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REFLECTION COMPOUNDS AND CERTAIN
r-BLOCKS OF FINITE CHEVALLEY GROUPS

BY
DAVID B. SUROWSKI

1. Introduction

Let G be a finite Chevalley group, of twisted or normal type, and let T be a
Coxeter torus of G as defined by G. Lusztig in [6]. If ( is the character of a
unipotent representation of G and if x is a regular element in T, then Lusztig [6]
showed that ((x) 0, 1 or 1. Moreover he determined which of the values is
assumed for each such character (; see [6; 6.16, 7.8]. His methods essentially
entail the study of the action of G on the eigenspaces of the Frobenius map on
the /-adic cohomology space of the "Coxeter orbit". Therefore we feel that a
thorough understanding of his work entails a substantial set of prerequisites.

In this note we shall re-interpret Lusztig’s results in such a way as to obtain
information about the principal r-blocks of G, corresponding to certain prime
divisors r of TI. Moreover, in case ( is a principal series unipotent character,
we shall supplant the sophisticated arguments of Lusztig by completely
elementary ones. The present proof is available since the degrees of these
characters have finally been computed for each family of Chevalley groups. The
last case, that of E8(q), was finished by C. T. Benson in [1]. Using these degrees,
we shall show that certain principal series unipotent characters are of r-defect 0,
relative to certain prime divisors r of TI. The remaining characters are the
compounds of the reflection character, as defined by R. Kilmoyer in his thesis
[5], and turn out to be nonexceptional characters in the principal r-blocks of G.

2. Coxeter primes and regular elements of T

We shall gather together some well known facts concerning a Coxeter torus
T of G. Assume for the moment that G is not a Suzuki or Ree group; these cases
will be considered later. Define the Coxeter number ho of G by ho [Na(T): T].
Set m ho p, where p is the order of the twist yielding G. Thus p 1 if G is
untwisted. Let dPm(X) denote the m-th cyclotomic polynomial in x.

LEMMA 1. (i) qm(q)I TI, as polynomials in q.
(ii) If r is a prime divisor of Pm(q), r J( m, then T contains a cyclic r-Sylow

subgroup of G, and r l(mod m).
(iii) N(T)/T

_
Zho.

(iv) If n N(T) generates N(T) (mod T), then g’ ’, for all T.
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The above facts can be found in or deduced from results in [6] of [10]. The
second statement in (ii) follows from Theorem 94 in [8]. We shall call the
primes r occurring in (ii) above the Coxeter primes of G. For the Suzuki and
Ree groups we define the Coxeter primes to be the prime divisors of TI. By
using Theorem 94 in [8] one can show that for each Coxeter prime r, T contains
a cyclic r-Sylow subgroup. Moreover, conclusions (iii) and (iv)of Lemma 1 are
valid for these groups as well.

If x T we say that x if reoular if CN(x) T, where N N(T). This notion
of regularity is the same as that given in [9; 6.10] and implies that given in [10];
see [9; 6.11].
As a corollary to Lemma 1 (iv), we see that if r is a Coxeter prime, and if

x T with r lo(x), then x is regular. Unfortunately, the converse need not hold,
as there are counterexamples in the classical groups. In the other hand, it is
easily seen that the nonregular elements of T are all contained in a subgroup of
T of order O(q"- x), where n rank G, and where O(q"- x) is a polynomial in q
of degree less than or equal to n- 1. Thus the regular elements of T whose
orders are divisible by some Coxeter prime comprise "almost all" of the
regular elements of T.

3. Character values on r-singular elements

We maintain the same assumptions as in Section 2. Let B be a Borel sub-
group of G and let 1 be the permutation character of the action of G on the
cosets of B. Thus the principal series unipotent characters are precisely the
irreducible character constituents of 1. For any such character (, ((1) is a
polynomial in q and can be found in one of the sources [1], [2], [4], [11], [12].
Let r denote the reflection character of G, with compounds

ztn), as defined by R. Kilmoyer in [5].

PROPOSITION 1. Let be a principal series unipotent character of G. Thenfor
any prime power q, we have tm(q)[ m" (1) ifand only if is not a compound ofthe
reflection character.
For the exceptional groups, the above fact is easy to check. For the classical

groups, one checks that is a compound of z if and only if ( is parametrized by
a partition of the form [k, 1n+ X-k] for type An, and by a double partition of the
form [k], [1 k] for types Bn, Cn and D However, from the degree formulas of
P. Hoefsmit in [4], one checks that these are the only partitions that yield
characters ( with b(q) , rn" ((1).

COROLLARY. Let r be a Coxeter prime of G and let be a principal series
unipotent character. Then is ofr-defect 0 ifand only if( is not a compound ofthe
reflection character.
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THEOREM 1. Let ( be a principal series unipotent character, and let r be a
Coxeter prime of G. Let x T with r o(x). Then

if is not a reflection compound,

if n0.

The above result re-establishes part of Lusztig’s result [6; 6.16], except that
our treatment is valid only for "almost all" regular elements of T.

Proof of Theorem 1. If ( =/:: n(i) then by the corollary to Proposition 1, we
have that ((x) 0. Thus we assume that ( nti), and work by induction on i.

Let J be a subset of a set R of fundamental reflections in the Weyl group W of
G, and let Pj be the corresponding parabolic subgroup of G. By [5, Theorem 9]
we have

Now pick J such that i--- R J I. Since x is not contained in any proper
parabolic subgroup of G, we have

0 1p,( ntJ)(x)-- n(i)(x)- (-- 1)/,
j=0 J

and so the result follows.
Note that the above result is valid for the Suzuki groups 2BE(q2

(02 22"+*), and for the Ree groups 2G2(q2 (q2 32,+ 1), since these groups
have a doubly transitive permutation representation on the cosets of a Borel
subgroup. Thus it remains to consider the Ree groups 2F4(q2 (q2 22,+ 1).
From [5; Section 4] one can obtain the degrees of the irreducible constituents

of of 1Gn, G 2F4(q2). They are as follows"

1, 1/4q4(q2 + 1)(q2 x/2q + 1)2(q6 + 1)(q4 + x/2q3 + q2 + x/2q + 1),

q24, q,O(q8 q + 1)(q4 q2 + 1), qE(q8 q4 + 1)(q4 q2 + 1),

1/2qa.(qa. + 1)(q’2 + 1),

and

1/4qa(q2 + 1)(q2 + x/2q + 1)2(q6 + 1)(q4 x/2q3 + q2 x/2q + 1).

The first three degrees are those of nt), n1) and rtt2), respectively. Since

zl x/2q3 + q2 x/2q + 1, we conclude that the corollary to Proposi-
tion 1 is valid for G of type 2F4. But then the arguments in the proof of
Theorem 1 work, proving our result in this case, as well.
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4. Principal r-blocks

Let r be a Coxeter prime and let B0r) denote the principal r-block of G. Then
Theorem 1 together with the work of E. C. Dade in [3] guarantee that each
reflection compound is a non-exceptional character in B). Whenever the rank
of G equals ho- 1, we conclude from Dade’s work that the reflection com-
pounds exhaust the non-exceptional characters in Bor). However, this happens
only for the groups A,(q) and 2D,(q2). In the remaining cases we must appeal to
the full force of Lusztig’s work. In [6] he constructed the G-module (R)Hic(X(C)),
whose irreducible constituents are precisely those unipotent representations
whose characters assume constant value 1 or 1 on the regular elements of a
Coxeter torus T. Thus, each such character is a non-exceptional character in
Bo". By [6; 7.9] these characters correspond to the compounds of the reflection
representation for a suitable "generalized Hecke algebra"; see also [7; 3.25].
Moreover, Lusztig showed that Hic(X(C)) affords exactly ho such characters.
By Dade’s work, this is exactly the number of non-exceptional characters in
Bo".
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