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1. Introduction

Let F be the free group freely generated by x 1, x 2, and let G be any group.
An equation over G is an expression W U where W, U F G. A solution is
a tuple of elements of G which, when substituted for the xi’s in W and U, make
the equation true in G. A considerable amount of interest ([1]-[14]) has been
shown in solving equations of the form

(1) W=U

where W F and U G. Ju. I. Hmelevskii [7] calls these "equations with
right-hand side". If such an equation has a solution in G it shows that U can be
represented as a word of the same "form" as W. An early result of this type is
the following theorem of H. B. Griffiths.

THEOREM [6]. If G is a free product of 9roups Gi, 1 =/= ti ff Gi (1 G G n),
W-- [Xl, X2] [X2m_ 1, X2m]

and U , then equation (1) has no solutions oer G for m < n.

(Here Ix, y] denotes the commutator x-ly-xy.)
In the special case that G is a free group, say G (al, a2, ...; 4)5, R. C.

2 andLyndon and M. Newman [10] proved that with W=xJ... Xm
2 equation (1) has no solutions over G for m < n. This was laterU=ai...a,

extended by R. C. Lyndon, T. McDonough and M. Newman [9] to the case in
which W and U are products of k powers (k > 1).

Recently R. C. Lyndon [8] has generalized Griffiths’ result to quadratic
words (i.e. words in which each x occurs exactly twice with exponent +
or -1).

THEOREM [8]. If G is a free product of groups Gi, 1 =/= gi Gi (1 _<i_< n),
W(xl, Xm) is a quadratic word and U 1 ,, then equation (1) has no
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solutions over G for m < n. Furthermore, if W F’ (the commutator subgroup),
there are no solutions over G for rn < 2n.

Since a free group can be viewed as a free product, this gives the result of
Lyndon and Newman as a corollary; however, since it requires that I4’ be
quadratic, it does not give the result about k’h powers. Using the methods
developed in [5], we will obtain a result, in the special case where G is free,
which removes the hypothesis that W is quadratic. An extension of this to free
products appears to be difficult.

If the set {x x occurs in W+- 1} has n elements we write g(W) n. A word W
in F is universal if it has every word of F as an endomorphic image. Two words
in F are disjoint if they are words in disjoint subsets of the set {x l, x2, ...}.
Our theorem can then be stated as follows.

THEOREM. If W is a non-universal word in F and U is a cyclically reduced
word in F which is a product of n disjoint words U U1 Un, then equation (1)
has no solutions over F for g(W) < n. Furthermore, if W F’, there are no
solutions over F for g(W) < 2n.

Since G is assumed to be flee; it is convenient and no less general to let
G F. The condition that W be non-universal is clearly necessary but other-
wise trivial since, by Corollary 2.3 of [5], the universal words are precisely those
words W with g.c.d. (I sl [,..., s l) x where the si’s are the exponent sums of
the generators occurring in W.

2. Lemmas

We will assume that the reader is familiar with the terminology and results of
[5]. As in [5] we assume, without loss of generality, that words are cyclic (i.e.
written around a circle with the last letter preceding the first) and that sub-
words are ordinary (linear) words. Upper case letters represent words and
subwords and lower case letters represent letters. The symbol "=" denotes
identical equality and "=" denotes equality in F.

LEMMA 1. If U ::- U1U2 U is a cyclically reduced disjoint product of the
Ui’s, then there is an automorphism ofF sendint U to U’ =- U’ U’2 U’n where
each Ui cyclically reduces to U’i.

Proof If Ui A- 1U’i A let " xj Axj A- for every generator x occur-
ring in U and " Xk Xk otherwise. Clearly Ui U’ and Uk Uk for
k 4: i. Thus the automorphism 1 2"’" t, sends U to U’.

LEMMA 2. If U =- U U2 U is a disjoint product of cyclically reduced
subwords and if V is a non-universal word with U as a c-free image under an
endomorphism dp, then V is a disjoint product V V2"" V, where each Vi is a
cyclically reduced subword of V and Vi =- Ui for each i.
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Proof If n 1 the result is trivial.

Assuming n > 1, we suppose first that x is a letter occurring in V which b
sends to a subword of U containing the last letter, y, of some Ui and the first
letter, z, of Ui + (where we take + 1 as 1 if n). Thus x =- AyzB. Since V is
non-universal, x occurs again in V as x or x-1. But U cannot take the form
LyzMyzR, since y and z are letters from disjoint subwords of U. Therefore V
must contain one occurrence each of x and x- and, thus, U =_ LyzMz- ly- 1R.
Since y and z are from disjoint subwords, it follows that the z- is the last letter
in Ui+ 1. This, however, is a contradiction to the hypothesis that Ui+ is cy-
clically reduced. Thus there is no such letter x in V.

It follows that q sends each letter x in V to a subword of some Ui. Thus V is a
disjoint product V1 V2 ""Vn where Vb Ui. If any V/were not cyclically
reduced, Ui would not be cyclically reduced, contrary to hypothesis.

3. Proof of the theorem

If U =- U1 U2"" U is an endomorphic image of W(:f 1) in F, then by
Lemma 1 we may assume without loss of generality that each U is cyclically
reduced. By Theorem 2.1 of [5] there is a word V Dw having U as a c-free
image under some endomorphism b. It then follows from Lemma 2 that V is a
disjoint product, V1 V2 V,, of cyclically reduced subwords with Vb Ufor
each i. Using Lemmas 3.3 and 5.2 of [5] we can assume without loss of genera-
lity that W is irredundant. Thus by Proposition 3.8 of [5] it follows that
A(W) > A(V). A simple induction on n using Lemma 5.8 of[5] then shows that
A(V) (E, A(V))+ (n 1). Thus we have

+ (.-

and hence

o(w)_ (Z, a(v,)) + c(W).

Since each V is cyclically reduced we have A(V/) > 0. We also have c(W) >_ 1.
Using these inequalities in (*) then yields o(W) > n.

If W e F’, it follows that V F’ and, thus, that the exponent sum on each
generator occurring in V is zero. But this is impossible unless, for each i,
g(V/) _> 2. If A(V)= 0 for some i, then g(V)= c(V); thus all components of
F(V) are of order two. Since V Dw it is irredundant and therefore V/can have
at most one component of order two by Lemma 3.3 of [5]. Thus c(V) 1 and
9(V) 1; a contradiction. It follows that A(V) > 0 for each i. Using this in (*)
yields g(W) > 2n.
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