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POSITIVE OPERATORS ON SPACES OF
BAIRE FUNCTIONS

BY

C. T. TUCKER

The symbol 0 will be used to denote the zero element of any vector space.
Suppose L is a Riesz space (lattice ordered vector space). For notation and
basic terminology concerning Riesz spaces, the reader is referred to Luxemburg
and Zaanen [6]. The sequence fl, f2, f3, of L is said to be order Cauchy if
there exists a sequence Y >- Y2 >-"" -> 0, A Y, 0 such that, for m _> n,

fro--f.I < Yn" if every order Cauchy sequence converges, then L is order
Cauchy complete. It is order separable if each subset with a supremum has a
countable subset with the same supremum. Also, L is almost a-complete if it is
Riesz isomorphic to a subspace L of a a-complete space M with the property
that if rn M+, there is a sequence 0 _< u U 2 < ", u, L~ such that
/u. rn. In particular, if L is order separable, it is almost a-complete (Ali-
prantis and Langford [2]). The Riesz space L is universally complete if it is
complete and every disjoint subset of L+ has a supremum.

Suppose X is a set and f is a collection of real valued functions defined on X.
Then Bx(f) (the first Baire class of f) is the set of all pointwise limits of
sequences of f, Bz(f B1 (B1 (f)), and in general if is an ordinal, > 0,
B(f)is the family of pointwise limits of sequences from J,> B(f). If e91 is the
first uncountable ordinal then B,l(f Bol +1 (f)which will be denoted B(f).
For a discussion of Baire spaces see Mauldin [7] or [8].

Let LS f (lower semi-f) be the set of pointwise limits of non-decreasing
sequences from f, US f be the set of pointwise limits of non-increasing
sequences in and f* be the set of bounded functions in f.

Spaces of the form B(f) include the set of all A measurable functions for
some a-algebra A and the a-laterally complete,function spaces as discussed in
Chapter 7 of Aliprantis and Burkinshaw [1].
A complete ordinary function system f is a linear lattice of functions con-

taining the constants which is uniformly closed, which is a ring, and which is
closed under inversion (iff f and f> 0, then 1/f f). In particular, each
space C(X) of all continuous functions on a topological space is a complete
ordinary function system and if f is a linear lattice containing the constant
functions, then B l(f) is a complete ordinary function system (Mauldin, [7,
Theorem 8]).
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THEOREM 1. Suppose is a complete ordinary function system and q is a
positive linear functional on B 1(). Then p is the sum ofa finite number of Riesz
homomorphisms into the real numbers.

Proof Let Z() denote the collection of zero sets of functions in . Since
is uniformly closed, Z() is closed under countable intersection (see Gilman
and Jerison [5, p. 16]). Let to be the collection of subsets M of X such that ZM,
the characteristic function of M, belongs to B I()) and q(ZM)> 0. Suppose
M to. By a theorem of Sierpinski [10], there exists a sequence fl <f2-<
f3 <... of functions in US (fl) converging pointwise to X. Replace each f,
with 2f,/ 1. Then M 1(1). Each f, 1(1) is the countable intersection of
sets in Z()) and is thus a zero set itself. Therefore M is the union of a countable
collection of sets in Z(). Now q is sequentially continuous with respect to
monotone pointwise convergence (see Example 2 and Theorem 3 of Tucker
[11] and Theorem 1 and Lemma 3 of Tucker [12]). It follows that M contains a
set in Z(fl) c to. Thus, if there exists a countable disjoint subcollection of to,

there exists a countable disjoint subcollection {Z1, Z2, Z3, ....} of Z() c to.

Let 91 and g2 be members of ) such that Z g]- 1(0) and Z 2 O 1(0) Let

and

I ,1 I zl )
Thenfl is 1 on Z and 0 on Z z,f2 is on Z2 and 0 on Z 1, andfl/xf2 0. Let N
be the cozero set off1 and N 2 be the cozero set off2. For each positive integer n,
each ofZ. m N1, Z.m N2, Z,-Z. Nl, andZ.-Z. N2isasetwhose
characteristic function is in BI(O). Since fl and f2 are disjoint,

N N2 t and Z, N2 Z -(Z N1).

If t# evaluated at the characteristic function of Z, (Z, c N1) is zero then
evaluated at the characteristic function of Z.- (Z, c N2) can not be zero.
Either there are infinitely many Z. such that Z. (Z, N 1) to or there are
infinitely many Z, such that Z, (Z, c Nz) G to. Suppose there are infinitely
many Z, such that Z, (Z, m N1) to. As before, if Z,- (Z, c N1) to, it
contains a subset in Z() to. Rename this subset Z,, n > 2. After this and
after possibly renumbering to close the gaps there is a disjoint sequence
{Z1, Z2, Z3, ...} of sets in Z() c to such that Z,, n > 2, is disjoint from

Let 93 be a member of such that Z3 9 1(0) Redefine f2 by letting
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and

Ig g l / Ig l Ig g l /

Then f2 and f3 are disjoint members of + such that f2 is 1 on Z 2 and 0 on
Z w Z3 andf3 is 1 on Zaand00n Z Z2. LetNEbe the cozero set off2and
N3 the cozero set of f3. Either there are infinitely many Z, such that
Z, (Z. N2) E co or there are infinitely many Z, such that
Z,-(Z, Na) Eco. Suppose there are infinitely many Z, such that
Z, (Z, c N2) co. Rename and renumber as before.

Proceeding in this fashion there results an infinite disjoint sequence
Z1, Z2, Z3, of sets in Z(f) co such that for each n there is a functionf, in
f+ such that f, is 1 on Z, and f, is 0 on Zi, 4= n.

Let f== f,/2". As f is closed under uniform convergence, f 6 f. For
each positive integer n, f is 1/2" on

For each n, let

Let

+
1

2" + 2 2" 2" + 2

2.+ 2

1
+ 2,.

Then {kl, k2, ...} is a disjoint sub-collection of f+. For each n, k. 1/2"+ 2 on
Z.. Thus b(k.) > 0. There exists a sequence cl, c2, of positive numbers such
that Z=a c. b(k.) oo. But Z= c.k. belongs to B x(f). Therefore, there does
not exist an infinite disjoint subcollection of co. It follows that there exists a
maximal disjoint subcollection {N 1, N 2, Nk} of co with the property that for
each member Ni, there do not exist two disjoint elements of co which are
subsets of Ni. Also, ’= Ni X.

Let cp, be defined by qgi(f)= cp(f-ZN,). Clearly cp =1 tpi.

Supposefand 9 are bounded functions in B l(f) such thatf/ 9 0. For each
positive integer n, there exists a finite partition G1, GE, Gp of X such that
Z, is in Bl(f), ,e=x c,z, uniformly approximatesfwithin i/n, and
uniformly approximates 9 within 1In. (See Theorem 7 of Tucker [13].)

Let H. be the union of all G such that ci > 1In and Q, be the union of all G
such that k > 1/n. Then f. -f. ;in. is a function in Bl(f) which agrees withf
for every x such that f(x)> 2In and is zero for every x such that f(x)= O.
Define g. similarly. Since Hv Qj tip, qgi(nv)/x qgi(Ze)= 0 which implies
q(f)/x q(gj)= 0. Since {f} converges to f uniformly and {9j} converges to O
uniformly o(f)^ q(g) 0.
Now suppose fund 9 are points of Bl(f) such thatf/x g 0. Then for each

positive integer n and positive integer m, q(f ^ /x n)/x q9i(9/x m) 0. Since qgi is
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sequentially continuous, q,(f)/x qg,(g/x m) 0. Similarly qg,(f)/x qg,(g) 0, so
that q9 is a Riesz homomorphism.

Compare this theorem with Proposition 1.15 of Fremlin [4].
It follows from this theorem that Corollary 5 of Tucker [12] can be gener-

alized by removing the boundedness condition.
If q9 is a positive operator on B I(D) the statement that 99 preserves pointwise

convergence means that iffl, f2, f3, is a pointwise convergent sequence of
functions in Bl(f) then rp(fl ), qg(f2), tp(f3), converges pointwise and further
that if fl, f2, f3, converges pointwise to a function f in Bl(f)then tp(fl ),
qg(f2), P(f3), converges to qg(f).

COROLLARY 2. If q9 is a positive operator on B l(f) into afunction space, then
preserves pointwise convergence.

Proof Suppose the range of q9 is a set of functions defined on a set K. For
each k in K let qgk be 99 followed by a point evaluation at k. By Theorem 1, k is
the sum of a finite number of Riesz homorphisms, each of which preserves
pointwise convergence by Theorem 3 of Tucker [13].

COROLLARY 3. If tp is a positive linear functional defined on B1 (f) then
can be extended to BE(t)).

Proofi Iff is in B2( it is the pointwise limit of a sequencefl, f2, f3, of
functions in BI(f). Define qg(f)to be the limit of qg(fl), qg(f2), qg(f3), This
limit exists and tp(f) is unique by Corollary 2. It can be verified that this
extension is linear and positive.

Of course this corollary would follow immediately if B(f) is cofinal in

B+ 1(t2), but this is in general not the case as Theorem 5 shows.
Regoli [9] shows that there are spaces C(X) which are a-complete but not

closed under pointwise convergence. This can not occur in BI(I)).
In the following f is only assumed to be a linear lattice containing the

constant functions.

LEMMA 4.
convergence.

If B I() is a-complete, then it is closed under pointwise

Proof. Since bounded monotone pointwise convergence is the same as
order convergence ;,il BI(I)) (Tucker [12, Lemma 3]) and Bl(f) is a-complete
then every bounded function in LS Bl(f) is in Bl(f). But every function of
B(I)) is the pointwise limit from below of a non-decreasing sequence of func-
tions of (US Bl(f))* and the pointwise limit from above of a non-increasing
sequence of points of (LS Bl(f))* and thus belongs to B’(f). Suppose fbe-
longs to LS B1 (t)). It may be assumed that f> 1. Since B2(V) is closed under
inversion, lffbelongs to B(f) and thus to B(f). Thereforefbelongs to B 1(12)
and B1(t)) is closed with respect to pointwise convergence.
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THEOREM 5. The space Bx (f) is not cofinal in B2(f) unless B,(fl)= B2(f).

Proof. Suppose B(t2) is cofinal in B2(). Let f,f2,f3, be a disjoint
sequence of points of B (t2). Let f= o= nf,. The point f is in B2(f). Since
B(t2) is cofinal in B2(t2) there is a point in B(t2) such that >f. It follows
that since B(t2) is relatively uniformly complete that vf belongs to B(f).
Thus, as every disjoint sequence of points of B-(f) has a supremum then
B-(f) has the principal projection property (eksler and Geiler [14, Theorem
8]). As B-(f) is also relatively uniformly complete, it is a-complete, by
Theorem 42.5 of Luxemburg and Zaanen [6]. By Lemma 4, B(t2)= B2(t2).

A real valued Riesz homomorphism q9 on Ba(f) will be said to be fixed if
there exists a point x of X and a number c such that qg(f) cf(x) for eachfin

Positive operators on B1 (f) are sequentially continuous for both order con-
vergence and pointwise convergence. Every positive operator on Bl(f) to an
Archimedean Riesz space (even an Archimedean, directed, partially ordered
vector space) preserves order convergence of sequences (Example 2 and
Theorem 3, Tucker [ll] and Theorem 1, Tucker [12]). Also, if f is assumed to
be a complete ordinary function system every positive operator on B x(f) to a
function space preserves pointwise convergence of sequences (Corollary 2).
On the other hand, the situation with respect to net continuity is mixed. If

every positive operator on B(f) to an Archimedean Riesz space preserved
order convergence of nets, then B(f) would be order separable. (Theorems
18.13 and 29.3, Luxemburg and Zaanen [6]). Theorem 7 shows that there is
only a very special class of order separable spaces of Baire functions. In a
positive direction, when f C(X), X realcompact, then every positive opera-
tor from B (C(X)) to a function space preserves pointwise convergence of nets
(Theorem 8). But this theorem fails if pointwise convergence is replaced by
order convergence (Example 9).

Proposition 6 is included for the sake of completeness. Proposition 6 is
essentially proved in Theorem 5 of Mauldin [7]. The argument given there is
only slightly changed for the proof of Proposition 6. It was also proved in
Dashiell [3] with the restriction that the functions in f be bounded.

PROPOSITION 6. The space B(f) is order Cauchy complete.

Proof By Theorem 7 of Mauldin [7] Bx (f) US B() LS Bx (f). Sup-
pose y > Y2 > ""> 0, //k Y. 0, and f,f2, is a sequence such that
f-f.I-< y. when m > n. By Lemma 3 of Tucker [12], the y.’s converge
pointwise to 0. Thus fx, f2, f3,-., converges pointwise to a function f. Then

If- f.[ < y,, and f < y. + f.. So that f < . =/7= Y, + f/ and f is in
LS Ba (f). Similarly f is in US Bx (f).

THEOREM 7.
for X countable.

IfB(f) is order separable then B(f) is Riesz isomorphic to R
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Proof. By Proposition 6, B1 (f) is order Cauchey complete. Also, since it is
order separable, it is almost a-complete. Thus by Theorem 1 of Aliprantis and
Langford [2] it is a-complete and being order separable means that it is
complete. Also, by Lemma 4, B l(f) is closed under pointwise convergence. By
Theorem 23.24 of Aliprantis and Burkinshaw [1], Bl(f)is universally complete.
By Theorem 23.23 of Aliprantis and Burkinshaw [1], it is Riesz isomorphic to
R and since it is order separable, X must be countable.

If X is a topological space, then X is realcompact if it is homeomorphic to a
closed subset of a product of real lines. If X is realcompact, then for every real
Riesz homomorphism go on C(X) there is a number c and a point x of X such
that t0(f) cf(x).

THEOREM 8. If X is a realcompact topological space and is an ordinal,
0 < <_ col, then every positive operator on B(C(X)) to a function space
preserves pointwise convergence of nets.

Proof. If X is realcompact every real valued Riesz homomorphism on C(X)
is fixed. Thus for every positive linear functional go on B(C(X)) there exists a
finite subset {xl, x2,..., xn} of X and a number sequence cl, c2, c, such
that go(f)= 7=1 cif(xi), by Theorem 1. The theorem follows.

Example 9. Theorem 8 is false if pointwise convergence is replaced by order
convergence. Let X be the space of all ordinals < o91, the first uncountable
ordinal, with the interval topology. As X is compact, it is realcompact. Also iff
is in C(X)there isan a0 < o91 such thatf() f(o91) for > o. The same is true
for all f in BI(C(X)). Take the collection of all f in B(C(X))such that
f(o91) 1 and order it pointwise downward. The resulting net order converges
to 0 but the positive linear functional defined by go(f) =f(o91) has the value 1
for each point of the net.
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