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1. Introduction

Let Ae() denote the algebra of all bounded linear operators on an infinite
dimensional complex Hilbert space t. For A and B in ’(t), let r,AB (or
simply r,) denote the operator on (t) defined by r,(X)= AX- XB. The
purpose of this note is to give a characterization of the case when the range of
(r,), is norm dense in ().

For a bounded operator T on a aanach space, let a(T), a,(T), a(T), and
a(T) denote, respectively, the spectrum, point spectrum, right spectrum, and
left spectrum of T. Following [2], let

a(T) (2: T- 2 is not surjective}
and let

a,(T) {;t: T- 2 is not bounded below}.
(For T in (), a(T)= a(T) and a,(T)= a(T).)In [2], C. Davis and P.
Rosenthal proved that

() (A)- () _-- { : (A), t ()}
and a,(r,) a,(A) a(B);

moreover, it was shown in [6] that try(r,) a,(r,) and a,(r,) at(r,).
The preceding results show that r, is surjective if and only if at(A)

a(B) 0. In [9], D. A. Herrero gave an example of the case when (r,) is
proper but norm dense, and he raised the question of characterizing this case.
Part of the motivation for this question arises in the study of the closure of
similarity orbits. Let 6e(T)- denote the norm closure of the similarity orbit of
an operator T; operators R and T are asymptotically similar if T (R)- and
R 6e(T)- (equivalently, 6e(R)- 6(T)-)[1]. In [9] it is noted that ifsr(r,AB)
is dense, then A @ B is asymptotically similar to each operator on
whose operator matrix is of the form

(When r, is surjective these operators are similar [11, p. 9].)
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If A B, z is called the inner derivation induced by A. In his study of
derivations [14], J. G. Stampfli proved that the range of an inner derivation is
not norm dense [14, Theorem 1]. D. A. Herrero noted in [9] that by modifying
Stampfli’s proof, it can be shown that if (zAB) is dense, then A and B satisfy the
following spectral condition, hereafter referred to as property (H) (see below
for notation):

(H) (i)
(ii)

t:rre(a tTle(n 0;
0.

D. A. Herrero inquired whether, conversely, condition (H) insures that (z)
is dense. In this note we provide the following characterization of the case when
z has dense range; as a consequence it will be shown that condition (H) does
not always imply that ’(z) is dense.

THEOREM 1.1. The following are equivalent:

(1) zaB has dense range;
(2) (i) trre(A the(B 0 and

(ii) There exists no nonzero trace class operator X such that BX XA;
(3) If Y () and e > O, then there exists X #(,ug) such that

AX XB- Y is compact and has norm less than e.

Section 2 contains the proof of Theorem 1.1 and some of its consequences.
Section 3 contains several examples, one of which shows that when () is
dense, trr(A) th(B) may have nonempty interior. In Section 4 we consider the
question as to whether ’(z)- ’() implies the injectivity of zna; such is the
case, for example, if A and B are normal.
We conclude this section with some notation. Let () denote the ideal of

all compact operators in 5(), and let denote the Calkin algebra
5a()/scg(). For T in 5(), let denote the image of T under the canonical
projection of 5()onto the Calkin algebra. Let the(T tr,() (the left essen-
tial spectrum of T), and let trre(T --o’r() (the right essential spectrum of T).
Let ’AB or " denote the operator on defined by ())=/]- )/]; is
surjective if and only if a,e(A) 0 [5, Theorem 3.8].

Let (C1, I1"111) denote the Banach space of all trace class operators in
for K in C1, Ilgll trace ((K*K)a/2). Let {ei}i, denote an othonormal
basis for g. Let K’: M denote a function such that E,, IlK’e,
Then K’ has a unique extension to a (bounded) trace class operator K. Indeed,
if x ai ei is in , then

lie a,K’e,l[ < E la, IlK’e,][ < (E [IK’e,I[)’/(E la, l)’/,
so a unique bounded extension K exists. Moreover,

trace ((K’K)’/) E ((K*K)’/e,, ei)< E [I(K*K)’/e, E Ke, < o

[13, pg. 37],
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so K is trace class and IIKII _< ’, liKe, II. (Note that the latter inequality may
be strict.) In the sequel we will use this inequality, and the above method for
defining trace class operators, without further reference.

Let (Coo, II) denote the Banach space of all compact operators on . Thus
(Coo)* C1 and (C1)* L’() [13, page 48]. Under these identifications we
have (rAn ]Coo)* ZnA C and (- ZnA Ct)* rAn [5]. It follows from stan-
dard duality results that if (ZAn) is dense, then ZsA[C1 is injective, and that
ZSA C1 is injective if and only if c has dense range [12, pp. 94-96]. For
X c C, X* denotes the set of complex conjugates of the elements of X.

Acknowledgment. The author is grateful to Prof. Domingo A. Herrero for
suggesting the problem under study and for other helpful contributions men-
tioned above. The author also thanks the referee for several helpful comments.

2. The case when the range of z is dense

We begin with a proof of the main result.
Proof of Theorem 1.1. For the proof of the implication (1) (2), we first

show that if tr,e(A trte(B : 0, then z does not have dense range. Let
2O-re(a) trle(B); thus there exist orthonormal sequences {e.}=,
{f,}- such that

[I(A 2)*e. < 1In and [I(B 2)f, < 1In for n > 1 [7].
Let Y denote the partial isometry defined by Yfn en (n > 1) and Yg 0 if
(g, f,) 0 for all n; we will show that Y is not in the closure of the range of z.

Let X be in Lf(); then

II(A 2)Xf. e. z II(A A)Xf. z

+ 1 2 Re (Xf., (A 2)*e,,)_> 1 21lXllln.
Now for n > 211Xll, 1 21[xll/n > 0, and so

Itax xn- YI[ >- sup [I(AX XB Y)f,
n> 211Xll

sup I1( )xf ell IIx( )f
n> 21lXll

sup (1- 21lXllln)’/- Ilxll/n
n> 211Xll

=1;

thus Y (z)-. Next, if zAs C1 is not injective, then since (- zsA C1)* zAs,
it follows that (ae) is not dense.
We next prove the implication (2) (3). Let Y be in &a(). From condition

(2)(i), tr,(A) and tr(B) are disjoint, and thus is surjective [5, Theorem 3.8]; in
particular, there exists X (V) and K (f) such that AX- XB
Y + K. Since, from condition (2)(ii), zna C1 is injective, then an Coo has dense
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range (see the discussion at the conclusion of the introduction). Thus there
exists a sequence (Kn} c v(cf) such that AKn KB - K. Now

A(X K)- (X K)B- r
and

A(X K) (X Kn)B Y K (AK KB)
Thus (2) (3), and since (3) (1) is obvious, the proof is complete.
The first application extends J. G. Stampfli’s result that the range of an inner

derivation is not norm dense (op. cit.). An operator X in () is said to be
quasi-invertible if X is injective and has dense range. Let A and B be in
B is said to be a quasiaffine transform of A if there exists a quasi-invertible
operator X such that AX XB. Operators A and B are quasisimilar if they are
quasiaffine transforms of one another.

COROLLARY 2.1.
dense range.

If A and B are quasisimilar, then zan and Zna do not have

Proof If A and B are quasisimilar, then tr,e(A c tr,e(B 0 and tr,e(B c

the(A :/: 0 [5, Theorem 2.1], so the result follows from Theorem 1.1.

Remark. For the case A B, J. G. Stampfli also proved that ()lt(z)-
is nonseparable 14, Theorem 1, Corollary]. D. A. Herrero has observed that an
analogous result holds for ran whenever are(A) c trt(B :p O. Note also that if
B is merely a quasiaffine transform of A, then T,AB may be surjective (see [5,
Example 3.11]).

It follows from [5, Theorem 3.8] that An is bounded below if and only if it is
injective. The next result is an analogue for the case when an is surjective.

COROLLARY 2.2. :ran is surjective if and only if it has dense range.

Proofi In one direction the proof is obvious; it thus suffices to assume that
e is not surjective and to prove that () is not dense. Ife is not surjective,
then (A) c the(B) 4:0 [5, Theorem 3.8]. Under this assumption, let Y and
{f.) be as defined in the proof of Theorem 1.1. It was shown in that proof that
Y is not in (z)- we now observe that I7 ()-. Indeed, if K (), then
Kf - O, so for each X in () we have

IIAX XB- Y- gll >- sup (1 211xll/n)’/z-IlXll/n- Ilgf. II-- 1.
n> 211Xll

Thus IIAX XB Y KII > 1, and since K is an arbitrary compact operator,
then  11-> 1. Since x is also arbitrary, we conclude that
e
Let A, B, and Y be in (W) and let S S(A, B, Y) denote the operator on
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whose operator matrix is of the form

A Y
0 B)"

Whether S has a proper hyperinvariant subspace is an open problem, even in
the case when tr(A) is disconnected [4, Section 2] 10, problem 10]. On the other
hand, it follows easily from Rosenblum’s Theorem [17] that if a(A) and a(B) are
disjoint, then @ {0} is a hyperinvariant subspace for S (cf. 11, page 8]). The
following result is a mild extension of this fact.

COROLLARY 2.3. If fie(A) w tre(B is disconnected and zan has dense ranoe,
then S has a proper hyperinvariant subspace.

Proof Since (ZAn) is dense, then S is asymptotically similar to T A ) B
(op. cit.). It follows readily that ae(S) ae(T) (see [7] for the relevant properties
of essential spectra). In particular, since ae(T tre(A ae(B), then tre(S is
disconnected, if ae(S a(S), then tr(S) is disconnected, so the existence of a
proper hyperinvariant subspace follows from the Riesz decomposition [11,
page 32]. If tre(S 4= a(S), then S or S* has an eigenvalue, and thus S has a
proper hyperinvariant subspace in this case also.

Remark. In Example 3.3 (below) we give an example of operators A and B
such that (ZAB is proper and dense, fie(A) tre(B is disconnected, and
tre(A) tre(B) 4: O. In this example, the existence of a proper hyperinvariant
subspace for every S(A, B, Y) is, however, obvious, since A has eigenvalues and
ap(A) ap(S). This example suggests the following question.

Question 2.4. ift(ZAn) is proper and dense, does A or B* have an eioenvalue ?

With regard to this question, note the following. If l(ZAn) is proper, then
trr(A) c at(B)4:0 [2], while if l(ZAn)is dense, then are(A) trte(B)=O
(Theorem 1.1). If both conditions hold, then either tr,e(A # tr,(A) or ate(B) #
at(B). Thus, if I(ZAn) is proper and dense, either A* and B has an eigenvalue.

3. Examples

The first example will be used to show that the spectral property (H) does
not imply that () is dense.

Example 3.1. We show that if U is a nonunitary isometry and r(A)< 1
(where r(A) denotes the spectral radius of A), then l(zAV*) is not dense. Since U
is a nonunitary isometry, the von Neumann decomposition implies that there
exists a reducing subspace /= such that U I// is a unilateral shift of
multiplicity one. Let {e.},% denote an orthonormal basis for // such that
Ue, e,+ (n > 1).
We first consider the case r(A)< 1, and we will show that in this case
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ker (ZV*A) contains a nonzero trace class operator. Let P denote the orthogonal
projection of onto ’ and let h denote a nonzero vector in . We define an
operator Y by the following relations"

Y](1-P)=0; Yel h; Ye,+l A*"h for n > 1.

We extend {e,} to an orthonormal basis {e.} w {fi}il for . Since r(A) < 1,
then= A"[[ < oe (cf. [11, page 54]); in particular,

il

Thus, as discussed in Section 1, Y is trace class. Now YUe, Ye.+ A*"h
A*(A*"-h) A*Ye,; moreover, since P commutes with U, YU(1- P)=
Y(1 P)U 0 A’Y(1 P). Thus YU A’Y, so Y* isa nonzero element of
ker (Zv,a lC). It follows from Theorem 1.1 that (zAv,) is not dense.
We next consider the case r(A) 1. If tr,e(A c he(U*) 4: 0, the conclusion

that (ZAV,) is not dense follows from Theorem 1.1. We may thus assume that
r,(A) and h(U*) are disjoint. Now h(U*) contains the unit circle, T, and
tr(a*) T c bdry (tr(A*)) (since r(A)= 1). It follows that if z r(A*) c T,
then z is an isolated point of tr(A*) and an eigenvalue of A* with finite multipli-
city. (For otherwise, since z e bdry (a(A*)), it follows from [7, Theorem 3.3]
that z e ae(a*); thus e a,e(A) c ate(U*), which is a contradiction.) Thus
tr(A*) T is a finite, isolated part of a(A*) whose corresponding Riesz sub-
space is finite dimensional. Since is infinite dimensional, it follows from the
Riesz decomposition that A* has an (infinite dimensional)invariant subspace
//such that r(A* I’) < 1. In particular, there is a nonzero vector h e /such
that Z= []A*"- h][ < oo. Now we may procede as in the above case to show
that ker (ZV*A) contains a nonzero trace class operator, which implies that
(ZAV, is not dense. The proof of the example is now complete.

If we apply the preceding example in the case when r(A) < 1, rp(A*) 0, and
index (U)4= -oe, then we conclude that ZAV* does not have dense range,
although condition (H) is satisfied (with rp(A*)* tr,(A) c r(U*) 0). (Of
course, (r,av,) is not dense even if index (U) -oe, but in this case condition
(H) is not satisfied since h(U*) coincides with the closed unit disk.) The
preceding example shows that the condition rp(A*)* c rp(B)=0 does not
imply that ker (ZBAI C 1) {0}; on the other hand, it is not difficult to verify that
the converse implication is valid (cf. the proof of Theorem 1.1).
The next two examples show that when N(z) is dense, then r,(A)

may be "large" in certain senses. For an arbitrary operator T, let 6,(T)-
a,(T)\a(T) {2" T- 2 has closed range and 0 < dim ker ((T- 2)*)< oo},
and let

6,(T) at(T)\ate(T
{2" T- 2 has closed range and 0 < dim ker (T) < o}.
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If (AB) is dense, then from Theorem 1.1 (or condition (H)) we have

a,(a) r a,(B)= (a,e(A) 6,(B)) (a,(B) r 3,(A)).
We next show that both rre(A ri(e) and a(e) 3,(A) may be nonempty.

Example 3.2. Let denote a finite dimensional Hilbert space and let 2

denote a separable, infinite dimensional Hilbert space. Let Q (2) denote
a quasinilpotent operator with dense range, and let U denote an isometry such
that 1 $ a,(U) and index (U) : -o. Let A and B denote the operators on

tl @2 given by A 1 0)Q and B 0rt 09 U. Then a,e(A
fi,(B) {0} and tr,(B) fi,(A)= {1}.

It suffices to show that "AB has dense range. Let X (ug) and let
(X)_<,_< 2 denote the operator matrix of X. A calculation shows that the
operator matrix of AX XB has the form

QX21 QX22 X22 U

Suppose dim n < oo and let {e 1, e.} denote an orthonormal basis for
te 1. Let e > 0 and let Y (Y)I _< i,_< 2 denote the operator matrix of an opera-
tor Y. Since Q has dense range, there exists fis 2 such that
Y21 ei < e/n (1 <i< n). We define an operator X21 (fa(l, ,-2) by the
relations X21 ei =f/(1 < < n). Then

IIQx21- Y2t < (QX21- Y21)ei <- I]Qf- Y21 e < "i=1 i=1

Similarly, since (1- U*) has dense range, there exists an operator
X12 a(2, 1) such that

IlX12(1 U) Y12 I1( 1 u*)x2 Y’2

_< }1((1- U*)X’2- Yl"2)e, < e.
i=1

Since cr,(Q) cry(U) O, roy is surjective, and there exists X 22 (2) such
that QX22 X22 U Y22. Finally, let X11 Y11. If X is defined by the opera-
tor matrix (X) _< ,_< 2, then the above calculations show that AX XB Y is
a finite rank operator with norm less than 2e. This completes the proof that
has dense range; note that the proof also shows that IIAX XB- YIIt < 2e.
Our final example shows that when (ZAB) is dense, tr,(A) at(B) may have

nonempty interior and Cre(A tre(B may be infinite.

Example 3.3. Let U denote the unilateral shift of multiplicity one. For > 0
let denote a separable Hilbert space with orthonormal basis {e.}.=l. Let U

for n > 1 Let { i}i--1be the unilateral shift on ti defined by Uie.= e.+
denote a countable dense subset of [3/4, 1]. Let A denote the operator on

Y’.=a of the form A = O)r,U.*,. Let {e,}.+_(R) denote an
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orthonormal basis for of. Let B denote the bilateral weighted shift defined by
Be. (1/2)e.+ for n > 0, and Be. 2e,+ for n < 0. To show that ran has
dense range we first show that zna is injective. Suppose X (of) and
BX XA. Then for n > 1, B"X XA" and so B"Xe. XA"e. 0 for each
i> 1. Since B is injective, Xe 0 for i, n > 1; thus X 0 and so rnA is
injective.

Let cr {z: 3/4< zl _< 1}. we show next that a,(A)= tr,e(A)= or. Since
A* .= O) ri Ui, 6,(A) 0 and so cr,(A) cr,e(A ). Since are(U)
{z: zl 1} and {r,}=a is dense in [3/4, 1], it follows that tr c a,e(A). Since
r(A) 1, it suffices to show that if IAI < 3/4, then 2 q tr,(A). Note that if
c < 1, then U 3=0 03 (U)’ converges in norm to an operator R, such that
(U*-)R, 1 and [IRI[ < /(1- I1). Let I1 < 3/4. For each i, let
i 2/ri, so that I,1 < 1. Now

II(1/r,)R,ll 1/(r,- Ixl) 1/(3/4-I;I).
It follows that Sa = 09 (1/ri)R, is a bounded right inverse for A 2; thus
O’re(A =rr(A)=r.

Next, it is easy to see that there is a rank one operator F such that B + F is
unitarily equivalent to B’= 2U* (1/2)U. Thus

61e(B O’le(B’ {Z: [Z 2) (z: z 1/2};
in particular, Crre(A and trte(B are disjoint. Since also rnA is injective it follows
from Theorem 1.1 that (ran) is dense.
Note that if 1/2 < AI < 2, then B’ 2 is Fredholm with index (B’ 2) 1

thus {2:1/2 < IAI < 2} c cS(n). It follows that cr,(A) aB) contains the open
annulus {z: 3/4 < z < 1}. Finally, note that

{z: z 1/2} c rte(A bdry (re(B)).

4. On the injectivity of r

If rAn is surjective, then rnA is bounded below [2]; moreover, if (f, I1 I1,)is
any norm ideal, then ran If is surjective (and right invertible in (f)), and

rnAIf is bounded below (and left invertible in 5e(f)) [6]. It is thus natural to
inquire whether analogous results hold when ran has dense range; does it
follow that rnA is injective? does ran If have dense range in f?
The first result of this section allows several reformulations of these

questions. We begin by recalling some results on norm ideals. In the sequel, for
1 < p < oo, (Cp, II I1)denotes the Schatten p-ideal in An(of)[8], [13]. Thus (Ca,
I1"11 x) coincides with the space of trace class operators and (Coo, I1"11 )coin-
cides with the space of all compact operators on of" moreover, C 0 Cp=l p"

Let denote the ideal of all finite rank operators on of. Recall that for each p,
is p-norm dense in C, [13, pp. 72-73]; moreover, if (, It II )is any norm

ideal and F s , then IIFll-< [IFll -< IIFIl [8, page 69].



120 LAWRENCE A. FIALKOW

PROPOSITION 4.1. Let A and B be in L’(t). The followino are equivalent"

(i) z Ct has dense range"
(ii) ZAal Cp has dense tahoe for each p, 1 <_ p <_

(iii) ZBA is injective.

Moreover, if ZAB has dense range, the above properties are equivalent to each of
the following properties"

(iv)
Iv)

BA[ Cp is injective for each p, 1 <_ p <_ "
BA Coo is injective.

Proof. The equivalence of (i) and (iii) follows immediately from the identity
ZBA (--ZAB C1)*. The implication (ii) (i) is obvious. To complete the first
part, we suppose that (zA C1) is dense in C, and we prove that (ii) holds.
Let Y 6 C and let e > 0. Let F be a finite rank operator such that [IF Y[] <
e/2. Since F 6 C, there exists X 6 C such that I[AX XB Fl[ < Then
X 6 C, and

Thus, (ZAn C,) is dense.
We now assume that zae has dense range. To prove (ii)= (iv) we first let

1 < p < . If 1/p + 1/q 1, then zza[ C, (-van[ C)* [5]. Since VAn[ Chas
dense range, then ZnA Cp is injective. Also, since (zea [Coo)* z An [C , which
has dense range, then ZnA Coo is injective. Finally, since zan has dense range,
Theorem 1.1 implies that zea[Ct is injective.
The implication (iv) (v) is obvious. To complete the proof we prove that

(v)(iii). Since ZAn has dense range, Theorem 1.1 implies that tr(B)c
tr,(A) =0, so nA is bounded below [5, Theorem 3.8]. Thus ker (ZeA)
(g), and since ZnA[Co is injective, the result follows.

Remark. The equivalence of (i)--(v) fails if it is not assumed that ’(ZA) is
dense. Thus, if U is a unilateral shift of multiplicity one, then z tv] C (R) is injec-
tive, but ztv is obviously not injective. Note also that the injectivity of nA does
not imply that ran has dense range; indeed [4] contains an example of normal
operators A and B such that are(A a(A) a(B) ate(B but ZAB and "CBA are
injective.
The next result shows that if A and B are normal, then the condition that ZAn

has dense range is equivalent to property (H), which also implies the injectivity
of ZBA.
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PROPOSITION 4.2.
are equivalent"

If A and B are normal operators in q’(), the followin9

(1) r, an has dense range"

(2) A and B satisfy property (H)"
(3) If Y e 2’(Yg) and e >0, then there exists X e 2(YF) such that

AX XB Y is a finite rank operator with trace norm less than .
In this case both zaB and z,a are injective. Moreover, if(, 1[" Ily)is a norm ideal,
Y e o, and e > 0, then there exists X e o such that AX XB Y is a finite
rank operator and [lAX XB- YIl < .

Proof Recall that if N is normal, then fi,e(N)=fie(N)=fie(N) and
(N*)* ap(N)" in particular, a(N) a(N) w %(N). Thus, if ZAn has dense
range, Theorem 1.1 implies that

(i) fie(A) fie(B)---0 and (ii)%(A) fip(B)= O,

which conditions are equivalent to (H) in this case.
For (2) (3), we assume that (i) and (ii) hold. If, additionally, %(A)c

ae(B) %(B)c (A)= 0, then a(A)c a(B)= 0, so is invertible and the
result follows from [6]; indeed, in this case each z 1o is invertible [6, Section 3].
We assume that ap(A) c a(B)4:0 and ap(B) c (A)4: 0, and we omit the
proof of the intermediate cases, which can be treated similarly.

Since each limit point of the spectrum of a normal operator is in the essential
spectrum, condition (i) implies that ep(A) c a(B) and ap(B) c a(A) are finite,
proper, isolated parts of fi(A) and fi(B) respectively. Let e ,..., e, denote the
distinct elements of fip(A)c fie(B) and let fl, flk denote the distinct ele-
ments of %(B) c e(A). Condition (i) implies that

0<dimker(A-a,)< m (l_<i_<n)

and 0<dimker(B-fli)<m(l<i<k);
moreover, from (ii) it follows that # fl for 1 < < n and 1 < j < k. Let

g4gl + ker (A i), 2 -I-,
i=1

1 /ker (B fls) and t/" 2 ,’-;
j=l

thus ’1 and 1 are finite dimensional reducing subspaces for A and B respec-
tively. Let Ai A1 and B Blcfi for i= 1, 2. Clearly fi(A1) c fi(B1) =0;
also, conditions (i) and (ii) and the preceding definitions imply that fi(A 2)
fi(B2) 0. Let P and Q denote, respectively, the projections onto 1 and 1.

Let Y e 5(g) and let e > 0. Consider
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Since A and Bt have disjoint spectra, a modification of Rosenblum’s Theorem
[17] (cf. [11, Corollary 0.13]) implies that there exists Xtt (3(,) such
that A Xtt Xt Bt Ytt. Similarly, if

Y22 (1- P)Y(1- Q)]:,2,
then there exists X22 z (2, 2) such that A 2 X22 X22 B2 Y22.

Let Y2, (1 P)YQI:CF, (,, 2). Let {f, f} denote an ortho-
normal basis for such that Bxf fl, f, i= 1,..., q. Since %(A2) c %(A)
and ap(A) c a,(B) 0, it follows that A2 fl, is injective and thus has dense
range. Let x 2 be such that ]I(A2- flj,)x Y21 fi < e/q (1 < < q).
Define X2x &’(x, Yg2) by X2 f xi (1 < < q). Thus

q

IIA2X2, X2 B, Y2, < E IIA2X2, f X2, B, f Y2, f
i=1

q

EII A2 x, fl, xi Y2, f
i=1

<8.

Similarly, if Y2 PY(1 Q) oF2 + (3C 2, ,), there exists X,2 + &a(3C 2,

), and there exists an orthonormal basis {e, %} for , such that

H(xt2At- BXt2- Yt2)e,[l
i=1

<.

If X X,, Q + X2, Q + x,2(1 Q) + x22(1 Q), then AX XB r has
finite rank, and the above estimates imply that I]AX XB- Y]], < 2e" thus
(3) holds, and the implication (3) (1)is clear.
To obtain the conclusion about norm ideals, we modify the preceding argu-

ment as follows. Let Y and let e > 0. Since a(A 2) a(B 2) 0, there exist
operators A () and B () such that

and

n B] + B2 (@ (fl + f2))
have disjoint spectra. Thus [6] implies that there exists X’+ g such that
A’X’ X’B’ Y. Since

(1 P)A’= A’(1 P)= A(1 P)
and

(1 Q)B’= B’(1 Q) (1 Q)B,
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it follows that

A(1 P)X’(1 Q)- (1 P)X’(1 Q)B (1 P)r(1 Q).
Let X , X2, and X12 be the finite rank operators previously defined, and let

X XQ + X2Q + x2(1 Q) + (1 P)X’(1 Q).
Since x’ , then X . A direct calculation shows that

AX-XB- Y

(A2X2 XEBt Y2)Q + (AtXt2 Xt2B2 Yt2)(1 Q).
The estimates given above in the definitions of X 21 and X 2 imply that both
terms in the last expression have trace norm less than e. Thus AX XB Y is
a finite rank operator such that

[lAX XB- r[l -< AX XB- r[la < 2,

and ,An J has dense range. Since ,Anl C has dense range, Proposition 4.1
implies that ZA is injective; an application of Fuglede’s Theorem [11,
pp. 19-20] implies that VAn is also injective, and the proof is complete.
The above results (particularly Example 3.2 and Proposition 4.2) suggest the

following questions, which we have been unable to resolve.

Question 4.3. If (A) is dense, e > 0, and Y hv(Yf), does there exist
X 6 () such that AX XB- Y is trace class (or even finite rank) and
AX XB rllx <?

Question 4.4. If (ZAS) is dense, is *SA injective?

We include the following results for the sake of completeness. We omit the
proofs, which may be based entirely on those of J. P. Williams for the case
A B [16].

PROPOSITION 4.5 [16, Theorem 2]. (zAs) is dense in the weak operator top-
ology if and only if there exists no nonzero finite rank operator F such that
BF FA.

PROPOSITION 4.6 [16, Section 3, Corollary 1]. (ZAn) is ultraweakly dense
in c’(f) if and only if there exists no nonzero trace class operator K such that
BK KA.

The preceding results show that if (z) is norm dense, then (z) is ultra-
weakly dense, which in turn implies that (z) is dense in the weak operator
topology. It is not difficult to construct examples which show that neither of the
converse implications is valid.
Our characterization of the case when (z) is dense depends on the spectral

condition are(A a(B)= 0 and on the determination that T,BAIC is injec-
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tive. The injectivity of zaA appears to depend on the detailed structures of the
operators A and B, not merely on their spectral properties. For the case when ,4

and B are normal, a characterization of the injectivity of ZAB is given in [4,
Proposition 2.4]; for the case of analytic Toeplitz operators, see [3]. Related
results for decomposable operators and hyponormal operators are contained
in [5, Section 4] and [15, Appendix].

REFERENCES

1. J. BARRIA and D. A. HERRERO, Closure of similarity orbits of nilpotent operators II, preprint.
2. C. DAVIS and P. ROSENTHAL, Solving linear operator equations, Canadian J. Math., vol. 26

(1974), pp. 1384-1389.
3. J. DEDDENS, Intertwining analytic Toeplitz operators, Michigan Math. J., vol. 18 (1971),

pp. 243-246.
4. R. G. DOUGLAS and C. PEARCY, Hyperinvariant subspaces and transitive algebras, Michigan

Math. J., vol. 19 (1972), pp. 1-12.
5. L. A. FIALKOW, ,4 note on the operator X- ,4X- XB, Trans. Amer. Math. Sot., vol. 243

(1978), pp. 147-168.
6. , ,4 note on norm ideals and the operator X ,4X XB, Israel J. Math., to appear.
7. P. A. FILLMORE, J. G. STAMPFLI, and J. P. WILLIAMS, On the essential numerical range, the

essential spectrum, and a problem of Halmos, Acta Sci. Math., vol. 33 (1972),
pp. 179-192.

8. I. C. GOHaERG and M. G. KREIN, Introduction to the theory of linear nonselfadjoint operators,
vol. 18, Translations of Mathematical Monographs, Amer. Math. Sot., 1969.

9. D. A. HERRERO, private communication.
10. H. W. KIM, C. PEARCY and A. L. SHIELDS, Sufficient conditions for rank-one commutators and

hyperinvariant subspaces, Michigan Math. J., vol. 23 (1976), pp. 235-243.
11. H. RADJAVI and P. ROSENTHAL, Invariant subspaces, Springer-Verlag, New York, 1973.
12. W. RUDIN, Functional analysis, McGraw-Hill, New York, 1973.
13. R. SCHATTEN, Norm ideals of completely continuous operators, Ergebnisse der Math., Springer-

Verlag, New York, 1960.
14. J. G. STAMPFLI, Derivations on B(H): The range, Illinois J. Math., vol. 17 (1973), pp. 518-524.
15. ., On self-adjoint derivation ranges, preprint.
16. J. P. WILLIAMS, On the range of a derivation, Pacific J. Math., vol. 28 (1971), pp. 273-279.
17. M. ROSENaLUM, On the operator equation BX- XY Q, Duke Math. J., vol. 23 (1956),

pp. 263-269.

WESTERN MICHIGAN UNIVERSITY
KALAMAZOO, MICHIGAN


