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THE VARIETY OF POINTS WHICH ARE NOT
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BY
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1. Introduction

(1.1) Background. Let k be an algebraically closed field and let V be a
finite-dimensional vector space over k. Let G be a reductive algebraic subgroup
of

Let k[V] be the algebra of regular functions on V. The group G acts on k[V]
as follows:

(g f)(v) f(o- lv)
for all f k[V], g G, and v V. The ring of G-invariant functions on V is

k[V]= {f k[V]: o’f=f for all O G}.
We define an algebraic subvariety X of V by

X {v V: f(v)= 0 for each non-constant homogeneousf k[V]}.
A point in V, not in X, is called semi-stable.

In order to describe the points in X, it is useful to introduce the concept ofan
orbit. Let v be in V. The orbit of v with respect to the action of G is

G’v={o’v:oG}
The Zariski-elosure of G. v will be denoted by el (G. v).

THEOREM. Let G be a connected reductive aloebraic suboroup ofGL(V). Let
v V. The followino statements are equivalent:

(a) v is not semi-stable;
(b) 0 el (G. v);
(c) there is a one-parameter suboroup 2 of G so that 2(). v 0 as O.
The notation in (e) will be explained in (2.1). The equivalence of (a), (b), and

(e) is proved in [10; Sections 1 and 2] taking into account [5].

(1.2) Summary of results. The purpose of this paper is to prove some re-
sults aimed at explicitly describing the set X. The basic theorem is proved in
(2.2). As consequences of this theorem, the following corollaries are proved in
(2.3) and (3.2).

Received April 3, 1980.
(C) 1982 by the Board of Trustees of the University of Illinois

Manufactured in the United States of America

138



THE VARIETY OF POINTS WHICH ARE NOT SEMI-STABLE 139

(1) Let G be a connected reductive algebraic subgroup of GL(V) and let
B TU be a Borel subgroup of G. Let Vo be a point in V which is not semi-
stable. Then there is a one-parameter subgroup 20: GB such that
2o(0t)Vo --* 0 as O.

(2) Let G and B be as in (1). There exist subspaces W1, W, of V such that
the following statements hold:

(a) each W/is B-invariant;
(b) X=G" W, w’"wG" IV,;
(c) each G" W is closed.

(3) Let G be as in (1) and suppose that G acts irreducibly on V. Let v 0 V
be a point which is not semi-stable. Then the highest weight vector of G is in
cl (G" vo).

(1.3) Existence of semi-stable points. Semi-stable points exist and form an
open set if dim V > dim G and G is semisimple. This fact follows from several
well-known theorems but does not seem to have been stated before. We give
the proof now.

THEOREM. Let G be a connected semisimple aloebraic suboroup ofGL(V). Let

m max {dim (G" v): v 6 V}.
If dim V > m, then V- X is not empty.

Proof Let k(V) be the field of rational functions on V. The group G acts on
k(V) via

(9 f)(v) f(9- Xv)
for all f k(V), 9 G, and v V. Let

k(V) {f k(V): 9 "f=f for all 0 G}.
We begin by showing that k(V) is the quotient field of k[V]. Letf= a/b be

in k(V) where a, b k[V]. Let a P P, and b q q be the factoriza-
tions of a and b into prime elements where we shall assume a and b have no
common factors. There is a finite-dimensional subspace E of k[V] which is
G-invariant and contains each pand q [6; Proposition, p. 62]. For h k[V], let

(h) {ch: c e k}.
Now since g .f=f, we see that (gb)a (ga)b. Since a and b have no common
factors, each gPi is a multiple of some pi. Thus G permutes
Since G is connected, G(pi)= (p) for all i= 1, r. Hence, there are
constants c e k satisfying

g pi= cop for allgeG.
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The map O --’ co is a character of G. But G is semisimple so each character is
trivial. Therefore, O P P for all 9 G and G fixes a. It follows that G fixes b.

Next, let m max {dim G v: v V}. According to a theorem of M. Rosen-
licht [8; pp. 406-407], dimk(V)G=dimV-m. If dimV>m, then
dim k(V)G > 0. By what was proved above, there are non-constant functions in
k[V] and, so, X : V.

2. The theorem and its corollaries

(2.1) Preliminaries. We begin this section by reqalling some notation and
definitions along with some of the concepts in [7].

(1) A one-parameter suboroup 2 of an algebraic group G is a homomor-
phism 2: G,, --, G (where G,, is the multiplicative group k* k {0}).

Let f" G --, X be a morphism of algebraic varieties. Iff extends to a mor-
phismf: G.--, X, then y fa(0) is called the specialization off() as specia-
lizes to 0. We shall denote this byf() y as --, 0.

(2) Let 2: Gin--* GL(V) be a one-parameter subgroup. There is a basis
v, v, of V and integers e, e, so that

for i= 1, n [6; 16.1]. Let

V(e,) {v + V: 2(a)v
Next, we define a subspace W(2) of V by

W(2) {v + V: 2(a)v--+ 0 as a --+ 0}.
Then it is easily verified that W(2) is the direct sum of those subspaees V(e,)
where e > 0.

(3) [10; Lemma 3.1]. Let G be a reductive algebraic group and let
2: Gm G be a one-parameter subgroup of G. There is a unique algebraic
subgroup P(2) in G such that p is in P(2) if and only if 2()p2(-x) has a
specialization in G when specializes to 0. Moreover, P(2) is a parabolic
subgroup of G.
For 9 G, let 929-x denote the one-parameter subgroup of G defined by

-+

It is not hard to check that P(929-1 9P(2)9-1.

(4) Let G be a reductive algebraic group and let p: G-+ GL(V) be a re-
presentation of G. Let 2: G G be a one-parameter subgroup of G. Let W(2)
and P(2) be as (2) and (3). Then P(2). W(2)= W(2).
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Proof. Let p P(2) and v W(2). Then

2(cz)pv ,()p2(o- )2(z)v 0 as 0.

(2.2) THEOREM. Let G be a connected reductive al#ebraic sub#roup ofGL(V).
Let B TU be a Borel sub#roup ofG and let W(T) N(T)/T be the Weyl group
of T. Let Vo be a point in V which is not semi-stable. There is a one-parameter
subgroup 2: Gm- T such that the following statements hold:

(a) B P(2), i.e., if # is a root ofB relative to T, then (#, 2) > O;
(b)
(c) there are elements u U, sT W(T) such that Vo us. W(2).

Proofi According to statement (c) of the theorem in 1.1, there is a one-
parameter subgroup 20 of G such that Vo W(2o). Let Bo be a Borel subgroup
in P(2o) such that each 2o() is in Bo. There is an element G such that
B gBo g-1 and an element b B so that

b(g2o()g- 1)b-1 T

for all Gm. Let 2 (bg)2o(bg)-1.
To prove statement (a), we use preliminary (3)above to see that

P(2) (bg)P(2o)(bg)-1 = (bg)Bo(bg)-1= B.

Also, we recall that there is an isomorphism e, from Go into G such that for all
T, x Ga, we have

teu(x)t-l= eu(#(t)x) [6; Theorem, p. 161].
Hence,

where, by definition, e (#, 2). We now apply (3) again to see that (#, 2) > 0.
Statement (b) follows from (a)and preliminary (4). To prove (c), we first note

that W(2)= baW(2o) so that Vo e G. W(2). Now, according to the Bruhat
decomposition of G, we have G w UsB where sT ranges over all the distinct
cosets of the Weyl group W(T) N(T)/T. Hence,

G" W(2)= UsB" W(2)= Us "W(2)
according to (b). This proves (c).

(2.3) Consequences. Throughout this section, we shall denote by G a con-
nected reductive algebraic subgroup of GL(V) and by B TU a given Borel
subgroup of G.

COROLLARY 1. Let Vo be a point in V which is not semistable. There is a
one-parameter subgroup 2o: Gm B such that 2o()Vo - 0 as o O.
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Proof. According to (2.2), there is a one-parameter subgroup 2: Gm T
and elements u U, sT W(T) such that Vo us. W(2). Let

for all G. Then 20 is a one-parameter subgroup of B since

2o() (us)2()tus) uTu B.

Furthermore, 2o()Vo 0 as 0. For if Vo us. w with w W(2), then

LEMMA. Let X be a closed subset of V and let P be a parabolic sub#roup ofG.
If P X is closed, then G X is closed.

Proo Let P act on the right on G x V by (#, v). p (#p, v). The quotient
variety (G x V)/P exists and is (G/P) x V[4; 6.6, Corollary]. Let

: G x V(G/P) x V

be the quotient morphism. Then n is open. Let

Sin A is the inverse image of P X under the morphism G x V V defined
by (#, v) V- xv, we see that A is closed. It is easily verified that n- (n(A)) A
and, so, n(A) is closed in (G/P) x V (since ,n is open). Now G/P is complete so
the image G. X ofn(A) under the projection map (G/P) x V V is closed in V.

Note. The proof above is a slight extension of one in [3; Lemma 6.3]. A
short "transcendental" proof can be given when K C. For then, G KP
where K is compact [11; Theorem 1, p. 102] and, so, G X K. (P. X)). But
K (P. X) is closed since compact transformation groups send closed sets to
closed sets.

COROLLARY 2. Let X be the set of points in V which are not semi-stable.
There are one-parameter subgroups 21, , of T such that thefollowing state-
ments hold:

(a) B c P(2)and B. W(2)c W(2,)for all i= 1,..., r;
(b) each G W(2i)is closed;
(c) X G. W(21) w"" w G. W(2,) and this is the unique decomposition of

X into irreducible components unless there exist i, j, :/: j, sT W(T) such that
W(,) W().

Proof Let T have weights 1,..., Z. on V and let

V(.) {v V: tv .(t)v for all T}.
Next let 2 be a one-parameter subgroup of T. Let Z be one of the weights above
and put e (Z, 2>. Then 2()v v for all v V(;g). Therefore, V(Z) c W(2)if
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and only if e > 0. It follows that there are (finitely many) one-parameter sub-
groups 2, 2, of T such that (i) B P(2,) and (ii)if 2:G T is any
one-parameter subgroup such that B P(2), then W(2)= W(2)for some
i= 1, r.

Statements (a), (b), and (c) follow from the theorem and lemma above, except
for the decomposition of X.

Let us write W W(2) for i= 1, r. Now suppose that

G" WiG" W ’" G" W_ w G" W+ ’" G" W,.

Since W is irreducible, there is aj :/: so that W G W. Applying the Bruhat
decomposition of G, we now see that

W c w UsB" W w UsW.
But V is U-invariant so V w sW. Since V is irreducible, we obtain the
desired result that W s. V for some sT W(T).

COROLLARY 3. Suppose that there is an element sT in the Weyl group ofG so
that s( -Xfor all weights 7. of T. Let X be the set ofpoints in V which are not
semi-stable. Then dim X < 1/2 dim V / dim U.

Proof. Let us use the notation for V(Z)introduced in the proof of Corollary
2. Let 2: G T be as in Corollary 2. If ; is a weight of T on V and if
V(;) W(2), then V(-)c W(2)= {0}. Since s. V(;)= V(-g), we have
dim V(;)= dim V(-). Thus dim W(2) _< 1/2 dim V. The statement about
dim X now follows from the Bruhat decomposition of G and the fact that
B. W(2) is contained in W(2). For G. W(2,)= w UsB. W(2)= w UsW(2,).

Notes. Let G be a simple algebraic group, not of type An, Dn (n odd), or E6.

Then there is an element sT in the Weyl group of G satisfying sz - for all
weights of T [11; p. 226].

(2.4) Properly stable points. Let G be a reductive algebraic subgroup of
GL(V). A point v in V is called properly stable if the orbit G v is closed and has
dimension equal to that of G. A point v in V is not properly stable if and only if
there is a one-parameter subgroup 2" Gm --* G such that 2(). v has a speciali-
zation in V as specializes to 0 [10; Section 2].

In case char k 0, one may prove the following result analogous to the
Theorem of (1.3)" Let G be a connected semsimple algebraic group and let
p" G GL(V) be a finite-dimensional representation of G. There is an integer
M so that if dim V > M, then the set of properly stable points in V contains a
non-empty open set [12] and Ill--the first paper holds in any characteristic.

Let us assume char k >_ 0 and let 2" G -- G be a one-parameter subgroup of
G. Let

W’(2) {v V: 2(). v has a specialization in V as - 0}.
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Then we may show that P(2). W’(2) c W’(2)as in (2.1) and prove the follow-
ing theorem and corollaries just as in (2.2) and (2.3).

THEOREM. Let G be a connected reductive algebraic subgroup ofGL(V). Let
B TU be a Borel subgroup ofG and let W(T) N(T)/T be the Weft group of
T. Let Vo be a point in V which is not properly stable. There is a one-parameter
subgroup 2: Gm- T such that the following statements hold:

(a) B P(A), i.e., if # is a root ofB relative to T, then (#, A) > O;
(b) B" W’(2) W’(2);
(c) there are elements u U, sT W(T) such that Vo us. W’(,).

COROLLARY 1.
Vo e W’(;to).

There is a one-parameter subgroup 2o: Gm-- B such that

COROLLARY 2. Let X’ be the set ofpoints in V which are not properly stable.
There are one-parameter subgroups ,

1, 2, of T such that thefollowing state-
ments hold:

(a) B P(2,)and B. W’(2,) W’(2,)for all i= 1,..., r;
(b) each G. W’(2i) is closed;
(c) X’ G W’(2I) w w G W’(2,) and this is the unique decomposition

ofX’ into irreducible components unless there exist i, j, =p j, sT W(T) such that
w’(,D.

3. Borel subgroups and semi-stable points

(3.1) THEOREM. Let B be a connected solvable algebraic lroup actin0 on an

affine variety X. Let x X and Z cl (B x). Then either B x is closed or
there is anf k[Z] such that

Z- B x {z e Z: f(z)= 0).
In the latter case, there is an element c in k* so that the mapping ;(: B k given
by 7.(b)= cf(b x)is a character orB.

Proof. The group B operates on k[Z] via (b .f)(z)=f(b-l.z)for all
f e k[Z], z e Z, and b e B. Let I be the ideal in k[Z] vanishing on Z- B. x.
Then I is B-invariant, i.e., b I I for all b e B. Suppose now that I (0} and
let f be any non-zero element in I. There is a finite-dimensional B-invariant
subspace E I such that f e E [6; Proposition, p. 62]. By the Lie-Kolchin
theorem, there is a non-zero common eigenvector h in E for B [6; 17.6, p. 113].
Let b. h cb h. Then

h(b-1. x)= (b" h)(x)= c,h(x).
If h(x) 0, then h 0 on B. x and h 0. Hence, h(x) q: 0 and h is non-zero on
B. x. Since h is in I, h is 0 on Z- B. x.
The mapping b--, h(b. x) is non-zero on B and, so is a character of B if

h(e. x) 1 [9; Proposition 3, p. 29]. Modifying h by a constant, we obtain the
theorem.
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COROLLARY (Kostant, Rosenlicht). Let U be a unipotent group acting on an

affine variety X. For every x X, the orbit U x is closed.

Proof. The corollary follows at once from the theorem since the only charac-
ter of U is trivial.

Notes. The corollary above was first proved by B. Kostant. A shorter proof
was found by M. Rosenlicht. Another proofwas found by A. Borel [3; Theorem
12.1]. A modification of Borel’s proof gives the theorem above.

(3.2) THEOREM. Let G be a connected reductive algebraic subgroup ofGL(V)
and let B TU be a Borel subgroup of G. Suppose that 0 is the only point in V
fixed by G. Let Vo be a non-zero vector in V which is not semi-stable. There is a
non-zero vector v cl (B Vo) such that U v v.

Proof. According to Corollary 1 in Section 2.3, the point 0 is in cl (B. Vo).
Let w cl (B. v o) be chosen so that B. w has the smallest possible positive
dimension. Then el (B. w)- B. w consists of points fixed by B. Since G/B is
complete, each of these points is fixed by G. However, by our assumption, then,
el (B. w) B. w is {0}. The theorem in (3.1) now implies that dim (B. w) 1.
Now U must fix w. For otherwise, U w is a closed subset (by the corollary

above) of B w having dimension 1. This would imply that U w B w and
B. w is closed.

COROLLARY. Let G be a connected reductive algebraic subgroup of GL(V)
which acts irreducibly on V. Let B be a Borel subgroup ofG. Let robe a non-zero
vector in V which is not semi-stable. Then the highest weight vector ofG on V
(relative to B)is cl (G vo).

4. Examples

(4.1) The adjoint representation. Let G be a connected reductive algebraic
group and let L(G) denote the Lie algebra of G. Then G acts on L(G) via the
adjoint representation.

Let B T. U be a Borel subgroup of G. Let L(T), L(U), and L(B) be the Lie
algebras of T, U, and B, respectively. We shall denote the roots of T acting on
L(U) by , fl, Then there is a basis {e} ofL(U)so that t e= (t)e for all
tT.

Next, let W be a subspace of L(G) which is B-invariant. If W contains e_a
(where ea L(U)), then w lea, e_a] is a non-zero element in W which is fixed
by T.

Let : G,, T be a one-parameter subgroup of T such that W(2)is B-
invariant. Then W(2) L(U) by the argument just given. Also, there is a one-
parameter subgroup 2 of T so that (2, ) > 0 if > 0 [4; Theorem, p. 317]. For
this one-parameter subgroup, we have W(2)= L(U) and P(2)= B.
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Finally, let X be the set of points in L(G) which are not semi-stable. Accord-
ing to the remarks above and Corollary 2 in (2.3), we have

x
It is known that G.L(U) is precisely the set of nilpotent elements in L(G).
Hence, we obtain a result of B. Kostant: a point v in L(G) is not semi-stable if
and only if v is nilpotent.

(4.2) Certain actions of SLy. Let SL. be the group of all n x n matrices with
entries in k and having determinant 1. Let

T {t (tu) SLy: t,)= 0 for 4= J}.
We shall denote a typical matrix (tu) in T by [t t, t,.]. Let us define
characters Xt, Zn of T by

Z[tt,..., t] t, for each i= 1,..., n

(so X +’"+ Zn 0). Let

B={(bu)SL.:bu=0 fori>j}.
Then B is a Borel subgroup with maximal torus T. A simple system of roots for
T on B is {#t, #._ t} where # ;( X+ t. If2 is a one-parameter subgroup
of T, then there are integers u t, u. so that

W’,
and u + + u, 0. The subgroup B is contained in P() if and only if each
(/z, 2) > 0, that is, if and only if

ui_>ui+l fori=l,...,n-2 and 2u,_l+ul+...+u,_2>0.
The group SL acts on the vector space k of all n x 1 column matrices in the

natural way, namely, g v gv for all g SLy, v k". This action gives rise to
an action on k[xl,..., x], the algebra of regular functions on k", via

(g f)(v)=f(/-1 v) for all 0 e SLn, v k",f e k[xl, x.].
Let S,. be the vector space consisting of all those polynomials in k[x 1, x.]
which are homogeneous of degree m. Then Sm is a finite-dimensional subspace
of k[xl,..., x,] which is stable under the action of SL.. We shall study the
variety X in S,,.

Let v x]1"" enx,e:+’"+e, tn, beinSandlet

be a one-parameter subgroup of T. Then

2().v=v wheree=ul(e-el)+’"+u_l(e-e_l).
To summarize, we have seen that"

(1) a one-parameter subgroup 2 of T may be identified with a point
(ut, u._ ) where each ui is an integer;
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(2) B c P(2) if and only if

ul-u2>0,...,u,-2-u,-l>0, and 2u,-l+ul+’"+u,-2>0;

(3) x] x"s W(2)ifand only ifua(e.-e)+ ...+ u._x(e,-en_)>0.

We turn now to the cases n 2 and n 3.

SL2. Let us put 2(t)= [u, -.] where we may assume that u > 0 (by (2)).
Then, by (3), x x’- is in W(2) if and only if u(m 2e) > 0, i.e., e < m/2.

If m 2s, then W(2) is spanned by x’, xl x’- 1, x- lx’-s+ 1. In each of
these monomials, the multiplicity of x 2 is > s + 1. Hence, G W(2) consists of
all those polynomials in S having a linear factor whose multiplicity is _> s + 1.

If m 2s + 1, we arrive at a conclusion just like the one just given: G W(2)
consists of all those polynomials in Sm having a linear factor whose multiplicity
is >s+l.

In both cases above, X has only one component.and P(2)= B.

SL3. Let us change notation here and write u, instead of u 1, u 2 and a, b, c
instead of e 1, e2, e3. According to (2) and (3) above, we should study pairs u,
so that u _> and u + 2t > 0. (If 2 is to be non-trivial, we should take u > 0.)
Then x xx is in W(2) if and only if u(c a) + t(c b) > 0. Let us distingu-
ish two types of one-parameter subgroups of T, namely"

(I)
(II)

u > 0, u _> >_ 0;
u > 0, < 0, u + 2t >_ 0.

The chart below summarizes the conditions u, t must satisfy for x] xx3 to be
in W(2).

I II

a=b#c

a=c#b

a#b=c

a>b>c
a>c>b

b>a>c
b>c>a
c>b>a
c>a>b

impossible impossible

{>a allu, t. {>a allu,
< a impossible < a impossible

{>b all t#0 {>b impossible
<b impossible <b allt#0

{>a allu, {>a allu,
< a impossible < a impossible

impossible impossible

t/u > (a c)/(c b) impossible
impossible -t/u > (a c)/(b c)
t/u < (c a)/(b c) all u,
all u, all u,
all u, -t/u < (c a)/(c- b)
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To illustrate how this chart may be used, let us look at the case m 8. Using
Corollary 2c, (2.3), one may show that

x
is the unique decomposition of X into irreducible components where

2 is of type I with 0 < t/u< 1/6;

2: is of type I with 2/3 < t/u < 1;

2 is of type II with 1/4 < -t/u < 1/3;

2, is of type II with 1/3 < -t/u < 1/2.
In each case, P(2i)= B.
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