)l _< I11wl-< I/111wll-< Ilwll Iwl,
k=l k=l



128 L.F. HEATH AND T. J. SUFFRIDGE

Thus equality must hold throughout (7) and we conclude 7,=1 1,
0 if k J and

(8) jkWk IjklWj, j, k J.

Claim. For some j J, fl# > O.

Proofofclaim. Fixj J so that some flpg 0 and choose p J to maximize
Since

kJ kJ kJ qJ

we conclude

(9)

Thus equality must hold at each step of (9)so in particular, I ,,I 4=
fl,l flnl" Setting k j yields and using (8) yields fl > 0.
With q e J fixed so that fl > 0, let J1 J be such that fl 0 if and only if

j e J. For any k e J1, the proof of the claim shows that fl** lfl,l, 1 N j N n.
Further, applying the proof of the claim withj p q yields [fll fl when

LetM {z C’zg 0 ifj J} and let z e M satisfy zg wg, when j e J.
Arguing as in the derivation of (7) and (8) with w replaced by Lj(z), j e J1
shows that for k e J, fl, 0 ifj J. Thus, we have shown that fl, 0 ifj,
k e J. Otherwi, for some k e J, let Jq satisfy fl,g 0 if and only if j e J’.
Since fl, 0, q e Jq so flg 0 ifj J by the above proof. By the choice of q
we conclude J J.
We may now apply the proof of the claim with p j e J and k e J1 to

conclude Iflkl flgg and by (8), flgk Wk IfljklWj flkk Wj, k, j J.
In the notation of the statement of the theorem we want a fl, j e Jx and

T(z) j aj z where wj/w, j e J.
If J {1, 2, n} the proof is complete.
Otherwise, set M {z e C"" zj 0 ifj e J a} C for some q < n. Clearly,

L(M) m. Let a) denote the restriction ofL to m]. Then )is a retraction
ofB and we may continue as above to define J,..., Jt , Y and T,
as in the statement of the theorem where either =a J {1, 2, n} or
) 0. Of court, as soon as J is identified, 1 N j N l, this determines that
7=0whenjJ,lNkNl.

If= J 1, 2, n} the proof is complete (with J+ 0). Otherwise, it
remains to t J+ {1, 2, n} = J and to determine L, j Jr+

For 1 N k N + 1, let M {z e C"" z 0 ifj J}. Then L(M+ a) 0. Let
j e J+ and 1 N k N I. If we determine the value of L on M for each such j
and k then L will be known. Let 7k (7], 7) be defined by 7 if
p J+ , 7p 0 if p e J+a (note that 7p is not yet defined for p e Jt+ ). If



HOLOMORPHIC RETRACTS IN COMPLEX n-SPACE 129

Z Mk, since L is a retraction and L(Mt+ x) 0 we conclude

L;(z) L;(L(z)) L;( Tk(Z)/k) Tk(z)L;(/k).
Thus, set k =L;(’k)and the proof is completed by observing that
Et--, -<  ecause -< I1 11 .en e IIL II-<

It is interesting to observe the properties of the matrix A associated with a
linear retraction L according to theorem 1. By replacing L by a L a- for an
appropriate permutation of coordinates or, we may assume

J, {1, 2, n,}, J2 {n, + 1, n2},

Jt+a {nt + 1,..., n}.
Then A has the form

A2

0

B

where each Aj is a square matrix with the following properties"

(i) each element on the main diagonal is positive,
(ii) each row of Aj is a multiple of the first row
(iii) the norm of each row of A is 1.

Further, each row of B is a linear combination of the preceding rows of A.

3. Holomorphic retractions on B.
We now return to the problem of finding all holomorphic retractions on B,.

We will prove the following theorem.

THEOREM 2. Suppose F: B,--. B, is a retraction and F(O)= O. If L is the
linear part of F, then by Theorem 1, L(z) tk- Tk(Z)yk where Tk and k are
described in Theorem 1. Usin9 the notation of Theorem 1, there exist functions
G, G2, G: B, B1 and functions H Bt B1, j J+x, such that the
coordinates F of F satisfy F(z) Gk(Z)Yjk ifj Jk, 1 <__ k < land

Fj(z) Hj(GI(z), G2(z), G,(z)) ifj J,+ 1.

The functions Hj, j Jt+l are arbitrary (except that the ranoe is in B1). The
functions Gk, 1 < k < l, are arbitrary except for the followin9:
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(i)
(iii)

the linear part of Gk is Tk and
the non-linear part of Gk satisfies
(Gk- Tk)(Z)= E (;kZ;- qkZq)(;RZ;- pRZp)gp,q(Z)

P,q Jk- {j}

where j is a fixed element of JR.
Thus, the nonlinear part of GR has a second order zero on

for all !z B," 1 for all jJR}
Using Theorem 2, we can prove the following characterization of the retracts

of B..

THEOREM 3. Suppose D is a retract of B,. Then there exist J c {1, 2,..., n}
and functions

F;: M - B1, l < j < n, where M={zCB,:z;=0 ifjJ},

such that F;(z) z; for j J and such that

D {(fl(z), F2(z), F.(z)): z M}.

Proof of Theorem 3. As noted in Section 2, it is sufficient to prove the result
under the assumption F(0)= 0 (where F is a retraction such that F(B,)= D
and D is assumed to contain 0). We set J {ix,J2, ,jr} where JR JR (the same
notation as in Theorems 1 and 2) and the theorem clearly follows.

Proof of Theorem 2. As remarked before, the linear part of F is a retract
and is therefore given by Theorem 1. We may assume

J, {1, 2, n,}, J2 {n + 1, n2},

Jl+ {hi ’ 1,..., n}

(otherwise, replace F by tr- F a where tr is an appropriate permutation of
coordinates). We know

La(z) al za + 02a2z2 + ""+ #.,% z.,

where the ak are the positive numbers akl and the k are the ’kl of Theorem 1.
Setting Zk rlkZx, 2 < k < n (denote the set of such z B, by M) we have
F(z) zl + = P;(z) where P; is a homogeneous polynomial of degree j.
Using the fact that Ifl(z)l _< Izx [when [[z[[ [zx [we readily see that
P;(z) --0 on M. For example, with Zk 2kZ, n < k <_ n, z M we have

P,,2(z) z2 h(2,, + ,, 2.)
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and for zl small, we must have

z + P1,2(z)
Z1

Hence h 0.
We wish to show Fk(Z)= rlkFl(z) where Lk(Z)= rlkLl(z), 2 < k < nl (i.e.,

F(z) M). Write

F,(z) Ll(z)rl + E P(z)

where 2 < k < nl, and Pkj is homogeneous of degree j. As shown above for F 1,

Pkj 0 on M. Let p be a minimum such that for some k, 2 < k < n 1, we have
Pp r/ Pp(z). We now use the fact that Fl(z) Fl(F(z))and Fk(Z) Fk(F(z)).
By definition of p and the fact that PI and Pk are zero on M, we conclude

that P(F(z)) and Pk(F(z)) consist of terms of degree > j + p- 1 > p.
Therefore,

Pip(Z) LI(Plt,(z), P2p(z),
and

Pk,,(Z) Lk(Plp(z), P,,,,(z)) rl,L, (Pl,,(z),
P,,.p(z)) lkPlp(z).

This contradicts the choice of p and completes the proof of the existence of G,
in the theorem satisfying (i). A similar argument for J2, Jt completes the
proof of the existence of the Gk in the theorem.
Now consider Fp, PJ,+I (p fixed). Since Lp(z)=lk=l T, k Tk(Z),

E=I "lYk 1, we may write

Fp(z) ZRGR(Z) + hp(z)
k=l

where hp consists of terms of degree >_ 2. Let q be a maximum positive integer
such that Fp can be written as

q-1

Fp QR(G1, G 2, G) + Rk
k=l k=q

where Rk is homogeneous of degree k >_ q. Then

q-1

Fp Fp(F) E Qk(G1, G2, G) + RR(F).
k=l k=q

We conclude that Rq(z) consists of the terms of degree q in Rq(F). These terms
are clearly R(L). In view of the nature of L, R(L) is some function, say S.,, of
(T1, T2, Tt). However, it is now clear that S(T1, T2, T) consists of the
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terms of degree q in Sq(G1, G2, G). Hence we may write
q- [k__RkFp QR(G1, G2, G)/ S(GI, G2, G) + S(G, G)
k=l

where the last quantity consists of terms of degree _> q + 1. This contradicts the
choice of q and proves that Fp(z)= Hp(G(z), G2(z), G(z)) for some Hp.

It remains to prove that (ii) holds for G,..., G. We can take

Gl(z) =azl + 2a2z2 + ""+ nanZn + Pk(Z)
k=2

and t k Zk z,, 3 k n,, Oz z2 e’z,. For such a z,

G(z) z + a2z(ei 1)+ z(ei 1)f(z)
since Pk(Z) 0 on M {z B." kZk Z, 2 k n}. Statement (ii) will
follow iff(z) 0 when 0.

Observe that IG(z) z for the z under consideration if we assume that

levi I for j 2 n. Therefore

+ 1)+ (e’*- 1)f(z)l 1.

We conclude that (a2 + Re f(z))(cos 1)- sin Imf(z) O. Now
divide by [l and let 0 parately through positive and negative values to
e that Im f(z) 0 when 0. Since f(0) 0, we must have f(z) 0 when

0 and the proof is completed by the following obrvations. Fix z,
1 > z > 0 and expand

0t :, z,)
about the point ( 2 zx, , z, w, + , w.) where w. + , w. are chosen
so that Iz 2 Iw l, <j n. Clearly

V(z z,, , z, w, + , w,) 0.

We have shown above that d#(2 z,..., w)/dz2 0 and by a similar argument
dr(n2 z, w,)/dz O, 3 j n.

Since w. + , w. are arbitrary, it follows that derivatives of all orders of #
and d#/dz(2 j n) with respect to the variables Zk, n < k n are zero at
the point under consideration. Thus (ii) is proved for G- T. A similar
argument for Gk- , 2 k l, completes the proof.

Example. Suppose F is a retraction of B2 and F(0)= 0. Then (see [2])
except for a possible permutation of coordinates F is one of the following"

(i) (21, z2)-o (z1,
(ii) (z,, zz) (z,, f(z,)),
(iii) (z, z2)--* [tz + (1 t)e-izz + (e-iz2 z)2f(z, zz)](1, ei) where

is real and 0 < < 1,
(iv) (z,, zz) (0, 0).
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The reader might find it helpful to determine the retractions of B3 assuming 0
maps to 0. Aside from permutations, there are seven different types of such
retractions" The identity has three dimensional range, there are two different
types with two dimensional range (i.e., a two manifold, not necessarily affine),
there are three different types with one dimensional range and the zero map is
the seventh type.

4. Holomorphic retractions on B
Now assume F" B - B is continuous, F restricted to B is holomorphic and

F is a retraction. If F(B) B, then Theorem 2 applies and we have the
additional condition that all functions involved extend to continuous functions
on/.. Therefore, we assume F(B,)el: B,. This means Fj(z)[ 1 for some j,
1 _< j _< n and z 6 B. so by the maximum principle, F(z) C (constant) for
some j. By replacing F by or-1 F a for an appropriate linear map cr that
permutes coordinates, we may assume

F (C1, C2,..., CR, FR/I, F,)
where 1, 1 < j < k, and F" B,--. B1, k + 1 < j < n. Let

M {z e C"" z;=O, l < j < k} B,,_k.

Then e" M M defined by

(10) i G (0, 0, 0, G1, G2, G.-k)
where G(z+ , z,) F+(Ca, Cz, C, z+ , z,) is a retraction (that
does not necessarily take 0 to 0). Thus, the nature of G was determined in
Section 3. It now follows that

k

Fk+(zl, z2, z,)= G(Zk+ 1, Z,,) + 2 (Zp Cp)hp(Z)
p=l

for some complex valued holomorphic hpj defined on B.. For 1 < p < k, set

(11) Hp(z) (0, O, O, hm(z), hp(z), hp,_k(z)),

(12) F(z) (C1, C2, Ck, O, O, O)
k

+ z.) + (z.
p=l

We have proved most of the following theorem.

THEOREM 4. If F" , . is a holomorphic retraction on . (continuous on
B, and holomorphic on B,), then there is a permutation ofcoordinates such that if
F is replaced by a- F a, then F is tiven by (12) where G and Hpare 9iven by
(10) and (11) respectively and G is a retraction of

M= {z" z O, 1 <j < k} B,,-k.
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Ifeach ofthefunctions involved is continuous on B. then a necessary and sufficient
condition on the functions Hpfor F given by (12) to be a retraction is that

k

G(z. , z.) + (zp Cv)Hp(z) G(M) for all z e B,.
p=l

Proof. All that remains to complete the proof is to check F F F to
verify the last statement in the theorem. This easy verification is left to the
reader.
Note that the map

(z, z) (ei, e-iz, z) (ei, z + (z,
is an idempotent on B z that has zero linear part. This can only happen for
retractions on B when the map is constant.
The following theorem clearly follows from Theorems 3 and 4.

THEOREM 5. Suppose D is a retract of B. Then there exist

J{1, 2, n}, M={z.’zi=O ifjcJ}

and functions Fj" M --, B1, 1 < j < n, such that Fj(z) zj ifj J and such that
D {(Fl(z), Fz(z), F,(z))’z M}.

5. Common fixed points of commuting maps

We will prove the following extension of Shields [4] and Eustice [2] results.

THEOREM 6. Letfand g be continuous maps of, into itself that are holomor-
phic on B, and assumef g g f. Thenfand g have a commonfixed point in B,.

Proof. Assume the theorem is true for all positive integers k < n. Following
Shields method [4], let F(f) be the closure of the iterates off (i.e., set fl =f,
f. =fo f,-1, n 2, 3, so F(f) is the closure of {f"’n 1, 2, ...} in the
topology of uniform convergence on compact subsets of B). Then F(f) con-
tains a unique idempotent H that is therefore a retraction of/]. (see [6]).

If D H(/.) then since f(z)=f(H(z))= n(f(z)) D whenever z D, f
maps D into D and similarly # maps D into D. Suppose D 4: B.. Then

M={ze.’zj=O ifjCJ}

given by Theorem 5 has dimension k < n. Define f" M --, M by

? (L, L, L)

wheref 0 ifj J andre(z) f(Fl(z), F2(z), F,,(z))whenj 6 J (where F1,
F2, F, are given by Theorem 5) and define similarly, Then f and
commute and have a common fixed point c (cl, c2, c.) M by the
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induction hypothesis. Clearly, (Fx (c), F2(c), F.(c))is a common fixed point
for fand O.

If D =/., then H is the identity and f is a biholomorphic map of/. onto
itself (see [6]). Thenf(z) (dpx (zl), b 2(z2),..., b,(z.))where z , z 2, z, is a
permutation of {1, 2, n} and each j is a linear fractional transformation
that maps the unit disk onto itself. Note that if P is the fixed point set offthen
9(P) c P for z P 9(z) 9(f(z)) f(o(z)). Thus, if zj 4: j, for some j, P lies
on the manifold z; b;(zj) and the induction hypothesis implies that land 9
have a common fixed point. Therefore, we need only consider the case

f(z) (4l(z,), 42(z2),
If any of the b; has a unique fixed point c; in the open disk, then again, P lies on
a manifold of dimension < n and the induction hypothesis yields a common
fixed point. If some bj has two fixed points on the boundary, then the iterates of
b converge to one of these points (see [1], [7], and [8]) contradicting the
assumption that F(f)contains the identity. The only remaining case is f the
identity. Clearly, any fixed point of 9 is a common fixed point forfand 9 in this
case. This completes the proof.
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