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SOME REMARKS ON THE HOMOLOGY GROUPS OF
WREATH PRODUCTS

BY

JRGEN TAPPE

In [1], N. Blackburn determined the Schur multiplier of the regular wreath
product, using generators and relations. Blackburn’s method was extended to
the permutational wreath product of finite groups by E. W. Read in [4]. In this
paper we consider a projective resolution for an arbitrary permutational
wreath product G j K, and we easily obtain direct summands of H,,(G . K)in
any dimension n. In particular we obtain the Schur multiplier of G K, and if
K is a finite p-group and G K a regular wreath product, the homology groups
H,(G [. K) for n < p- 1.

For regular wreath products G j K, the group A (R) ZK, where A is a right
G-module becomes a G K-module. In [1], Blackburn determined H(G j K,
A (R) ZK), again using generators and relations. An easy homological argument
gives a formula for H,(G . K, A (R) ZK) for all n.

1. Statement of results

Let G and K be groups and I a K-set. By G* we denote the (restricted) direct
product of G over I, i.e. G* consists of all families (0i)i, where gi G and
gi-- for almost all i. By

k-((0,), ,)k (i),,
we obtain an action of K on G*, and by G K we denote the semi-direct
product of G and K, called the (permutational) wreath product of G and K over
I. If I K, and if K acts on itself by left multiplication, we call G K the
regular wreath product.

For all integers k >_ 1, let Ik denote the set of all subsets of order k of I, which
obviously is a K-set. Let M be an orbit of K on Ik, represented by J {j ,
Jk}, let A(J) be the stabilizer of J and B(J) the subgroup of A(J) fixing allj. The
group C(M)-- A(J)/B(J) is uniquely determined (up to conjugation), and it
can be regarded as a subgroup of the symmetric group on {1, 2,..., k}. For
c C(M), we denote by e(c) the sign of the permutation induced by c on {1,...,
k}. We call M a trivial orbit, if C(M) 1.

If L is a group and N and L-module, we denote by N/ the quotient N/[L, N].
Let P (Pi, ci) be a projective resolution for G, and assume P0 ZG (the
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integral group ring of G). By R we denote the chain complex defined by R0 0,
Ri (Pi), for >_ 1. Let Q be a projective resolution for K, and for all finite
subsets J of I we denote by S(J) the chain complex defined by S(J)i
for all i.
As G K is a semi-direct product, H,(K, Z) is a direct summand of

H,(G K, Z) for all n. In the following we shall see that one obtains a direct
summand of H,(G K) (we drop the Z)for each orbit of K on I k, having a nice
form for trivial orbits. In particular we obtain the following results:

THEOREM 1. Let M be an orbit ofK on lkrepresented by the subset J ofl, and
let Rtk) denote the k-fold (total) tensor complex of R. Then we have"

(i) The troup ((k H,(G))/T(M) is a direct summand of Hk(G I K), where
T(M) is generated by the elements

k

( x, e(c) () x,, x, H, (G), c C(M).
i=1 i=1

(ii) IfM is a trivial orbit, H,(R’k) (R) S(J)) is a direct summand ofU,(G K)
for all n.

The groups H,(RtR)(R) S(J)) can be computed by an iterated application of
the Kiinneth Formula. For k l, i.e. Ik I, all orbits are trivial, and we obtain
for each orbit M of K on I with j e M and stabilizer A(j) that

H,(G)(R) H,(A(j)) Tor (H,(G), H,,,(A(j))),
r,s

wherer+s=n,r> 1, s>0, t+m=n- 1, t> 1, m>0, isadirectsummand
of H,(G K). If we restrict our attention to dimension 2, Theorem applied on
the orbits of length 2, and the remarks above on the orbits of length yield the
direct summands of Hz(G K) in the following corollary. The proof of
Theorem shows that no other summands occur.

COROLLARY. Let r be the number oforbits ofK on I, (A(j))a complete system
of stabilizers of K on I, the number of trivial and s the number of non-trivial
orbits on 12. Then the Schur multiplier H2(G K)is the direct sum ofU2(K), r
copies of H2(G), the direct sum over all H,(G) @ H,(A(j)), copies ofU ,(G) (R)
H, (G), and s copies of (H (G) (R) H I(G))/T, where r is generated by the elements
x(R)y+ y(R)x,x, y Hi(G).

The Schur multiplier of an arbitrary semi-direct product with a finite, abelian
normal subgroup of odd order was determined by L. Evens in [2].

THEOREM 2. Let T be a finite p-group and G T the regular wreath product.
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Then we have"

(i)

where

H.(G I T)- H.(r) (R) for all n < p 1.

m(k)=(ITI). 1

Irl
(ii) H,(G*) is an induced T-module for 1 <_ n <_ p- 1, i.e. the terms
_< r _< p l, 1 <_ s of the correspondin9 homolooy spectral sequence vanish, and

H,(G T)is the direct sum of H,(T) and Ho (T, H,(G*)) for 1 <_ n <_ p.

In [1], the order of HE(P,) was determined, where P, is the n-fold wreath
product of the cyclic group of order p. Theorem 2 and an easy induction
argument yield the following result"

COROLLARY. For all primes p > 3, the 9roup H3(P,+ x) is elementary abelian
of rank

((p-1)(p-2) i3)/(n/l)/ ((p-l)2k=kl- )3 2
j2

i=1

Let G K be a regular wreath product, and A a right G-module. Then
A (R) ZK is a G K-module by the following definition"

(a (R) m- )() (ao,) (R) m- , (a (R) m) (R) (rag).

The homology groups of A (R) ZK are given by the following theorem (cf. 1] for
the result in dimension 1)"

THEOREM 3. Let G*= G x L, where L is the direct product of lK 1
copies of G. Then

/4,( /, A (R) ZK)
_

(R) /4,(, A)(R)/-/t) (R) (R) Vor(H(, A), H()),
i,j k,m

where + j n, k + m n- 1.

2. Proofs

We start the proofs of the theorems above with the construction of a projec-
tive resolution for the base group G*. For an arbitrary subset N of I we denote
by G(N) the subgroup of G* which consists of all systems (gi)i with 9,. for
all m e N, i.e. G(N) is the direct product of copies of G built over the comple-
ment of N in I. Let P be the resolution for G given in Section 1. Then we define
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where N runs through all finite subsets of I, f: N Z,f(m) > 1 for all m N,
and ,,eN f(m)= n. Now we are going to define homomorphisms ,*"
P.* P.*-1. Let be a linear ordering on I, i.e. any two elements can be
compared, and we assume that j implies 4: j. For x ZG(N), Pit,.) Pit,.)
we define

where c’itr): Pitt) Pit,)- 1, and s(r) is the number of m N with m r and
f(m) odd. In the definition of c.* above it can happen that O(Plt)) lies in Po (if
f(r) 1). As Po ZG we can identify

if L N {k}, k N and f(k)= 0. We can regard P* (P*, *) as a direct
limit of the tensor complexes, built over all finite subsets of I. Obviously, P* is a
projective resolution for G*, and we obtain

Z (R)a, P,* (P,*)a, ()
N,f meN

where N and f are as above. Now we can use the fact that Po ZG, which
implies (Po) Z and (P 1) is mapped onto zero. Hence, for each subset N, the
term i @s (Pyt)) yields a direct summand of the chain complex
Z a, P*, which for a non-empty set N of order k is isomorphic to R{k). Let 2
be the chain complex with 0 Z and , 0 for n 0. Then we have

Z@,P* 2 Rtk).
k=l Nelk

Let h e K. We define

(the element h-xh belongs to Z{h-G(N)h)= ZG(h-N))where t{h)is the
number of all pairs k, m e N, k m, hm hk, f(k) and f(m) odd. This definition
yields an action of G K on P*. If Q is a projective resolution for K, there is a
natural diagonal action of G K on P* N Q, so that the latter is a projective
resolution for G K. Similar resolutions for wreath products of finite groups
were studied by Nakaoka in [3]. It is easy to see that

Z@ (P* @ Q) (z @, P*)@ Q

holds. Now the considerations above yield the desired direct summands of the
homology groups of G K. The term 2@ Q yields the well-known direct
summand H,(K) of H,(G K). For each positive integer k and each orbit M of
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K on Ik we obtain the homology of the subcomplexes having the form (N M

Rtk)) (R) K Q. Here we have to keep in mind that the permutation action of K on
the tensor complexes Rtk) is endowed with a sign. In general, it does not seem to
be easy to evaluate the homology of such a subcomplex. Its first non-zero term
is (O)SM (()k (P1)))(R)K Qo, having dimension k. As the whole term is
mapped onto zero, it is not very difficult to see that it yields the summand of
Hk(G K)given in Theorem l(i). The result for trivial orbits (Theorem l(ii)),
where we have trivial action of K on the terms Rtk), follows immediately.
Theorem 2(i) is also an easy consequence of the considerations above. For

H,(G K), n _< p 1 we only have to consider the subcomplexes for k < p 1.
As G K is regular, K has tn(k) orbits of I k and acts regularly on each orbit,
finishing the proof of 20).
The action of K on H,(G*) can be derived from the action of K on

Z O)6,(P* (R)Q), which leads to (Z(R)6, P*)(R)KQ. Now we obtain that the
desired action can also be described by the action of K on Z (R)6, P. As men-
tioned above, K regularly permutes the direct summands of Z (R)G, P* for all
k < p l, which proves that H,(G*) is an induced K-module.
We finish this section with a study of the module A (R) ZK. The G-module A

can be regarded as a G*-module by the following definition:

a(g,m).’=ag for allaA,gG,mL.

Then A (R), Z(G K)and A (R) ZK are isomorphic as G K-modules. Hence,
we have

Hn(G K, A (R) ZK) Hn(G*, A).
Let P be a projective resolution for G and X a projective resolution for L. Then
we have A (R)a. (P (R) X)

_
(A (R) P)(R) (Z (R)L X), and Theorem 3 follows from

the Kiinneth Formula.
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