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POSITIVE OPERATORS ON SPACES OF
BAIRE FUNCTIONS

BY
C. T. TUCKER

The symbol 0 will be used to denote the zero element of any vector space.
Suppose L is a Riesz space (lattice ordered vector space). For notation and
basic terminology concerning Riesz spaces, the reader is referred to Luxemburg
and Zaanen [6]. The sequence f}, f5, f3, ... of L is said to be order Cauchy if
there exists a sequence y; >y, > >0, /\ y, =0 such that, for m>n,
| fu = ful < ya- If every order Cauchy sequence converges, then L is order
Cauchy complete. 1t is order separable if each subset with a supremum has a
countable subset with the same supremum. Also, L is almost a-complete if it is
Riesz isomorphic to a subspace L~ of a g-complete space M with the property
that if me M™, there is a sequence 0 <u, <u,<-'-, u,€ L~ such that
\/ u, = m. In particular, if L is order separable, it is almost g-complete (Ali-
prantis and Langford [2]). The Riesz space L is universally complete if it is
complete and every disjoint subset of L* has a supremum.

Suppose X is a set and Q is a collection of real valued functions defined on X.
Then B;(Q) (the first Baire class of Q) is the set of all pointwise limits of
sequences of Q, B,(Q) = B,(B(R)), and in general if o is an ordinal, & > 0,
B,(Q)is the family of pointwise limits of sequences from | J,», B,(Q). If w, is the
first uncountable ordinal then B, (Q) = B,,, + 1(€) which will be denoted B(Q).
For a discussion of Baire spaces see Mauldin [7] or [8].

Let LS Q (lower semi-Q) be the set of pointwise limits of non-decreasing
sequences from Q, US Q be the set of pointwise limits of non-increasing
sequences in , and Q* be the set of bounded functions in Q.

Spaces of the form B(Q) include the set of all 4 measurable functions for
some g-algebra A and the o-laterally complete.function spaces as discussed in
Chapter 7 of Aliprantis and Burkinshaw [1].

A complete ordinary function system Q is a linear lattice of functions con-
taining the constants which is uniformly closed, which is a ring, and which is
closed under inversion (if fe Q and f> 0, then 1/f € Q). In particular, each
space C(X) of all continuous functions on a topological space is a complete
ordinary function system and if Q is a linear lattice containing the constant
functions, then B () is a complete ordinary function system (Mauldin, [7,
Theorem 8]).
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296 C. T. TUCKER

THEOREM 1.  Suppose Q is a complete ordinary function system and ¢ is a
positive linear functional on B,(Q). Then ¢ is the sum of a finite number of Riesz
homomorphisms into the real numbers.

Proof. Let Z(Q) denote the collection of zero sets of functions in Q. Since Q
is uniformly closed, Z(Q) is closed under countable intersection (see Gilman
and Jerison [5, p. 16]). Let w be the collection of subsets M of X such that y,,,
the characteristic function of M, belongs to B(€2) and ¢(x») > 0. Suppose
M € w. By a theorem of Sierpinski [10], there exists a sequence f; < f, <
f3 < ... of functions in US (Q) converging pointwise to X . Replace each f,
with 2f, A 1. Then M = (] f, '(1). Each f; !(1) is the countable intersection of
sets in Z(Q) and is thus a zero set itself. Therefore M is the union of a countable
collection of sets in Z(Q). Now ¢ is sequentially continuous with respect to
monotone pointwise convergence (see Example 2 and Theorem 3 of Tucker
[11] and Theorem 1 and Lemma 3 of Tucker [12]). It follows that M contains a
set in Z(Q) N w. Thus, if there exists a countable disjoint subcollection of w,
there exists a countable disjoint subcollection {Z,, Z,, Z5, ....} of Z(Q) N w.

Let g, and g, be members of Q such that Z, = g7 '(0) and Z, = g3 '(0). Let

P g2 ( |9 |92 )

= - A
lg:| + 192 lg:] + lg2] a1l + |g2]

and

£ g4 ( g4 A 92| |)

“Tai] + 12l Vgl + 1g2] = lgsl + 192

Thenf,islon Z,andOon Z,,f,islonZ,andOon Z,,and f; Af, =0.Let N,
be the cozero set of f; and N , be the cozero set of f,. For each positive integer n,
eachof Z,"nN,,Z,"N,,Z,—Z,~n N,and Z,— Z,n N,is a set whose
characteristic function is in B,;(Q). Since f; and f, are disjoint,

Nlmszd) and ZnﬂNZCZ”—(Z”le).

If ¢ evaluated at the characteristic function of Z, — (Z, n N,) is zero then ¢
evaluated at the characteristic function of Z, — (Z, n N,) can not be zero.
Either there are infinitely many Z, such that Z, — (Z, n N,) € w or there are
infinitely many Z, such that Z, — (Z, n N,) € w. Suppose there are infinitely
many Z, such that Z, — (Z, n N;) € w. As before, if Z,— (Z,n N,) € o, it
contains a subset in Z(Q) N w. Rename this subset Z,, n > 2. After this and
after possibly renumbering to close the gaps there is a disjoint sequence
{Z\, Z,, Z;, ..} of sets in Z(Q) n w such that Z,, n > 2, is disjoint from N .
Let g, be a member of Q such that Z, = g3 !(0). Redefine f, by letting

o= |9391| _( ‘9391' A Igzgxl )
lg391] + 192] l9391] + |92] 19291 + 193]




POSITIVE OPERATORS ON SPACES OF BAIRE FUNCTIONS 297

and

_ |9291| |9391| |gzg1|

5 gaal + laa] "gaail + lasl)

S P
Then f, and f; are disjoint members of Q* such that f,is 1 on Z, and 0 on
Z, v ZsyandfyislonZ;andOon Z, U Z,. Let N, be the cozero set of f, and
N; the cozero set of f;. Either there are infinitely many Z, such that
Z,—(Z,n N;)ew or there are infinitely many Z, such that
Z,—(Z, n N;) e w. Suppose there are infinitely many Z, such that
Z,—(Z, n N,) € ®. Rename and renumber as before.

Proceeding in this fashion there results an infinite disjoint sequence
Z,,Z,, Zs, ... of sets in Z(Q) n w such that for each n there is a function f, in
Q" such thatf, is 1 on Z, and f, is 0 on Z;, i # n.

Let f=)>, f,/2". As Q is closed under uniform convergence, f e Q. For
each positive integer n, fis 1/2" on Z,.

For each n, let

N AT EN TN

1

Then {k,, k,, ...} is a disjoint sub-collection of Q. For each n, k, = 1/2"*2 on
Z,. Thus ¢(k,) > 0. There exists a sequence c;, ¢, ... of positive numbers such
that Y >, ¢, ¢(k,) = 0. But Y2, c,k, belongs to B,(Q). Therefore, there does
not exist an infinite disjoint subcollection of w. It follows that there exists a
maximal disjoint subcollection {N |, N, ..., N} of w with the property that for
each member N;, there do not exist two disjoint elements of w which are
subsets of N;. Also, | J{-; N; = X.

Let ¢, be defined by ¢,(f) = ¢(f* xv,). Clearly ¢ = Yt~ ¢..

Suppose fand g are bounded functions in B(Q) such that fA g = 6. For each
positive integer n, there exists a finite partition G,, G,, ..., G, of X such that
X6, is in By(Q), Y- ¢;x6, uniformly approximates f within 1/n, and Y 7-, k;xg,
uniformly approximates g within 1/n. (See Theorem 7 of Tucker [13].)

Let H, be the union of all G; such that ¢; > 1/n and Q, be the union of all G;
such that k; > 1/n. Then f, = f- xy, is a function in B,(Q) which agrees with f
for every x such that f(x) > 2/n and is zero for every x such that f(x) =0.
Define g, similarly. Since H, N Q; = ¢, @i(xn,) A @i(xo,) =0 which implies
@:i(fp) A @i(g;) = 0. Since {f,} converges to f unilPormly and {g;} converges to g
uniformly ¢;(f) A ¢i(g) = 0.

Now suppose f and g are points of B,(Q) such that fAg = 0. Then for each
positiveinteger nand positive integer m, o;(f A A n) A @i(g A m) = 0.Since ;s

Let
1

—2n+2

hy
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sequentially continuous, @;(f)A @i(g Am) = 0. Similarly ¢(f)A¢@(g) =0, so
that ¢, is a Riesz homomorphism.

Compare this theorem with Proposition 1.15 of Fremlin [4].

It follows from this theorem that Corollary 5 of Tucker [12] can be gener-
alized by removing the boundedness condition.

If ¢ is a positive operator on B,(Q) the statement that ¢ preserves pointwise
convergence means that if f|, f5, f3, ... is a pointwise convergent sequence of
functions in B;(Q) then ¢(f;), ¢(f2), ©(f3), ... converges pointwise and further
that if f}, f5, f3, ... converges pointwise to a function f in B,(Q) then ¢(f,),
9(f2), (fs), -.. converges to @(f).

COROLLARY 2. If @ is a positive operator on B (Q) into a function space, then
@ preserves pointwise convergence.

Proof. Suppose the range of ¢ is a set of functions defined on a set K. For
each k in K let ¢, be ¢ followed by a point evaluation at k. By Theorem 1, ¢, is
the sum of a finite number of Riesz homorphisms, each of which preserves
pointwise convergence by Theorem 3 of Tucker [13].

COROLLARY 3. If ¢ is a positive linear functional defined on By (Q) then ¢
can be extended to B,(Q).

Proof. 1If fis in B,(Q) it is the pointwise limit of a sequence f}, f5, f3, ... of
functions in B;(Q). Define ¢(f) to be the limit of ¢(f}), @(f2), ¢(f3), ... . This
limit exists and ¢(f) is unique by Corollary 2. It can be verified that this
extension is linear and positive.

Of course this corollary would follow immediately if B,() is cofinal in
B, . (), but this is in general not the case as Theorem 5 shows.

Regoli [9] shows that there are spaces C(X) which are g-complete but not
closed under pointwise convergence. This can not occur in B,(Q).

In the following Q is only assumed to be a linear lattice containing the
constant functions.

LeMMA 4. If B,(Q) is o-complete, then it is closed under pointwise
convergence.

Proof. Since bounded monotone pointwise convergence is the same as
order convergence it B,(Q) (Tucker [12, Lemma 3]) and B,(Q) is o-complete
then every bounded function in LS B,(Q) is in B,(Q). But every function of
B%(Q) is the pointwise limit from below of a non-decreasing sequence of func-
tions of (US B;(Q))* and the pointwise limit from above of a non-increasing
sequence of points of (LS B,(Q))* and thus belongs to Bf(Q). Suppose f be-
longs to LS B, (). It may be assumed that f > 1. Since B,(Q) is closed under
inversion, 1/f belongs to B%(Q) and thus to B¥(Q). Therefore fbelongs to B,(2)
and B,(Q) is closed with respect to pointwise convergence.
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THEOREM 5. The space B{(Q) is not cofinal in B,(Q) unless B{(Q) = B,(Q).

Proof. Suppose B,(Q) is cofinal in B,(Q). Let f}, f5, f3, ... be a disjoint
sequence of points of Bf (Q). Let f =), nf,. The point f'is in B,(€Q). Since
B,(Q) is cofinal in B,(Q) there is a point g in B;(Q2) such that g > . It follows
that since B,(Q) is relatively uniformly complete that v f; belongs to B,().
Thus, as every disjoint sequence of points of By (Q) has a supremum then
B (Q) has the principal projection property (Veksler and Geiler [14, Theorem
8]). As B{(Q) is also relatively uniformly complete, it is g-complete, by
Theorem 42.5 of Luxemburg and Zaanen [6]. By Lemma 4, B(Q) = B,(Q).

A real valued Riesz homomorphism ¢ on B;(Q) will be said to be fixed if
there exists a point x of X and a number ¢ such that ¢(f) = ¢f (x) for each fin
B,(Q).

Positive operators on B, (Q) are sequentially continuous for both order con-
vergence and pointwise convergence. Every positive operator on B(Q) to an
Archimedean Riesz space (even an Archimedean, directed, partially ordered
vector space) preserves order convergence of sequences (Example 2 and
Theorem 3, Tucker [11] and Theorem 1, Tucker [12]). Also, if Q is assumed to
be a complete ordinary function system every positive operator on B,(Q) to a
function space preserves pointwise convergence of sequences (Corollary 2).

On the other hand, the situation with respect to net continuity is mixed. If
every positive operator on B,(Q2) to an Archimedean Riesz space preserved
order convergence of nets, then B,(Q) would be order separable. (Theorems
18.13 and 29.3, Luxemburg and Zaanen [6]). Theorem 7 shows that there is
only a very special class of order separable spaces of Baire functions. In a
positive direction, when Q = C(X), X realcompact, then every positive opera-
tor from B,(C(X)) to a function space preserves pointwise convergence of nets
(Theorem 8). But this theorem fails if pointwise convergence is replaced by
order convergence (Example 9).

Proposition 6 is included for the sake of completeness. Proposition 6 is
essentially proved in Theorem 5 of Mauldin [7]. The argument given there is
only slightly changed for the proof of Proposition 6. It was also proved in
Dashiell [3] with the restriction that the functions in Q be bounded.

PROPOSITION 6. The space B,(Q) is order Cauchy complete.

Proof. By Theorem 7 of Mauldin [7] B;(Q) = US B,(Q) n LS B,(Q). Sup-
pose y; >y, >->0, \y,=0, and f,,f,, ... is a sequence such that
| f—fu]| <y, when m > n. By Lemma 3 of Tucker [12], the y,’s converge
pointwise to 6. Thus f}, f5, f3, ... converges pointwise to a function f. Then
|f—ful <y. and f<y,+f,. So that f<a,=Aj-;y;+f and f is in
LS B,(Q). Similarly fis in US B,(Q).

THEOREM 7. If B{(Q) is order separable then B,(Q) is Riesz isomorphic to R*
for X countable.
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Proof. By Proposition 6, B;(Q2) is order Cauchey complete. Also, since it is
order separable, it is almost o-complete. Thus by Theorem 1 of Aliprantis and
Langford [2] it is o-complete and being order separable means that it is
complete. Also, by Lemma 4, B,(Q) is closed under pointwise convergence. By
Theorem 23.24 of Aliprantis and Burkinshaw [1], B;(Q) is universally complete.
By Theorem 23.23 of Aliprantis and Burkinshaw [1], it is Riesz isomorphic to
R* and since it is order separable, X must be countable.

If X is a topological space, then X is realcompact if it is homeomorphic to a
closed subset of a product of real lines. If X is realcompact, then for every real
Riesz homomorphism ¢ on C(X) there is a number ¢ and a point x of X such

that (/) = of (x).

THEOREM 8. If X is a realcompact topological space and o is an ordinal,
0 < a < w,, then every positive operator on B,(C(X)) to a function space
preserves pointwise convergence of nets.

Proof. 1f X is realcompact every real valued Riesz homomorphism on C(X)
is fixed. Thus for every positive linear functional ¢ on B,(C(X)) there exists a
finite subset {x;, X, ..., x,} of X and a number sequence c,, ¢y, ..., ¢, such
that o(f) = Y7_, ¢; f(x;), by Theorem 1. The theorem follows.

Example 9. Theorem 8 is false if pointwise convergence is replaced by order
convergence. Let X be the space of all ordinals « < w,, the first uncountable
ordinal, with the interval topology. As X is compact, it is realcompact. Also if f
isin C(X)thereisan ay < w, such that f(x) = f(w, ) for & > a,. The same is true
for all f in B;(C(X)). Take the collection of all f in Bj(C(X)) such that
f(w,) = 1 and order it pointwise downward. The resulting net order converges
to 0 but the positive linear functional defined by ¢(f) = f(w,) has the value 1
for each point of the net.
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