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THE INTERVAL IN ALGEBRAIC TOPOLOGY
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M. V. MIELKE

1. Introduction

An important property of the geometric realization functor (i.e. of the left
Kan extension along the right Yoneda functor of the cosimplicial space of
affine simplexes) is that it preserves finite products. In this paper it is shown
that the category of all cosimplicial spaces that have such a Kan extension is
equivalent to a category of intervals. Some properties of intervals are discussed
and an explicit description is given of both the category of Hausdorff and the
category of finite intervals. It should be noted that each interval X gives rise to
an "algebraic topology" on spaces wherein each standard notion or construc-
tion (i.e. one that is based on the standard unit interval) is replaced by a
corresponding X-notion or X-construction.

2. Categorical preliminaries

If V is a complete, symmetric, closed monoidal category and C is a small
V-category [2, p. xiii] then the V-functor category B Vcp also has the struc-
ture of a V-category [2, p. 150] and the right Yoneda functor R: C - B given by
R(c) C(-, c) is a V-full and faithful V-functor [2, p. 152]. The image of C
under R consists of the representable functors. If A is a tensored V-category [2,
p. 20] and T: C -, A is a V-functor then the left Kan extension of T along R,
LanR T: B- A, is given in terms of coend and tensor by L r= LanR Tc B(R(c), -) (R)A T(c)([2], dual of 1.43, p. 52). Since R is V-full, Lr may be
assumed to satisfy LrR T [2, dual of 1.4.5, p. 56]. If Lr is pointwise (e.g. if A
is tensored and cotensored [2, dual 1.4.4 p. 55]) then for F 6 B,

Lr(F) f B(R(c), F)(R)a Tc f Fc (R)a Tc

since B(R(c), F)= Fc [2, IV.I.1 p. 152]. Hence if Lr is pointwise it is V-left
adjoint to the singular V-functor U r: A -, B given by U r(a)= A(T(-), a) as
the following calculation shows"

A(Lr(F), a) A FC (R) A TC, a A(Fc (R) A TC, a)

V(Fc, a(Tc, a))= B(F, A(T(- ), a))= B(F, Ur(a)).
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The second equivalence follows from the general fact that

A J S(c,c),a .. A(S(c,c),a) for S: Cp @ C Ap

(since end and coend are duals), the third equivalence follows from the
definition of (R) [2, p. 19] and the fourth equivalence follows from the definition
of V-structure of B [2, p. 150]. Thus if Lr is pointwise it is V-cocontinuous [2,
dual III 1.4, p. 114].

2.1 PROPOSITION. If A and B have "products"; i.e. a bifunctor
XA’. A (R) A - A(xn: B (R) B - B)

that is a V-cocontinuous V-functor in each variable and L: B A is a V-
cocontinuous V-functor, then L preserves the product ifand only ifL preserves the
product of the representables.

Proof. If F, G 6 B then F c R(c) (R) Fc and G a R(d) (R) Gd [2, p. 57].
Since Fx- and xR(d)are V-cocontinuous we have

FxnG Fxn J R(d) (R) Gd

d

J" (FxBR(d))(R) Gd

j" (R)

Since L is V-cocontinuous, LF . c LR(c) (R) Fc, LG LR(d) (R) Gd and a
similar argument to the one above using now that LFxa and xALR(d) are
V-cocontinuous gives LFxALG e (c (LR(c)xALR(d)) (R) Fc) (R) Gd. Finally,
the application of the V-cocontinuous functor L to the above representation of
Fxn G yields

Thus the equivalence of L(R(c)xBR(d))and LR(C)xALR(d)clearly gives the
equivalence of L(FxBG) and LFXA LG.

If D: Set ---, V is a finite product preserving functor (monoidal), where Set is
the category of sets and V is a cartesian closed category, then for any category
(i.e. Set-category) C, setting C(c, d) D(Hom (c, d) defines a V-structure on C
for which the V-Yoneda functor R; C --. vcp= B is given by R D’Ro where
Ro: C --, (SetCp) Bo is the Set-Yoneda functor and D’= DcP: Bo B.



THE INTERVAL IN ALGEBRAIC TOPOLOGY 3

Further, if D is exact (preserves equalizers, coequalizers, finite product and
coproduct) then D’ is also exact.

In the special case in which C A is the skeletal category of finite, linearly
ordered, non-empty sets and non-decreasing maps [3, p. 23] then Bo(B)is the
category of simplicial sets (simplicial objects in V [7, p. 4]). The category A is
usually identified with the category generated by the objects [n] (0, 1, n),
n-0, 1, the monos 6i: In-1]-[n] (omit i), it In], and the epis
aj" [n + 1] - In] (takes on j value twice), j In] [3, p. 23] and the relations (,)
[3, p. 24].
We now consider the relationship between linearly ordered sets and A. For a

set X, let X" denote the n-fold product, n 0, 1, Let a i: X" - X"-1, 0,
n- 1, and 6i" X"-1

_
X., i= 1, n- 1, be induced respectively by

deleting, repeating the (n -/)-coordinate, and for fixed points x_, 2 e X let 6o, 6,
be given by (xl,..., x,_ 1) (Xl,..., x,_ 1, 2), (x_, x 1,..., x,_ 1) respectively. It is
readily checked that [n]-- X", ai, 6 a, 6 defines a functor A Set; i.e.
X* {X"} has the structure of a cosimplicial set. IfX is linearly ordered with x_
(2) as the minimum (maximum) point, then setting

Xo=X, X,= {(xl, x,) Ix1 <’"_<x,IcX",n=l, 2,...,

clearly defines a subcosimplicial set X. of X*. Further, if we use g to stand for
an element of S(n), the permutation group on {1, 2,..., n}, and also for the
corresponding map (x, x,) (xo, xo, then

(i) LI [IX. hX, - LI oX, X"
g,h g

is a coequalizer, where the coproducts are taken over all 9, h S(n) and the
maps are induced by the obvious inclusions. Also,

(ii) X, gX, c X, X"
o

is an equalizer where e is the identity of S(n). Furthermore, there exists an
integer n(g) and a map (a composite of certain 6’s)

.(o)

60: X X"

that carries X,to) isomorphically onto X,, 9X,.
The explicit determination of n(9) and 6o can be made in terms of A as

follows" In case X [1], the isomorphism

(0,..., O, 1,..., 1)(n O’s and l’s)" [n] [1], = [1]"

identifies A, or more accurately the underlying cosimplicial set U" A Set, with
the subcosimplicial set [1], of[i]*. Under this identification,
is transformed into 6o 6mk ""6mr" In(9)]- In] where m < ""< mk are the
points of [n] that correspond to the non-fixed points of g in [1], and n(g)=
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n k. The corresponding map (5o 6=k am," Xn{) -- X then induces an
isomorphism

6’" X,g) X, gX,.

If we compose (ii) on the right with h S(n) and replace (9, h) by (9- h, 9) and
by (h-a9, h) we see that

Xn O- hXn Xn h- oXn X X
h

is an equalizer and that

6O- lh 6h- 10 Xn(o- lh) Xn(h g) X. g- xhX..
The map

Uox. Ux.
o o o

induces an isomorphism of (i)onto

Ux. o hX. Ux. x"
g,h

and thus, with the aid of the 6’.-)’s, we obtain a coequalizer

g,h g

2.2 PROPOSITION. There is a bijection between linear orders on X with ()
as the minimum (maximum) element aM subcosimplicial sets X, ofX* for which

X.._, x. X
g,h

coomain 6e o- (-) coy od x. in X., a e o-como,em o o.

Proof In view of the above discussion, it is sufficient to show that the
subcosimplicial sets mentioned in the proposition are defined by linear orders.
Given X,, X2 = X2 defines a relation < on X satisfying:

(1) x < y or y < x (since w is onto for n 2).
(2) x<y and y<x imply x=y. (Since the identity induced map

LI0 x.--, x, coequalizes u and v, there is an r: X" X, such that r9 id,
9 S(n). If (x, y), (y, x) X2, then z(y, x)= (x, y)implies (y, x)= rz(y, x)=
r(x, y)= (x, y); i.e. x y.)

(3) x<yandy<zimplyx<z.(Ifx<y,y<z, andz<xthensincewis
onto (n 3), some permutation of (x, y, z) is in X 3. But this contradicts the fact
that a (deletion of a coordinate) maps X Xz.)

(4) x_ (2) is the minimum (maximum) element (consider the form of
ti: X X2, i- 0, 2).
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Thus (X, _<) is a linearly ordered set. If, is the subcosimplicial set of X,
determined by the order then, by induction, X, .,. Since w is onto, some
permutation g(y) of any y , is in X,. This implies g(y)= y and thus
X, X,. This shows 2.2.
For X [1], the coequalizer of 2.2 can be identified with the coequalizer

(presentation of [1]")

LI [.(g-’ h)] LI In] [I]",
g,h g

which is essentially diagram (,)of [3, p. 34] with E [1]". The argument in [3,
p. 35] (there A(n)denotes Ro[n]) gives the presentation

LI Ro[n(a-h)] LI Ro[n]- (Ro[1])"
g,h g

in Bo. If D’ is exact there is a corresponding presentation of (R[1])" in B.

2.3 LEMMA. Suppose O: F G; A B is a natural transformation offunctors
and is a retract of fl in A (there are maps

ri id). Then !1 O(fl) is an isomorphism, so is 0()" F() G().

Proof The inverse to 0()is easily seen to be F(r)O(fl)-xO(i).
A category A is said to have limits for all functors J --, A if the diagonal

functor AA: A As (Aa(a)(j)= a)has a right adjoint lima: As A [6, p. 229].
If the categories A and B have limits for functors on J we say a functor
F: A B preserves the limit of As if 0() is an isomorphism, where the
natural transformation 0: F limA limb Fs is the adjoint of

FSe: AB F limA Fs Aa limA Fs

for e: Aa limA -- I, the counit of the adjunction. In view of 2.3, if is a retract of
fl in As then F preserves lima if it preserves lima ft. If J is a set, then lima is
product and thus F preserves l-Is aj if it preserves I-Is bj, for a a retract of bj,

jJ.
Recall [2, p. 7] that V-limits are exactly those Set-limits that are preserved by

the representables. Thus in any V-category A that is tensored over V, V-limits
and limits coincide since A(a, -) has a left adjoint.

2.4 THEOREM. Under the previous assumptions on V, A and A, the left Kan
extension Lr of T: A A alon9 the right Yoneda functor preserves finite pro-
ducts if and only if
(*) LI T[n(9-Xh)] LI Tin]---, (T[1])"

g,h g

(with obvious maps) is a coequalizer.
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Proof. Since Lr is cocontinuous and LrR T,

L.r(LI R[n(o-’h)] LI R[n]--, (R[1]))

11 T[n(9-h)]- I_I T[n] LT((R[1])")
is a coequalizer. Thus (,) is a coequalizer if and only if

LT((R[1])n) (LrR[1])" (T[1])".
The argument given in the verification of (2) in the proof of 2.2, but with
X R[1], X, R[n], shows that R[n] is a retract of (RIll)", n 1, 2, Since
R[0] is also a retract of RIll, it follows from 2.3, as above, that L T preserves the
product of representables if and only if (,) is a coequalizer. The result then
follows from 2.1.

2.5 COROLLARY. The full subcateoory of the category of cosimplicial sets
determined by those T: A - Set for which Lang T is finite product preservim3 is
equivalent to the category of linearly ordered, bounded sets in which the mor-
phisms are the non-decreasim3 maps that preserve the endpoints.

Proof This follows from 2.2 and 2.4 with V A Set.

3. Algebraic topologies

Let V be k-Top, the category of compactly generated spaces in the sense of
Vogt 1, p. 229], [9]. k-Top contains the (colimit deficient) category T2 k-Top of
compactly generated Hausdorff spaces studied by Steenrod [8]. k-Top is small
complete and cocomplete [1, Prop. 1.3, p. 229] and is cartesian closed [3,
Prop. 1.9, p. 230]. We view A as a k-Top-category by means of the obviously
exact functor D: Set --. k-Top (discrete topology). Define the category of alge-
braic topologies, Alg T, in k-Top to be the full subcategory of the category of
cosimplicial spaces determined by those T: A - k-Top for which : T[1] is
connected and Lana T preserves finite products. It is clear that the various
notions and constructions discussed in Section 1 are present once T is given.
For example, T-homotopy and T-path space are now defined in terms of TIll
in place of the unit interval and the T-n-simplex is now Tin] in place of the
affine n-simplex. The first condition on T insures that T-homotopy is not
degenerate and the second condition insures that T-topological realization
(= Lang T) preserves finite products and consequently converts simplicial
homotopy [3, p. 57] into T-homotopy. In particular, the T-n-simplex Tin] is
T-contractible, the contraction being induced by (i, j)/j: [n]x[1] [n].
Each property P of spaces defines a category PAlg T: namely, the full sub-

category of Alg T determined by those T for which T[1] has property P. We
thus have, for example, the categories To Alg T, T2 Alg T, and Finite To Alg T
of To, Hausdorff, and finite To algebraic topologies respectively.
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4. Intervals

By an interval X in k-Top we mean a linearly ordered, bounded, non-empty
set X equipped with a compactly generated topology for which the n-fold
product X" (in k-Top), n 1, 2, has the weak (coinduced) topology relative
to the family (gX,l, g 6 S(n), of subsets of X. Let Int be the category of
intervals in k-Top in which the morphisms are taken to be the continuous,
non-decreasing, endpoint preserving maps. As above, each property P of spaces
defines a full subcategory Pint of Int.

If X 6 Int then

LI x, c g-lhX,_ LI x,-, x
g,h g

is clearly a coequalizer in Top (topological spaces) where
X, c 9-1X, X, X" have the induced topology. Again, as in the
verification of (2) in the proof of 2.2, X, is a retract ofX and consequently the
induced and coinduced (by the retract) topologies on X, coincide; i.e.
X, k-Top [1, Cor. 1.4, p. 229], n 1, 2, Since the map
X"to -, X" has a a as a left inverse, 6_ h induces a homomorphism of
Xn(-lh) onto X,, c g-hX,,. Thus

LI x.o-, LI x. + x.
g,h g

is a coequalizer in Top that lies in k-Top, and therefore [1, Prop. 1.3, p. 229] is a
coequalizer in k-Top. In view of 2.4, then, X Tx" A + k-Top with Tx[n] X,
with the induced topology from X" + k-Top clearly defines a functor Int
Alg T. On the other hand, since the underlying functor U" k-Top - Set is exact
(it has both a left (discrete topology)and a right (indiscrete topology)adjoint)
if T + Alg T then UT[1] is a linearly ordered, bounded set by 2.4 and 2.2.
Further, since the inclusion k-Top Top is cocontinuous and since T[n] is a
retract of (T[1] X)" (as above), it follows that

LI o(x.) LI x. LI x"
0 0 0

is a quotient map; i.e. X e Int. It is easily seen, then, that T T[1] defines a
functor Alg T Int that together with the functor X Tx, determines an
equivalence of Alg T and Int. More generally"

4.1 THEOREM. Thefunctor T-, T[1] induces an equivalence ofthe categories
PAlg T and Pint for any property P of spaces.

We conclude this section with a lemma upon which most of the remaining
results depend.

4.2 LEMMA. (a) A space Y has the weak topology relative to a family {K0},
9 G, ofsubsets iffor all x Y there exist g(i) 6 G, 1, n and a neighbor-
hood N of x such that x ’]=a Koti) and S
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(b) Let Y have the weak topology relative to a cover {gK}, g G, where
K Y and G is a group ofcontinuous automorphisms of Y such that x, g(x) K
implies g(x) x. If, for N a neighborhood ofa e K, there are go G and b e N
with go(b) K N then there is a neighborhood of a missing b.

(c) If q: X --, Y is an onto, non-decreasi map between linearly ordered sets
then Y, with the q-coinduced topology, is an interval ifX is. (We call such a Y an
order quotient of X.)

Proof (a) Suppose that W c K0 is open in K0 for all g G. If, for x e W,
N and g(i) are as in (a) then x e W c Kt0 V Kt0 c W for V an open set
in K i= 1, n. Hence

and consequently x e V ((")’=, V) c N c W c N c W. Since V is open the
result follows.

(b) Since Y has the weak topology relative to {oK} and

U h(N K)]h

gK= U (hN hK gK)= (gN hK gK)
h h

gN oK,

W= Ohh(N cK) is a neighborhood of a. If beW then b=h(z) for
z e N K. Hence go(b)= (go h)(z) K and consequently go(b)= z N, a
contradiction.

(c) Since q": X" --, Y" is. a quotient map [1], Cor. 1.11, p. 230], Y" has the
weak topology relative to the sets q"(gX,)= g(q"X,)= g Y.

5. To-intervals
The first result of this section shows the relationship between PToInt and

Pint where P is a divisible (preserved by quotient [5, p. 133]) property.

5.1 THEOREM. PTolnt is a reflective [6, p. 89] subcategory of Pint for any
divisible property P of spaces.

Proof. If q: X --, Q(X) is the quotient map determined by the equivalence
relation R on X e Pint given by x R y if x and y have exactly the same
neighborhoods, then Q(X) is obviously To. If the equivalence classes of R are
convex (x < y < z and x R z then x R y) then it is readily seen that q2(X 2) c
Q(X)2 is a linear order on Q(X) relative to which q is non-decreasing, and
consequently, by 4.2(c) and the fact that P is divisible, Q(X)e PTolnt.
However, if x R z but not x R y for x < y < z then there is either a neighbor-
hood Nx of x missing y or a neighborhood Ny of y missing x. In the first
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(second) case there is, by 4.2(b) with K X2 c X2 Y, G S(2), a (y, z) e
N= X X Nx (Nr x X), b (y, x) N and oo(b)= (x, y) X2 N, a neigh-
borhood U of (y, z) missing (y, x) and consequently a neighborhoodf- I(U) of
z missing x, wheref: p--(y, p): X X2. This contradicts x R z. Finally, since
the fibers of q are indiscrete, any continuous function f of X into a To space
uniquely factors through q, and in particular this factorization is in PTolnt if
f Pint. This gives the result.
A point x in a linearly ordered, bounded, connected k-space X is called a cut

point if at least one segment (denoted by [0, x}, {x, 1] respectively) in each pair
([0, x), [0, x])and ((x, 1], [x, 1])of segments is non-empty and open, where 0
(1) is the minimum (maximum) endpoint of X. Recall [4, p. 150] that the unit
interval can be characterized in terms of cut points. The next result shows that
a cut point property determines some, but not all (see 6.3), of the objects of
Tolnt.

5.2 THEOREM. If each non-endpoint of a linearly ordered, bounded, non-
empty, connected k-space X is a cut point then (a) X 6 ToInt and (b) X is T2 if it
is T1.

Proof Define neighborhoods Nx, Nr of x, y respectively, for x < y, as fol-
lows: If there exists z, x < z < y, Nx= [0, z},Nr= {z, 1], otherwise Nx [0, x],
Nr {x, 1] if [0, x] is open and Nx [0, y}, Nr (x, 1] if [0, x)is open (Note
that (x, 1] is open if [0, x)is open, otherwise [0, x)and [x, 1] would separate
X). Since y Nxin the first two cases and x Nrin the last case, X is To. IfX is

T1 then [0, x) and (x, 1] are open and the topology on X contains the order
topology [5, p. 57]. Thus X is T2 and (b) follows. To show X e Int we verify the
conditions of 4.2(a) for Y X", Ko 9(K), G S(n), K X,, n 1, 2, If
x X, then

x (al,..., a l, ak,..., ak)
where there are mi (mi > 0) copies of ai, i= 1, k, and a <’" < ak. Pick
neighborhoods N of a so that NxNi+ = X2 (note that the neighborhoods
Nx, Nr defined above satisfy NxxNr X2). Any y in the neighborhood
N N"x xN’ of x has the form

y (yl, y,, , y) with y. N and y, < yl+ 1.

If 9 S(mi) is such that (Ya,tx), Yg,tm,)) e X,,, then

9 (9, 9k) S(mx) x x S(mk)= H(n) S(n)
satisfies g(y) X,,. Hence N c g n,) Ko and, since g(x)= x for g H(n),
x o nt,) Ko. Thus 4.2(a) holds for x X,, which is clearly sufficient to give

In the proof of 5.2(b) the topology on X was seen to contain the order
topology. More generally:



60 M.V. MIELKE

5.3 THEOREM. If X =/= c/b is a linearly ordered, bounded, connected k-space
then X TEInt if and only if the topology ofX contains the order topology.

Proof If X contains the order topology, then X satisfies the conditions of
5.2 and thus X T2Int. On the other hand, the equations

2-" {(X, y)[ X < y} 2 X2 (X2-diagonal) X2
and

where z(x, y)= (y, x), show that 22 is open if X is TE(X2-diagonal is then
open) and if X2 has the weak topology relative to {X2, zX2}. The result then
follows since [0, x)= f-l(X2)and (x, l] f-l(z’2)are open, where fx:
y -- (y, X): X -- X2.

6. Finite intervals

Since the property F of being finite is divisible, FToInt is a reflective sub-
category of Pint by 5.1. Intuitively, any finite interval can be obtained from a
finite To interval by replacing each point by a non-empty, finite, linearly
ordered indiscrete space. We now completely determine FToInt. To this end let
A, be the extension ofA obtained by adding [- 1] b. Recall [6, p. 47] that the
comma category U, + {0, 1}, where U,: A, Set is the underlying functor, has
as objects all functions f: In] {0, 1} and as maps f- g all h: In]- [m] in A,
such that 9h f

6.1 THEOREM. FTolnt is equivalent to (U, J, {0, 1})p.

Proof We begin with a preliminary result.

6.2 LEMMA.

(a)
(b)

The following statements are equivalent:

X is a finite order quotient of the unit interval.
X FToInt.
X is a finite, non-empty, linearly ordered, locally convex k-space such that
if Mi are the minimum neighborhoods of xi for x < x2 < x3 then
M c M3 M2.

Proof. Essentially, 4.2(c) shows that (a)implies (b). Given (b), an argument
analogous to the one in the proof of 5.1 showing that the equivalence classes of
R are convex shows any minimum open set in X is convex. Further, if
y M, M3 M2 and y < X2 then by 4.2(b), with K X3 c X3 Y,
G S(3),

a=(x2, x2, x3)N=M2 M2 xM3, b=(x2, x2, y)N
and go(b) (y, x2, x2) 6 X 3 N, N is not the minimum neighborhood of a, a
contradiction. Since X2 < y leads similarly to a contradiction, it follows that (b)
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implies (c). To show (c) implies (a)we proceed by induction on the number of
points (length)in X. Suppose (c)implies (a)for all X of length < n (trivial if
n 1). If X {Xo, x,} satisfies (c) then by local convexity, the minimum
neighborhood M of x, contains x,_ unless M {x,}. By induction hypothesis
there is a non-decreasing quotient map

q’: [0, 1]--, X’--(Xo, x,_

Define a continuous, non-decreasing, onto map q": [0, 2] X by q"= q’ on
[0, 1], q"(1, )= x,_ a, q"(, 2] x, and q"()= x,_ , x, if x,-x M, M re-
spectively. To show q" is a quotient map it is sufficient to show that W is open
whenever (q")-x(W)is open. If (q")-x(W)is open then W’= W X’ is open
in X’. Let U be the minimum open set in X such that W’ U X’. Clearly W
is open if W U. If W U then either (1) W W’ and U W’ w {x,} or (2)
W W’ w {x,} and U W’. If (1) holds and X’ is open in X then W is open. If
X’ is not open in X then necessarily {x,} is open and, since (q")-(W)is open,
x,_ W. This, together with local convexity, contradicts the minimality of U. If
(2) holds then W is open if {x,} is open, otherwise {x,} is necessarily closed and,
since (q")-(W) is open, x,_ W and thus W contains M a, the minimum
neighborhood of x,_ . If W contains M then clearly W is open. However, if
M c W and M2 is the minimum neighborhood of some y M -W then
y < x,_ < x, and consequently y M c M2 c M c W, a contradiction.
Setting q(t)= q"(2t) then gives the desired quotient map q: [0, 1] X.
The image category A’ of the functor FTolnt A. induced by X In] for X

of length n + 1 has all of the objects of A. and all of the maps of A. that
preserve endpoints (delete o, 6.: [n 1]- [n]). For h: [m] [n] in A’, h*(i)
max {h-[0, i]} clearly defines a map h*: [n- 1]--, [m- 1] in A, for which
h-[0, i] [0, h*(i)] and h-(i, n] (h*(i), n], [n]. Further, for 9: [n 1]
[m-l] in A,, 9’(j)=min{9-[j, rn-1]} (=n if 9-[J, rn-1]=b),
j [m 1] and o’(m) n defines a map [m] [n] in A’ such that h (h*)’ and
O (9’)*. In fact, [n] [n 1], h v-- h* defines a contravariant functor A’ - A,
that gives an isomorphism of A’ onto Ap. In view of 6.2, the topologies on [n]
making it a To interval are precisely those coinduced by the maps
q(/): [0, 1]--, [n], where q(f)(x_ , x)= i, [n] for xi (i + 1)/(n + 1)
[0, 1], i=--1, 0, n and q(f)(xi)= i+ f(i), it[n-1], q(f)(x_,)= O,
q(f)(x.) n for f: [n- 1] {0, 1}. It is readily seen that the q(f)-coinduced
topology on [n] (denote [n] with this topology by [n]s has

{[0, i], (j, n] f(i) 1, f(j) O, i, j [n 1]}

as a subbase. Further, h: [m] [n] in A’ determines a continuous map
[m]o - [n]f if and only if h- x[0, i] [0, h*(i)] is open (i.e. 9h*(i) 1) when [0, i]
is open (i.e.f(i)= 1), and h-(j, n] (h*(j), m] is open (gh*(j)= 0)when (j, n]
is open (f(j) 0); that is, if and only ifgh* f Thus the contravariant functor
[n]s -f h- h* define an isomorphism from the skeletal subcategory ofFToInt
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determined by the intervals [nJy to the category (U, $ {0, 1))p and the result
follows.

Various numerical results can be obtained from 6.1 and 6.2.

6.3 COROLLARY. The number of non-isomorphic (To) intervals of length n is
3 1(2n-), n-- 1, 2 Of those To intervals, 2(" 2) have exactly k cutpoints

for 0 < k < n 2. ((’) denotes the binomial coefficient.) Hence there are exactly
two To intervals ofeach lenoth n >_ 2 satisfying the cutpoint condition (k n 2)
of 5.2.

Proof The number of distinct To intervals of length n is clearly 2"-1 since,
by 6.1, 6.2, this number coincides with the number of functions [n 2] {0, 1}.
Further, the distinct intervals X of length n for which Q(X) (see proof of 5.1) is
a fixed To interval of length rn are easily seen to be obtained from Q(X) by
replacing each of its rn points by a non-empty indiscrete space. The number of
such replacements is the number of ways one can write n as a sum of rn positive
integers (order counts). Since this number is (]) it follows that there are
n-1 -1(_ )2 intervals X for which Q(X) has length m and consequently there are

En= (ZI)2’n-1 3n- intervals of length n. Finally, a point i [n]y is a
cut point if and only iff(i 1) + f(i) 1 and 0 < < n, forf: [n 1] ---} {0, 1}.
Thus [n]y has k cut points if and only if the sequencef"alternates" k times. The
number of such sequences that begin with 0 is (" x) and thus the total number
of such sequences is 2("] 1). Since [n]y has length n + 1, it follows that there are
2(" 2) distinct To intervals of length n with exactly k cut points. The intervals
satisfying the cut point condition of 5.2, then, are exactly those determined by
the alternating sequences.
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