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ON DIFFERENTIATION OF MULTIPLE TRIGONOMETRIC
SERIES

BY

M. J. KOHN

1. In this paper we obtain some multidimensional analogues to the
theorems of Riemann and Lebesgue on the differentiation of formally in-
tegrated one dimensional trigonometric series. To develop these results we
define symmetric derivatives for functions of several variables by expanding
weighted spherical means of the functions into power series of even or odd
terms. We use surface harmonics for the weights. We show that for each surface
harmonic a weighted symmetric derivative can be defined, and that for each
weighted symmetric derivative a different theorem of "Riemana type" can be
constructed.

In p dimensions, p _> 2, we let

x=(x,,...,xp)Ep and n=(nl,...,np)Zp.
we let {x E, xl } and x’= Ix ]-x. We write ds()to denote the
surhce element in (p- 1)-dimensional surface integrals. Let v be a non-
negative integer and let S(x) be a harmonic polynomial homogeneous of
degree v. For E, let () S(). is called a surface harmonic of degree v.

Suppose a function F(x) is defined in a neighborhood of Xo E, and is
integrable over the surface of each sphere Ix Xo[ t, for small. Let k be an
integer of the form k v + 2r, where r is a non-negative integer. We make the
following definition.

DEFINITION. F has at Xo a kth O-derivative with value s if

( if+2 o(t),(1.1) (2) p/2 F(xo + tq)(q) ds(q)= art + a+ 2 +"" + ak +

as O, where
2-P/2-k+ 1Ska ((k v)/2) r((k + v + p)/2)"

This definition may be thought of as an analogue to the definitions (1.2) and
(1.3) of [10, volume 2], p. 59, depending on whether v is even or odd.
When p 2, v 0, k 2r, and () l, our formula (1.1) gives the rth

9eneralized Laplacian, which is developed in [9]. When p 2, v l, and
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(x)=x,+x2, our formula is used in [6]. When p=2, v=k=2, and
fl(x) xa x2, the definition is used in [7].

For general p, v, and k, and for smooth enough F(x), the following result
gives the value of the D-derivative.

THEOREM 1. Let Sv(x be a harmonic polynomial homogeneous of degree v.
Let ()= Sv() for Y. Let k v + 2r where r is a non-negative integer.
Suppose F(x) and all partial derivatives of F of order <_ k + 1 are defined and
continuous in a neighborhood ofxo gp. Then F has at xoa kth )-derivative with
value SR Sv(grad)ArF(xo).
Now let

(1.2) T: Cn ein’x
neZp

be a trigonometric series in p variables. We will say T is Bochner-Ricsz-fl
summablc at o to sum s if

lim

__
cnein xo s.

R-* [hi <R

The following result is a multidimensional analogue to the one dimensional
results on differentiation of formally integrated trigonometric series. (See [10,
vol. 1, p. 319, Theorem 2.4]; [10, vol. 1, p. 322, Theorem 2.18]; [10, vol. 2, p. 66,
Theorem 2.1].)

THEOREM 2. Let Sv(x), D(), k and r be as in Theorem 1. Let the series (1.2)
be Bochner-Riesz-fl summable at Xo to finite sum so, for some fl < k + (p 3)/2.
Suppose the coefficients of (1.2) satisfy c. 0 if Sv(n) 0 and

(1.3) Z Inl lc.l ls ( )l o
nZp

for some number > p- -4r. Let
Cn

2r ein(1.4) F(x) VS(n) lnlSv(n) :/: 0

Then F(x) has at Xo a kth -derivative equal to So.

Remark. The hypothesis in Theorem 2 requiring c, 0 when S(n) 0 is
necessary for the definition of F(x). Given a specific S(x), it is often possible to
delete this hypothesis by altering the definition of F(x) so that the series in (1.4)
has different terms when Sv(n)= 0. For example, when p 2, v 2, and
Sv(X X X2 we can define

F(x) CoX, x2
Cn ein. + x, X’ __c" ei _[.. X2 , __Cn ein.x.

nln2q:O nl tl2 n=O in2 n2=O l/’/1

Unfortunately, this author has not been able to find a general formula to give
the terms of F(x), when S(n)= 0, for arbitrary S,(x).
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2. We begin by establishing some lemmas that will be used in the proofs of
theorems. After these lemmas have been established, the proofs of the theorems
will closely follow the proofs in [6] and [9]. In what follows we let Sv(X) be a
harmonic polynomial homogeneous of degree v and f() be the restriction of
Sv(x) to the unit sphere. We denote the Bessel’s function of order v by J(t).

LEMMA 1. Let j be a non-negative integer. Let F(x) and all partial derivatives
of F of order less than or equal to j exist and be integrable in a neighborhood of
Xo Ep. Ifj > v and j- v is even, then

(2.1) f (r/-grad}F(xo)f(r/)ds(r/)

21- jlrP/ Zj
((j- v)/2) F((j + v + p)/2)

Sv(grad)AtS-v’/ZF(x0).

Ifj < v or ifj v is odd, then

f, (r grad)SF(xo)f(rl) ds(rl)= O.

Note. Here grad (- OlOxl, c3/c3xp) where the is chosen so
that the Fourier transform P(y)= F(x)exp (-ixy) dx will satisfy

(grad F)

LEMMA 2. Let n Zv. Then, if n 4= 0,

(2.2) exp (in trl)(rl) ds(rl)

n(n’)i(Inlt)-,.-2,/2Jv+,_2,/2(Inlt)"

Proof Lemmas 1 and 2 are consequences of the Funk-Hecke Theorem, see
[4, p. 181], (where p has a different meaning)" If is a surface harmonic of
degree v, E and f(h) is continuous for -1 < h < 1 then

(2.3)

where

2- v+ l(p- 1)/2 fl f(h)(1 h2)+- 3/2 dh.c(p, v, f) F(v (p i)/2) _,
To prove Lemma 2 we fix n e Zv and > 0. We set

f(h) (2n)-p/2 exp (i n th)
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and let In l- in- Applying (2.3)we get

exp (i n tin l- n e)n(e)

f(n’)F(v2-V+ lrtP-1)/2i Z i)/2) f_(2r)-’/2(ilnlt)v exp (ilnlth)(1- h2) + t’- 3)/2 dh

Thus

exp (in tq)fl(rl) ds(q)

2-v+ 1- p/2n- ’/(iln It)" f’ exp (iln th)(1 h2)+ ’’- 3)/2 dh.( ; - 1)/2) J_l

By formula 7, p. 81 of [2],

f exp (iln [th)(1 h2)v+ (p- 3)/2 dh
-1

r(v + (p- 1)/2)
jv ,/(llt),

SO

f exp (in "tq)n(rl)ds(q)(2:)- p/2

(n’)2-v+l-p/2x-1/2(ilnlt)v F(v + (p- 1)/2)
r(v + (p 1)/2) r- "(1/2 I. It)+ ’"- 2,/2 J. + ,.- ,,(I t)

n(n’)i’(In t)- "-
This completes the proof of Lemma 2.

For the proof of Lemma 1 we apply formula (2.3) again, this time with
h(h) h and Y I-’Y, whr y e.. W hav

f (I Y l- y. q}in(rl ds(q) c(p, v, fj)n(y’).

Thus

(2.4)

where

f (y" rtFn(rt) &fit) c(p, v, f31Y I-&(Y),

2-+ 1(p- 1)/2 ’ f")(h)(1 h2)"+(p- 3)/2 dh.(2.5) c(p, v, f) F(v (p i)/-2) _,
Ifj < v, thenf’)(h) 0, so c(p, v, fj) 0. Also, ifj v is odd, then the integral
on the right side of (2.5) vanishes, so again c(p, v, f)= O.
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If j > v and j v is even, then

2-+rv- 1)/2 jl fl hz)v+v 3)/2hi- (1 dh.c(p, v, f) r(v i i)/2) (j v)!
_

Calculating this last integral by reduction formulae, we get

Z-v+ lrcv-1)/z j! 2-J(j- v)!rcl/ZF(v + (p- 1)/2)c(p, v, f)= F(v + (p- 1)/2)(j- v) ((j- v)/Z) F((j + v + p)/2)

21- Jrr,p/ 2j
((j- v)/2) F((j + v + p)/2)"

We now complete the proof of Lemma 1. We may assume, by changing F(x)
outside a neighborhood of Xo if necessary, that F(x) has compact support. Let

and let

Then

O(x) f (rl grad)JF(x)n(q) ds(rl)

V(x) c(p, v, f)S(grad)Ati-/ZF(x).

and

V (y) c(p, v, f)S(y)ly
Hence, by (2.4)tI)A(y)= qA(y). Therefore O(x)= q(x), and the proof of
Lemma 1 is complete.

Now let T"

_
zp c, exp (in. x) be a multiple trigonometric series. Let

SR SR(X) c,ei"’x

and, for fl > 0,

(2.6) SR SR(X)= (fl) S.(x)(R u)-1 du.

Hardy [3] showed that a series is Bochner-Riesz-fl summable to 0 at Xo if and
only if

E cnein xo 1 0
In[ <R

as R ---, . Hence if the series T is Bochner-Riesz-fl summable to 0 at Xo, then

(2.7) SR(xo) o(Rt)
as R oe.
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Let IS(f) represent the fractional integral of a function f see [1]. Note that
(2.6) means that for fixed x, S(x)= U(f(R)), where f(R)= SR(X).

LEMMA 3. Suppose the series (1.2) is Bochner-Riesz-(m + 1) summable to 0 at

Xo 0, and suppose that the coefficients of(1.2) satisfy the hypothesis ofTheorem
2. Then

SR S)(O) o(Rk+(v-

as R o,forj --0, 1, m + 1.

Proof The proof is similar to the corresponding proof in [6] and is omitted.

3. Proof of Theorem 1. We use Taylor’s Formula"

F(xo + tq)=
1

j=o
(tq grad)iF(x) + (k + 1)!

(tq" grad)k+’F(xo + hq),

for some 0 < h < t. Then, using Lemma 1,

(2rr)-v/2 )" F(xo + tq)(q) ds(q)

- (2)-’/ ,.("" grad)F(xo)n()

(q" grad)/ F(xo + h)n()ds()

k

j=v,
j-

k

j=v,
j-

21- JltP/ 2j
((j v)/2) F((j + v + p)/2)Sv(grad)A(J-)/ZF(x) + R

21-j-p

((j- v)/2)! F((j + v + p)/2)
S(grad)Atg-v)/EF(xow)tg + R.

Here

tk+’ j’. (q" grad)k+’F(xo + hq)(q)as(q) o(tk)(k + i)!
as tO.

Proofof Theorem 2. We may assume without loss of generality that Xo 0
and So 0. Write fl m + a, where m is an integer and 0 _< a < 1. We begin
with the case when fl m and a -0. The condition on the coefficients (1.3)
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assures us that the series defining F(x) converges spherically on each sphere
xl and that we can integrate the series termwise on each sphere, see [5].

(2rt)-P/ I F(xo + ttl)(rl) ds(q)

c,
=’ (2r0_

p/= f ei..,,n(q) ds(q)
nZp

c. (n,)i(ln t)_,,_ ,/j ,- ,/(i n iti,s,(,) i,i
by Lemma 2. Thus

where

(3.1)

(z) z-’- (’-’>/’J, +(,_ ,>/,(z).
We write the last sum as an integral, using the notation of (2.6), and integrate
by parts rn times"

Z Cny(ln It) S, (Rt) Su (ut) du
Inl < R

d f d2

SR y(Rt)- S y(Rt) + S y(ut) du

d ds. (gt) S (gt) +-.. + (- 1)’S (Rt)

+ (-- 1)"+ S" y(ut) du.

By Lemma 3, SR o(Rk/ ’- 1)/2) as R --+ oo, for j 0, m. Also, repeatedly
using equation 51, p. 11 of [2], and the fact that Jr(z) O(z- /2) as z + m, we
get

(3.2) yO)(z) O(z--- 2)/2- ,/z) O(z--p/z+ ,/z)
as z , for j 1, 2, Hence as R all of the integrated terms of (3.1)
tend to 0. Therefore

d=+
lim E c,y(Jn t) (- 1)m+l S du=+, y(ut) du,
R Inl<R
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and

f f d"+
(3.3) (2n)-p// F(xo + trl)(rl) ds(rl) ?(- 1)+ S" y(ut) du.

We now make use of the series expansion for J+(p_ 2)/2(Z), see [2], p. 4. Let
r + (p- 2)/2. We have

Z+ 2 Zta + 2r- 2 Z + 2rZ 2r-.{C. Z" -- C# + 2 -- -- Ct + 2r- 2 -- C. + 2r -- "}"
If r O, let P(z) =- O. If r :/: O, let

P(z) cuz" + cu+ 2 Z/+
2

__ __
u+ 2r- 2 Z+ 2r- 2.

Let

(3.4) 2(z) y(z) z- 2r-uP(z).
Then 2(z) is an entire function. Returning to (3.3),

Recall S’ o(u) as u --. o. Also, since Co 0, S," 0 for 0 < u < 1. Hence,

Suu o u
1/2

2+ 2-,.- du 0(1)

for j 0, r 1. Thus,

(2n) -p/2 f F(xo + tq)fl(q) ds(rl)

r-1 f) dm++ 2j k )m+a2j -- O" + tk(-- 1 Su u-4-i 2(ut) du.
j=0
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To complete the proof of Theorem 2, we must show

d=+
(- 1)m+’ S dum+ i a(ut) du 0 as 0.

Using (3.4),

S dum+
,. (ut} du S du=+ {ut) du + {ut) du

s  a(ut) du +  ( t)du

dm+
S dU=+ ,-{(ut)-2"-P(ut)} du

11 + 12 q- 13.

Since 2(z)is entire, when utl <- 1,

dm+
<__ ctm+ 1.

Thus,

I, S d-- 2(ut) du o(um)C m+l du o(1) as --} O.
"o

We use (3.2) to evaluate 12.

f dm+ jl12 smu Um--i T(ut) du o(um)tm+ lO((ut)--p/2+ 1/2) du
/t It

tin-k-p 3/2 f O(lzm-k-p/+ 1/2) dtt

(Note we needed m < k + (p 3)/2 for this last integral to converge.) To evalu-
ate 13, we note

din+
alum+ {(ut)- 2r-uP(ut)} tm+ E CU+ 2j(ut)2j-

j=O

tin+ lO(ut)-m- 3.

Thus

3 fl O(tlm)tm+ o(t//)- m-3 du o(1).
/t

This completes the proof of Theorem 2 in the case when m is an integer.
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We now consider the general case fl rn + , 0 < < 1. We begin as before,
but this time integrate by parts the last integral on the right of (3.1) one more
time. We get, after showing the integrated terms tend to zero,

(2rt)-p/2 f F(xo + t)(?]) ds(tl) tk( l) Sum+l du+ 2 y(ut) du.

Letting P(z) and 2(z) be defined as before, we obtain

(3.5) (2t) -p/z f F(xo + tq)f(q) ds(q)

Recall that for any 6 > 0, S P(S,), where P denotes the fractional integral
of order 6. Hence

Thus the last integral on the right of (3.5) becomes

(3.6) (- |)m $2+1 2(l,t) du
dum+ 2

where

(_l)m fO 1

F(1
din+ 2

o
(u z)-s7+ dZ-duu. (ut) du

R--,oolim F(1 ) st+" (u z)- dum+ 2 2(ut) du dz

(__l)m fRR-,(R)lim F(1 --a) o
Sz+H(z, t, R) dz,

R dm/2
H(z, t, R) (u z)- dum+ 2 2(ut) du.
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We obtain the following estimates on H(z, t, R). (For details, which we omit
here, see [6, p. 445-448], where the notation is slightly different).

o(tm+ )(1/t Z) for 0 < tz < 1
H(z, t, R)=

t- 20(z)-m-’- 3 + tin+ +,O(tz)--p-/ for tz > 1.

Returning to (3.6)
din-t- 2

(-- 1) S2+’ dum+ 2 ,(ut) du

(-1) fO
lit

+lim F(1-)

R

+ lim o(z) 20{Z--- 3)

+ +*o(tz)--- /} z=o o(m+ z az + - o(z- 3) z
/t

tin+ +,--,- /2 f o(zm+,--,- )/2) dz+
1/t

o() + o() + o).

(Note that the hypothesis m + < k + (p 3)/2 is necessary for the last
integral to converge.) This completes the proof of Theorem 2.
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