REPRESENTING PRODUCTS OF DISJOINT WORDS IN A FREE GROUP

BY
Charles C. Edmunds ${ }^{1}$

1. Introduction

Let F be the free group freely generated by x_{1}, x_{2}, \ldots, and let G be any group. An equation over G is an expression $W=U$ where $W, U \in F * G$. A solution is a tuple of elements of G which, when substituted for the x_{i} 's in W and U, make the equation true in G. A considerable amount of interest ([1]-[14]) has been shown in solving equations of the form

$$
\begin{equation*}
W=U \tag{1}
\end{equation*}
$$

where $W \in F$ and $U \in G$. Ju. I. Hmelevskiĭ [7] calls these "equations with right-hand side". If such an equation has a solution in G it shows that U can be represented as a word of the same "form" as W. An early result of this type is the following theorem of $\mathrm{H} . \mathrm{B}$. Griffiths.

Theorem [6]. If G is a free product of groups $G_{i}, 1 \neq g_{i} \in G_{i}(1 \leq i \leq n)$,

$$
W=\left[x_{1}, x_{2}\right] \cdots\left[x_{2 m-1}, x_{2 m}\right]
$$

and $U=g_{1} \cdots g_{n}$, then equation (1) has no solutions over G for $m<n$.
(Here $[x, y]$ denotes the commutator $x^{-1} y^{-1} x y$.)
In the special case that G is a free group, say $G=\left\langle a_{1}, a_{2}, \ldots ; \phi\right\rangle$, R. C. Lyndon and M. Newman [10] proved that with $W=x_{1}^{2} \cdots x_{m}^{2}$ and $U=a_{1}^{2} \cdots a_{n}^{2}$ equation (1) has no solutions over G for $m<n$. This was later extended by R. C. Lyndon, T. McDonough and M. Newman [9] to the case in which W and U are products of $k^{\text {th }}$ powers $(k>1)$.

Recently R. C. Lyndon [8] has generalized Griffiths' result to quadratic words (i.e. words in which each x_{i} occurs exactly twice with exponent +1 or -1$)$.

Theorem [8]. If G is a free product of groups $G_{i}, 1 \neq g_{i} \in G_{i}(1 \leq i \leq n)$, $W\left(x_{1}, \ldots, x_{m}\right)$ is a quadratic word and $U=g_{1} \cdots g_{n}$, then equation (1) has no

[^0]solutions over G for $m<n$. Furthermore, if $W \in F^{\prime}$ (the commutator subgroup), there are no solutions over G for $m<2 n$.

Since a free group can be viewed as a free product, this gives the result of Lyndon and Newman as a corollary; however, since it requires that W be quadratic, it does not give the result about $k^{\text {th }}$ powers. Using the methods developed in [5], we will obtain a result, in the special case where G is free, which removes the hypothesis that W is quadratic. An extension of this to free products appears to be difficult.

If the set $\left\{x_{i}: x_{i}\right.$ occurs in $\left.W^{ \pm 1}\right\}$ has n elements we write $g(W)=n$. A word W in F is universal if it has every word of F as an endomorphic image. Two words in F are disjoint if they are words in disjoint subsets of the set $\left\{x_{1}, x_{2}, \ldots\right\}$. Our theorem can then be stated as follows.

Theorem. If W is a non-universal word in F and U is a cyclically reduced word in F which is a product of n disjoint words $U=U_{1} \cdots U_{n}$, then equation (1) has no solutions over F for $g(W)<n$. Furthermore, if $W \in F^{\prime}$, there are no solutions over F for $g(W)<2 n$.

Since G is assumed to be free; it is convenient and no less general to let $G=F$. The condition that W be non-universal is clearly necessary but otherwise trivial since, by Corollary 2.3 of [5], the universal words are precisely those words W with g.c.d. $\left(\left|s_{1}\right|, \ldots,\left|s_{k}\right|\right)=1$ where the s_{i} 's are the exponent sums of the generators occurring in W.

2. Lemmas

We will assume that the reader is familiar with the terminology and results of [5]. As in [5] we assume, without loss of generality, that words are cyclic (i.e. written around a circle with the last letter preceding the first) and that subwords are ordinary (linear) words. Upper case letters represent words and subwords and lower case letters represent letters. The symbol " \equiv " denotes identical equality and " $=$ " denotes equality in F.

Lemma 1. If $U \equiv U_{1} U_{2} \cdots U_{n}$ is a cyclically reduced disjoint product of the U_{i}^{\prime} 's, then there is an automorphism of F sending U to $U^{\prime} \equiv U_{1}^{\prime} U_{2}^{\prime} \cdots U_{n}^{\prime}$ where each U_{i} cyclically reduces to U_{i}^{\prime}.

Proof. If $U_{i} \equiv A^{-1} U_{i}^{\prime} A$ let $\alpha_{i}: x_{j} \rightarrow A x_{j} A^{-1}$ for every generator x_{j} occurring in U_{i} and $\alpha_{i}: x_{k} \rightarrow x_{k}$ otherwise. Clearly $U_{i} \alpha_{i}=U_{i}^{\prime}$ and $U_{k} \alpha_{i}=U_{k}$ for $k \neq i$. Thus the automorphism $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ sends U to U^{\prime}.

Lemma 2. If $U \equiv U_{1} U_{2} \cdots U_{n}$ is a disjoint product of cyclically reduced subwords and if V is a non-universal word with U as a c-free image under an endomorphism ϕ, then V is a disjoint product $V_{1} V_{2} \cdots V_{n}$ where each V_{i} is a cyclically reduced subword of V and $V_{i} \phi \equiv U_{i}$ for each i.

Proof. If $n=1$ the result is trivial.

Assuming $n>1$, we suppose first that x is a letter occurring in V which ϕ sends to a subword of U containing the last letter, y, of some U_{i} and the first letter, z, of U_{i+1} (where we take $i+1$ as 1 if $i=n$). Thus $x \phi \equiv A y z B$. Since V is non-universal, x occurs again in V as x or x^{-1}. But U cannot take the form $L y z M y z R$, since y and z are letters from disjoint subwords of U. Therefore V must contain one occurrence each of x and x^{-1} and, thus, $U \equiv L y z M z^{-1} y^{-1} R$. Since y and z are from disjoint subwords, it follows that the z^{-1} is the last letter in U_{i+1}. This, however, is a contradiction to the hypothesis that U_{i+1} is cyclically reduced. Thus there is no such letter x in V.

It follows that ϕ sends each letter x in V to a subword of some U_{i}. Thus V is a disjoint product $V_{1} V_{2} \cdots V_{n}$ where $V_{i} \phi=U_{i}$. If any V_{i} were not cyclically reduced, U_{i} would not be cyclically reduced, contrary to hypothesis.

3. Proof of the theorem

If $U \equiv U_{1} U_{2} \cdots U_{n}$ is an endomorphic image of $W(\neq 1)$ in F, then by Lemma 1 we may assume without loss of generality that each U_{i} is cyclically reduced. By Theorem 2.1 of [5] there is a word $V \in D_{W}$ having U as a c-free image under some endomorphism ϕ. It then follows from Lemma 2 that V is a disjoint product, $V_{1} V_{2} \cdots V_{n}$, of cyclically reduced subwords with $V_{i} \phi=U_{i}$ for each i. Using Lemmas 3.3 and 5.2 of [5] we can assume without loss of generality that W is irredundant. Thus by Proposition 3.8 of [5] it follows that $\Delta(W) \geq \Delta(V)$. A simple induction on n using Lemma 5.8 of [5] then shows that $\Delta(V)=\left(\sum_{i} \Delta\left(V_{i}\right)\right)+(n-1)$. Thus we have

$$
g(W)-c(W)-\Delta(W) \geq \Delta(V)=\left(\sum_{i} \Delta\left(V_{i}\right)\right)+(n-1),
$$

and hence

$$
\begin{equation*}
g(W) \geq\left(\sum_{i} \Delta\left(V_{i}\right)\right)+(n-1)+c(W) . \tag{}
\end{equation*}
$$

Since each V_{i} is cyclically reduced we have $\Delta\left(V_{i}\right) \geq 0$. We also have $c(W) \geq 1$. Using these inequalities in $\left(^{*}\right)$ then yields $g(W) \geq n$.

If $W \in F^{\prime}$, it follows that $V \in F^{\prime}$ and, thus, that the exponent sum on each generator occurring in V is zero. But this is impossible unless, for each i, $g\left(V_{i}\right) \geq 2$. If $\Delta\left(V_{i}\right)=0$ for some i, then $g\left(V_{i}\right)=c\left(V_{i}\right)$; thus all components of $\Gamma\left(V_{i}\right)$ are of order two. Since $V \in D_{W}$ it is irredundant and therefore V_{i} can have at most one component of order two by Lemma 3.3 of [5]. Thus $c\left(V_{i}\right)=1$ and $g\left(V_{i}\right)=1$; a contradiction. It follows that $\Delta\left(V_{i}\right)>0$ for each i. Using this in $\left(^{*}\right)$ yields $g(W) \geq 2 n$.

References

1. R. G. Burns, C. C. Edmunds and I. H. Farouqi, On commutator equalities and stabilizers in free groups, Canad. Math. Bull., vol. 19 (1976), pp. 263-267.
2. C. C. Edmunds, On the endomorphism problem for free groups, Comm. Algebra, vol. 3 (1975), pp. 1-20.
3. - Some properties of quadratic words in free groups, Proc. Amer. Math. Soc., vol. 50 (1975), pp. 20-22.
4. ——, Products of commutators as products of squares, Canad. J. Math., vol. 27 (1975), pp. 1329-1335.
5. -, On the endomorphism problem for free groups II, Proc. London Math. Soc., vol. 38 (1979), pp. 153-168.
6. H. B. Griffiths, A note on commutators in free products II, Proc. Cambridge Philos. Soc., vol. 51 (1955), pp. 245-251.
7. Ju. I. Hmelevskin, Systems of equations in a free group. I, Izv. Akad. Nauk SSSR, Ser. Mat., vol. 35 (1971); English translation, Math. USSR Izvestija, vol. 5 (1971), pp. 1245-1276.
8. R. C. Lyndon, Commutators in free products, preprint.
9. R. C. Lyndon, T. McDonough and M. Newman, On products of powers in groups, Proc. Amer. Math. Soc., vol. 40 (1973), pp. 419-420.
10. R. C. Lyndon and M. Newman, Commutators as products of squares, Proc. Amer. Math. Soc., vol. 39 (1973), pp. 267-272.
11. P. E. Schupp, On the substitution problem for free groups, Proc. Amer. Math. Soc., vol. 23 (1969), pp. 421-424.
12. M. J. Wicks, Commutators in free products, J. London Math. Soc., vol. 37 (1962), pp. 433-444.
13. -, A general solution of binary homogeneous equations over free groups, Pacific J. Math., vol. 41 (1972), pp. 543-561.
14. -_, The equation $x^{2} y^{2}=g$ over free products, Proc. Cong. Singapore Nat. Acad. Sci., 1971, pp. 238-248.

Mount Saint Vincent University Halifax, Nova Scotia, Canada

[^0]: Received November 9, 1979.
 ${ }^{1}$ Research supported by the Natural Sciences and Engineering Research Council Canada.

