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FINITE QUOTIENTS AND MULTIPLICITIES
IN NILPOTENT GROUPS

BY

P. F. PICKEL

Introduction

Unless otherwise stated, all discrete groups will be finitely generated torsion-
free nilpotent groups. If F is such a group, there is a unique real nilpotent Lie
group N containing F as a discrete co-compact subgroup. That is, the coset
space is compact and, in addition, has a finite N-invariant measure p. There is a
natural continuous unitary representation U of N on L(N/F, la) given by

uM)(nr) f(s-nr), f6 L2(N/F, p), s, n N.

U is the representation ofN induced by the trivial one-dimensional representa-
tion of F. Since N/F is compact, this representation decomposes as a discrete
direct sum

over a countable family of inequivalent irreducible representations n with finite
multiplicities nor, U).
Denote the set ot’ isomorphism classes of finite quotients of F by ’(F). Two

groups have the same set of finite quotients if and only if their profinite com-
pletions are isomorphic [7]. While the finite quotients do not determine F up to
isomorphism (see Section 3 below), there can be only finitely many groups with
the same set o1’ finite quotients [7]. L. Auslander has suggested that the multi-
plicities n(n, U) might fill in the gap. That is, that the finite quotients with the
multiplicities n(, U) might determine F up to isomorphism. (When the multi-
plicities corresponding to the profinite completion are computed, they are all
one orzero [6].) In this paper, we give some examples showing that this conjec-
ture does hold in certain cases. The multiplicities in these examples have rela-
tions with classical arithmetic constructions.

1. Generalities on multiplicities

(Much of this section is taken from [6, Section 2].) The nilpotent Lie group N
has a nilpotent Lie algebra q’. The exponential map exp" N is a homeo-
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morphism with inverse log" N --. /V. Suppose {# 1, gk} is a Malcev basis for
F (that is, each element in F can be written uniquely as

for integers n(i)). Let x,= log (#,). Then {x, x} is a basis for 4/’, with
respect to which the structure constants of V are rational numbers. Let Vo
denote the rational subspace ofV spanned by {xl, xn}. No exp (VQ) is
the divisible hull (Malcev completion) of F. A subgroup No of N will be called
rational if its Lie algebra Vo is a rational subspace of (i.e.,
Xo R. (f’o & /Q)). Let/q denote the set of equivalence classes of irredu-
cible unitary representations of N. We will often write n meaning the equi-
valence class of n.

Let n be in/ and suppose that W is a one-dimensional rational normal
subgroup of N such that n(W) 1. Let N/W No and let tp: N No be the
natural projection. There is a unique element no in ]qo such that no(tp(n))=
n(n) for all n in N. Let Fo denote F. W/W, a discrete co-compact subgroup of
No and let Uo be the representation ofNo induced by the trivial representation
of Fo.
LEMMA 1 [6, Lemma 2.2a]. n(n, U)= n(no, Uo).
Thus, in computing multiplicities n(n, U), we may first factor out by the

largest rational normal subgroup on which rr is trivial. Since n is irreducible,
the action of the center Z of N is given by a character of Z. That is, there is a
linear functionalfdefined on the Lie algebra of the center such that for any
in the representation space of rr and any z in e,

exp (z)fi exp (2n/f(z))fi.
This means that the representation must be trivial on a subgroup of co-
dimension one (at least) in Z (corresponding to the kernel off). If the represen-
tation occurs in U, it must be trivial on F c Z, so the kernel offis a rational
subspace of . Thus in computing n(n, U), we may restrict to the situation
where the center of N is one-dimensional. For the remainder of this section, we
will assume that N has one-dimensional center.
Now let Zz(N) denote the second center of the group N (with one-

dimensional center) and let W be a two-dimensional rational subgroup of
Zz(N) containing Z. Let No be the centralizer of W in N. No is rational in N,
No had co-dimension one in N and N No S (semidirect product) for some
rational one-dimensional subgroup S of N.

LEMMA 2. [6, Lemma 2.3]. Let be an irreducible representation ofN which
is non-trivial on . Then is induced by some irreducible representation no of
No. The set ofall representations ofNo which induce coincides with the orbit of
no in 1o under N, i.e.

{(no)Xlx N}. ((no)X= (no)r/f and only if x y mod No .)
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Now suppose zr in/ is nontrivial on Z (still one-dimensional) and choose no
in /o which induces n. Let Uo be the representation of No induced by the
trivial representation of Fo F c No. Let A’ be the set of 2o in No which do
not vanish on Z and for which n(2o, Uo) > 0. A’ is acted on by F. We let A be a
subset of A’ which meets each orbit under F in exactly one element. Then we
have

(,) (, t)= E (o, to)
where the sum is over all 20 in A for which 2o 6 (no) [6, p. 153].

Using Lemma 1 and formula (,), we may compute the multiplicities n(n, U)
by reducing eventually to the abelian case where all non-zero multiplicities are
1.

2. Nilpotent groups of class 2

Suppose now that F and N are nilpotent of class 2 and that rr is in/. We
wish to find n(rr, U). If n is trivial on N’, then n gives a character of N/N’ and
n(n, U) 1 or 0 depending on whether n is trivial on F. Thus the only multi-
plicities which give significant information about the structure of F are the
multiplicities of those n in/ which give a non-trivial action for N’.
Now consider a representation n in/ which is not trivial on N’ < Z, the

center of N. Then n induces a non-trivial character of Z"

(Z)V e2if(z (v any element of the representation space)

wherefis a linear function on Z written additively. If n(n, U) : O, n is trivial on
F so the kernel offis a rational subspace of Z. Using Lemma 1, we factor out by
this subspace to obtain the situation" N’ Z is one-dimensional and the action
of N’= Z via n is given byf: Z R as above. The restriction off to F Z Zr
sends Zr to the integers since n is trivial on F. The composition

@(x, y)=f([2, y])

offwith commutation thus defines a nondegenerate alternating bilinear form
from F/Zr to Z (0, y denote any preimage of x, y resp.). By the structure
theorem for such forms [2, Theorem 5.1.1], there is a basis

of F/Zr and integers d, d with d dividing d/ such that

O(x_ , x) a
and O(xz, x)= 0 otherwise. By using (,) and induction on n, one may show
that

n(n, U)= d d2 d,
(or see [1, Section 1.6]).
Thus we see, in the case where F is of class two and n in/ is non-trivial on



N’, that n(n, U) depends only on the linear functional induced on N’ by t. We
define a map from the dual of N’ c F Ir (the isolator of F’ in N) to the
integers as follows: Given a linear functional on It, extend it to a linear map
f" N’ R. Use this map to define a representation ny of N induced from
ey). The original linear functional is then sent to n(n,, U). We will call this
map #r: I- Z.

DEFINITION. We say that two finitely generated torsion free nilpotent
groups F(1) and F(2) of class two have the same multiplicities if there is an
isomorphism p of In1 to Inz such that

#r(z) r(1) (P*’

That is, qg* takes multiplicities for F(1) to multiplicities for F(2).

3. The examples of Grunewald-Scharlau, generalities

Let R be the ring of integers in the number field K and let I be a fractional
ideal of K. We form the matrix group

G(K,I)= 1 rR, m,m’ el
0

THEOREM 3 [3, Lemmas 2 and 3]. G(K, I) is isomorphic with G(F, J) tfand
only if there is an isomorphism q) K - F which takes the ideal class of I to the
ideal class of J.

Clearly center (G(K, I))= (G(K, I))’
1 0 m]0 1 O meI
0 0 1

which is isomorphic to I as an abelian group .and G(K, I)/G(K, I)’ is isomor-
phic to R I as abelian groups. The commutator induces a map

]: (R I) (R I) --, I

given by [(r, m), (r’, m’)] rm’- r’m. Suppose now that f:I - Z is a non-
trivial Z-linear map. Then

O=fo[, ]:(RI)(RI)-Z
gives an alternating bilinear form which is nondegenerate since we are working
in a field. Ifwe choose integral bases {w 1, w}, {tr 1, try} for R and I, resp.,
then the matrix A of has the form

0_Mr M]0 wherem,j=f(w, aj).
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If E is an elementary 2n x 2n matrix and EA gives a row operation on M, then
AEr gives the corresponding column operation on (-Mr). To obtain the
invariants of @, we perform elementary row and column operations on M and
the corresponding operations on (-Mr) to obtain

pApr

-dl

"’. _d,,] 0

where

Thus

and

.. QMSr

d

dl "d2 d det
[[dl

since det Q 1 det $.

d] det (QMSr) det M

Now let {w!, w,} be an integral basis ofR and let {tr 1, tr}, {z 1, z n}
be integral bases of I. There are integers yik SO that

Wiaj yi"k for all and j.
k=l

Iff" I --, Z is given by c, thenf(wa) .. yc. By Section 2 and the
calculation above, the multiplicity n(ny, U)ofthe irreducible representation rrf
induced from ey() on I is

() n(r:, U)= det (k=l kCk)l"
Thus the multiplicity map # is a form of degree n in the n variables c 1, cn
and two such groups have the same multiplicities if and only if the forms are
equivalent. Note that the form depends only on the ideal class of I since we may
choose {r/a1, r/tr2, r/an} and {r/z1, r/z,} as bases of r/I and obtain the same
form. The equivalence class of the form does not depend on the choice ofbases.
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A change in {w,} or {(r} multiplies by dtl of the change ofbasis matrix which
is 1. A change in {z} gives a form equivalent via the change of basis matrix.
There is a second, well-known, way of obtaining a form from the ideal 1.

Given an integral basis {a l, an} of I, N(ct at + ""+ chart) is an integer
divisible by the norm N(1) of I. Thus

gives a form of n-th degree in n variables whose equivalence class does not
depend on the choice ofbasis and depends only on the class of I. Let us see how
this form may be calculated in a way similar to the above multiplicity formula.
Use the bases of the previous paragraph and write zi o wi. Then

SO

Wiltj )ij’[k ;ijOkl WI
k=l k=l !=1

and

W Cjaj Cj(Wiaj) CjIijOklWl
j=l j=l j=l k=l 1=1

But det (k)= N(I) so we have finally

)= det (j=lCjTi)det (u).

g(ct, cn) N(cja)/N(I)=det (--.lcjJ)"
We shall see below that, in a special case, these two forms are equivalent. It
would be interesting to know if the forms are equivalent in general.

4. Examples of Grunewald-Scharlau, quadratic field case

We now restrict to the case where the field K is a quadratic number field
Q(-) (m square-free) and I is an ideal. In the case

R {a + bala, b Z}
where

1 + for m-- 1 (mod 4).tr=x/form2,3(mod4) and tr=
(Many of the results which follow may be found in [5, Chapter VIII].) I has a
basis

{ua, u(a + e)}
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where u, a and e are integers and N(a + e)= ka for some integer k. Then we
have

1 ua ua

1. u(a + e)= u(a + e)
a ua uaa a(u(a + e)) e(ua)

-(ua)k + e(u(a + e)), m 2, 3,
tr u(a + e)= -(ua)k + (e + 1)(u(tr + e)), m _= 1.

If the action of a linear functional on I is given by ua x and u(a + e)-, y,
then by formula (f) of the previous section, the multiplicity of the induced
representation is

det
ay ex )-kx + ry I-kx + 2rxy- ay2[

kx2 2rxy + ay2

where r e if m 2, 3 (mod 4) and r e + 1 if m 1 (mod 4). Two groups
G(K, I) and G(K, J) have the same multiplicities if and only if the corres-
ponding binary quadratic forms are integrally equivalent.
We now obtain the second type of form for I:

gt(x, y)= N(uax + u(a + e)y)/N(I)= ax2 + 2rxy + ky2.

The form obtained in this way is equivalent (under x y, y -x)to the form
obtained above. Now 0i is equivalent to 0j if and only if the ideal class of J is
the ideal class of I or Ic, the conjugate of I under the Galois automorphism [5,
Theorem 64]. By Theorem 3 above, this holds if and only if G(K, I) is isomor-
phic to G(K, J).
To finish up we need a result on quadratic field Grunewald-Scharlau groups

with the same finite quotients.

LEMMA 4. If tWO quadratic field Grunewald-Scharlau oroups G(K, I) and
G(F, J) have the same finite quotients, then K F.

Proof. Let R be the ring of integers in K and let S be the ring of integers in
F. Since G(K, I) has the same finite quotients as G(K, R), it is sufficient to
consider G(K, R) and G(F, S). Since G(K, R) and G(F, S) have the same finite
quotients, their p-adic completions must be the same for each rational prime p.
We have a basis {l, a, 12, a2} for G(K, R)/(G(K, R))’ and a basis {la, aa} for
(G(K, R))’. Under the isomorphism taking G(K(,), R(,)) to G(Ft,), S(,))we have

11 -’ ((11, 0(12), 0"1 -’ (021, 022), modulo (G(F(,), Sty,)))’
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where q and/3 are elements of Sp). Since the map is a homomorphism and
[11, 0"1] id, 0(11 022 --21 12 0. Now one of 11, 12 is not zero say 011.
Then if t 2 0, then t22 0 and if 012 #: 0 then 022 =/= 0 and

Now

[11, /2] 13
[ll, o’2] or3 so

[or1,/2] a3 so

Therefore y c5 and

22

X12

[al, or2] cr ml3, m 2, 3 (mod 4) or cr3 +
rn- 1

/3, m 1 (mod 4)4

so 021 0,2 022 041 011 z31(’r -/) di, =//1 z equals

m#, m-- 2, 3 (mod 4)
or

f12+ 4 .81= di+
4

fix, m=l(mod4).

In either case i in S() satisfies the minimal polynomial ofa R. By comparing
the possibilities for p-adic completions of quadratic number fields [8, p. 248],
the presence of c5 in S(v forces K to be isomorphic to F.

THEOREM 5. If G(K, I) and G(F, J) are quadraticfield Grunewald-Scharlau
Oroups with the samefinite quotients and the same multiplicities, then G(K, I) and
G(K, J) are isomorphic.

Proof. By Lemma 4, K F. Then by the first part of the section the groups
must be isomorphic.

5. Some directions for further research

In order to extend Theorem 5 to all Grunewald-Scharlau groups, one would
need to know the relation between ideals with equivalent forms in general
number fields. One would also need an analogue of Lemma 4. This seems to
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require being able to identify number fields by their p-adic completions for
rational primes p.

In a more general direction" It is not clear exactly how one should define the
concept of having the same multiplicities for groups of class greater than two.
While representations induced from N’ are still the important ones, the action
of N on N’ now comes into play.
As a further test, we propose the following question: If F and A satisfy

F x Z A x Z (direct product with an infinite cyclic group) then should F
and A have the same multiplicities ? Examples exist of non-isomorphic groups
of class 3 for which the above equation holds. These groups have the same finite
quotients so if they also have the same multiplicities, they would furnish a
counterexample to Auslander’s suggestion in class three. (This cannot happen
in class two [4].)
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