THE VARIETY OF POINTS WHICH ARE NOT SEMI-STABLE

BY

Frank D. Grosshans

1. Introduction

(1.1) Background. Let k be an algebraically closed field and let V be a finite-dimensional vector space over k. Let G be a reductive algebraic subgroup of $G L(V)$.

Let $k[V]$ be the algebra of regular functions on V. The group G acts on $k[V]$ as follows:

$$
(g \cdot f)(v)=f\left(g^{-1} v\right)
$$

for all $f \in k[V], g \in G$, and $v \in V$. The ring of G-invariant functions on V is

$$
k[V]^{G}=\{f \in k[V]: g \cdot f=f \quad \text { for all } g \in G\} .
$$

We define an algebraic subvariety X of V by

$$
X=\left\{v \in V: f(v)=0 \text { for each non-constant homogeneous } f \in k[V]^{G}\right\}
$$

A point in V, not in X, is called semi-stable.
In order to describe the points in X, it is useful to introduce the concept of an orbit. Let v be in V. The orbit of v with respect to the action of G is

$$
G \cdot v=\{g \cdot v: g \in G\}
$$

The Zariski-closure of $G \cdot v$ will be denoted by $\mathrm{cl}(G \cdot v)$.
Theorem. Let G be a connected reductive algebraic subgroup of $G L(V)$. Let $v \in V$. The following statements are equivalent:
(a) v is not semi-stable;
(b) $0 \in \mathrm{cl}(G \cdot v)$;
(c) there is a one-parameter subgroup λ of G so that $\lambda(\alpha) \cdot v \rightarrow 0$ as $\alpha \rightarrow 0$.

The notation in (c) will be explained in (2.1). The equivalence of (a), (b), and (c) is proved in [10; Sections 1 and 2] taking into account [5].
(1.2) Summary of results. The purpose of this paper is to prove some results aimed at explicitly describing the set X. The basic theorem is proved in (2.2). As consequences of this theorem, the following corollaries are proved in (2.3) and (3.2).
(1) Let G be a connected reductive algebraic subgroup of $G L(V)$ and let $B=T U$ be a Borel subgroup of G. Let v_{0} be a point in V which is not semistable. Then there is a one-parameter subgroup $\lambda_{0}: G_{m} \rightarrow B$ such that $\lambda_{0}(\alpha) v_{0} \rightarrow 0$ as $\alpha \rightarrow 0$.
(2) Let G and B be as in (1). There exist subspaces W_{1}, \ldots, W_{r} of V such that the following statements hold:
(a) each W_{i} is B-invariant;
(b) $X=G \cdot W_{1} \cup \cdots \cup G \cdot W_{r}$;
(c) each $G \cdot W_{i}$ is closed.
(3) Let G be as in (1) and suppose that G acts irreducibly on V. Let $v_{0} \in V$ be a point which is not semi-stable. Then the highest weight vector of G is in $\mathrm{cl}\left(G \cdot v_{0}\right)$.
(1.3) Existence of semi-stable points. Semi-stable points exist and form an open set if $\operatorname{dim} V>\operatorname{dim} G$ and G is semisimple. This fact follows from several well-known theorems but does not seem to have been stated before. We give the proof now.

Theorem. Let G be a connected semisimple algebraic subgroup of $G L(V)$. Let

$$
m=\max \{\operatorname{dim}(G \cdot v): v \in V\}
$$

If $\operatorname{dim} V>m$, then $V-X$ is not empty.
Proof. Let $k(V)$ be the field of rational functions on V. The group G acts on $k(V)$ via

$$
(g \cdot f)(v)=f\left(g^{-1} v\right)
$$

for all $f \in k(V), g \in G$, and $v \in V$. Let

$$
k(V)^{G}=\{f \in k(V): g \cdot f=f \text { for all } g \in G\}
$$

We begin by showing that $k(V)^{G}$ is the quotient field of $k[V]^{G}$. Let $f=a / b$ be in $k(V)^{G}$ where $a, b \in k[V]$. Let $a=p_{1} \cdots p_{r}$ and $b=q_{1} \cdots q_{s}$ be the factorizations of a and b into prime elements where we shall assume a and b have no common factors. There is a finite-dimensional subspace E of $k[V]$ which is G-invariant and contains each p_{i} and $q_{j}[6 ;$ Proposition, p. 62]. For $h \in k[V]$, let

$$
\langle h\rangle=\{c h: c \in k\} .
$$

Now since $g \cdot f=f$, we see that $(g b) a=(g a) b$. Since a and b have no common factors, each $g p_{i}$ is a multiple of some p_{j}. Thus G permutes $\left\langle p_{1}\right\rangle \cdots\left\langle p_{r}\right\rangle$. Since G is connected, $G\left\langle p_{i}\right\rangle=\left\langle p_{i}\right\rangle$ for all $i=1, \ldots, r$. Hence, there are constants $c_{g} \in k$ satisfying

$$
g \cdot p_{i}=c_{g} p_{i} \quad \text { for all } g \in G
$$

The map $g \rightarrow c_{g}$ is a character of G. But G is semisimple so each character is trivial. Therefore, $g \cdot p_{i}=p_{i}$ for all $g \in G$ and G fixes a. It follows that G fixes b.

Next, let $m=\max \{\operatorname{dim} G \cdot v: v \in V\}$. According to a theorem of M. Rosenlicht [8; pp. 406-407], $\operatorname{dim} k(V)^{G}=\operatorname{dim} V-m$. If $\operatorname{dim} V>m$, then $\operatorname{dim} k(V)^{G}>0$. By what was proved above, there are non-constant functions in $k[V]^{G}$ and, so, $X \neq V$.

2. The theorem and its corollaries

(2.1) Preliminaries. We begin this section by reçalling some notation and definitions along with some of the concepts in [7].
(1) A one-parameter subgroup λ of an algebraic group G is a homomorphism $\lambda: G_{m} \rightarrow G$ (where G_{m} is the multiplicative group $k^{*}=k-\{0\}$).

Let $f: G_{m} \rightarrow X$ be a morphism of algebraic varieties. If f extends to a morphism $f_{1}: G_{a} \rightarrow X$, then $y=f_{1}(0)$ is called the specialization of $f(\alpha)$ as α specializes to 0 . We shall denote this by $f(\alpha) \rightarrow y$ as $\alpha \rightarrow 0$.
(2) Let $\lambda: G_{m} \rightarrow G L(V)$ be a one-parameter subgroup. There is a basis v_{1}, \ldots, v_{n} of V and integers e_{1}, \ldots, e_{n} so that

$$
\lambda(\alpha) v_{i}=\alpha^{e_{i}} v_{i}
$$

for $i=1, \ldots, n[6 ; 16.1]$. Let

$$
V\left(e_{i}\right)=\left\{v \in V: \lambda(\alpha) v=\alpha^{e_{i}} v\right\} .
$$

Next, we define a subspace $W(\lambda)$ of V by

$$
W(\lambda)=\{v \in V: \lambda(\alpha) v \rightarrow 0 \text { as } \alpha \rightarrow 0\} .
$$

Then it is easily verified that $W(\lambda)$ is the direct sum of those subspaces $V\left(e_{i}\right)$ where $e_{i}>0$.
(3) [10; Lemma 3.1]. Let G be a reductive algebraic group and let $\lambda: G_{m} \rightarrow G$ be a one-parameter subgroup of G. There is a unique algebraic subgroup $P(\lambda)$ in G such that p is in $P(\lambda)$ if and only if $\lambda(\alpha) p \lambda\left(\alpha^{-1}\right)$ has a specialization in G when α specializes to 0 . Moreover, $P(\lambda)$ is a parabolic subgroup of G.

For $g \in G$, let $g \lambda g^{-1}$ denote the one-parameter subgroup of G defined by

$$
\alpha \rightarrow g \lambda(\alpha) g^{-1}
$$

It is not hard to check that $P\left(g \lambda g^{-1}\right)=g P(\lambda) g^{-1}$.
(4) Let G be a reductive algebraic group and let $\rho: G \rightarrow G L(V)$ be a representation of G. Let $\lambda: G_{m} \rightarrow G$ be a one-parameter subgroup of G. Let $W(\lambda)$ and $P(\lambda)$ be as (2) and (3). Then $P(\lambda) \cdot W(\lambda) \subset W(\lambda)$.

Proof. Let $p \in P(\lambda)$ and $v \in W(\lambda)$. Then

$$
\lambda(\alpha) p v=\lambda(\alpha) p \lambda\left(\alpha^{-1}\right) \lambda(\alpha) v \rightarrow 0 \quad \text { as } \alpha \rightarrow 0
$$

(2.2) Theorem. Let G be a connected reductive algebraic subgroup of $G L(V)$. Let $B=T U$ be a Borel subgroup of G and let $W(T)=N(T) / T$ be the Weyl group of T. Let v_{0} be a point in V which is not semi-stable. There is a one-parameter subgroup $\lambda: G_{m} \rightarrow T$ such that the following statements hold:
(a) $B \subset P(\lambda)$, i.e., if μ is a root of B relative to T, then $\langle\mu, \lambda\rangle \geq 0$;
(b) $B \cdot W(\lambda) \subset W(\lambda)$;
(c) there are elements $u \in U, s T \in W(T)$ such that $v_{0} \in u s \cdot W(\lambda)$.

Proof. According to statement (c) of the theorem in 1.1, there is a oneparameter subgroup λ_{0} of G such that $v_{0} \in W\left(\lambda_{0}\right)$. Let B_{0} be a Borel subgroup in $P\left(\lambda_{0}\right)$ such that each $\lambda_{0}(\alpha)$ is in B_{0}. There is an element $g \in G$ such that $B=g B_{0} g^{-1}$ and an element $b \in B$ so that

$$
b\left(g \lambda_{0}(\alpha) g^{-1}\right) b^{-1} \in T
$$

for all $\alpha \in G_{m}$. Let $\lambda=(b g) \lambda_{0}(b g)^{-1}$.
To prove statement (a), we use preliminary (3) above to see that

$$
P(\lambda)=(b g) P\left(\lambda_{0}\right)(b g)^{-1} \supset(b g) B_{0}(b g)^{-1}=B
$$

Also, we recall that there is an isomorphism ε_{μ} from G_{a} into G such that for all $t \in T, x \in G_{a}$, we have

$$
t \varepsilon_{\mu}(x) t^{-1}=\varepsilon_{\mu}(\mu(t) x) \quad[6 ; \text { Theorem, p. 161] }
$$

Hence,

$$
\lambda(\alpha) \varepsilon_{\mu}(x) \lambda\left(\alpha^{-1}\right)=\varepsilon_{\mu}\left(\alpha^{e} x\right)
$$

where, by definition, $e=\langle\mu, \lambda\rangle$. We now apply (3) again to see that $\langle\mu, \lambda\rangle \geq 0$.
Statement (b) follows from (a) and preliminary (4). To prove (c), we first note that $W(\lambda)=b g W\left(\lambda_{0}\right)$ so that $v_{0} \in G \cdot W(\lambda)$. Now, according to the Bruhat decomposition of G, we have $G=\cup U s B$ where $s T$ ranges over all the distinct cosets of the Weyl group $W(T)=N(T) / T$. Hence,

$$
G \cdot W(\lambda)=\cup U s B \cdot W(\lambda)=\cup U s \cdot W(\lambda)
$$

according to (b). This proves (c).
(2.3) Consequences. Throughout this section, we shall denote by G a connected reductive algebraic subgroup of $G L(V)$ and by $B=T U$ a given Borel subgroup of G.

Corollary 1. Let v_{0} be a point in V which is not semistable. There is a one-parameter subgroup $\lambda_{0}: G_{m} \rightarrow B$ such that $\lambda_{0}(\alpha) v_{0} \rightarrow 0$ as $\alpha \rightarrow 0$.

Proof. According to (2.2), there is a one-parameter subgroup $\lambda: G_{m} \rightarrow T$ and elements $u \in U, s T \in W(T)$ such that $v_{0} \in u s \cdot W(\lambda)$. Let

$$
\lambda_{0}(\alpha)=(u s) \lambda(\alpha)(u s)^{-1}
$$

for all $\alpha \in G_{m}$. Then λ_{0} is a one-parameter subgroup of B since

$$
\lambda_{0}(\alpha)=(u s) \lambda(\alpha)(u s)^{-1} \subset u T u^{-1} \subset B
$$

Furthermore, $\lambda_{0}(\alpha) v_{0} \rightarrow 0$ as $\alpha \rightarrow 0$. For if $v_{0}=u s \cdot w$ with $w \in W(\lambda)$, then

$$
\lambda_{0}(\alpha) v_{0}=u s \lambda(\alpha) s^{-1} u^{-1} u s w=u s \lambda(\alpha) w .
$$

Lemma. Let X be a closed subset of V and let P be a parabolic subgroup of G. If $P \cdot X$ is closed, then $G \cdot X$ is closed.

Proof. Let P act on the right on $G \times V$ by $(g, v) \cdot p=(g p, v)$. The quotient variety $(G \times V) / P$ exists and is $(G / P) \times V[4 ; 6.6$, Corollary]. Let

$$
\pi: G \times V \rightarrow(G / P) \times V
$$

be the quotient morphism. Then π is open. Let

$$
A=\left\{(g, v) \in G \times V: g^{-1} v \in P \cdot X\right\}
$$

Since A is the inverse image of $P \cdot X$ under the morphism $G \times V \rightarrow V$ defined by $(g, v) \rightarrow g^{-1} v$, we see that A is closed. It is easily verified that $\pi^{-1}(\pi(A))=A$ and, so, $\pi(A)$ is closed in $(G / P) \times V$ (since π is open). Now G / P is complete so the image $G \cdot X$ of $\pi(A)$ under the projection map $(G / P) \times V \rightarrow V$ is closed in V.

Note. The proof above is a slight extension of one in [3; Lemma 6.3]. A short "transcendental" proof can be given when $K=\mathbf{C}$. For then, $G=K P$ where K is compact [11; Theorem 1, p. 102] and, so, $G \cdot X=K \cdot(P \cdot X))$. But $K \cdot(P \cdot X)$ is closed since compact transformation groups send closed sets to closed sets.

Corollary 2. Let X be the set of points in V which are not semi-stable. There are one-parameter subgroups $\lambda_{1}, \ldots, \lambda_{r}$ of T such that the following statements hold:
(a) $B \subset P\left(\lambda_{i}\right)$ and $B \cdot W\left(\lambda_{i}\right) \subset W\left(\lambda_{i}\right)$ for all $i=1, \ldots, r$;
(b) each $G \cdot W\left(\lambda_{i}\right)$ is closed;
(c) $X=G \cdot W\left(\lambda_{1}\right) \cup \cdots \cup G \cdot W\left(\lambda_{r}\right)$ and this is the unique decomposition of X into irreducible components unless there exist $i, j, i \neq j, s T \in W(T)$ such that $W\left(\lambda_{i}\right) \subset s \cdot W\left(\lambda_{j}\right)$.

Proof. Let T have weights $\chi_{1}, \ldots, \chi_{n}$ on V and let

$$
V(\chi)=\{v \in V: t v=\chi(t) v \quad \text { for all } t \in T\} .
$$

Next let λ be a one-parameter subgroup of T. Let χ be one of the weights above and put $e=\langle\chi, \lambda\rangle$. Then $\lambda(\alpha) v=\alpha^{e} v$ for all $v \in V(\chi)$. Therefore, $V(\chi) \subset W(\lambda)$ if
and only if $e>0$. It follows that there are (finitely many) one-parameter subgroups $\lambda_{1}, \ldots, \lambda_{r}$ of T such that (i) $B \subset P\left(\lambda_{i}\right)$ and (ii) if $\lambda: G_{m} \rightarrow T$ is any one-parameter subgroup such that $B \subset P(\lambda)$, then $W(\lambda)=W\left(\lambda_{i}\right)$ for some $i=1, \ldots, r$.

Statements (a), (b), and (c) follow from the theorem and lemma above, except for the decomposition of X.

Let us write $W_{i}=W\left(\lambda_{i}\right)$ for $i=1, \ldots, r$. Now suppose that

$$
G \cdot W_{i} \subset G \cdot W_{1} \cup \cdots \cup G \cdot W_{i-1} \cup G \cdot W_{i+1} \cup \cdots \cup G \cdot W_{r}
$$

Since W_{i} is irreducible, there is a $j \neq i$ so that $W_{i} \subset G \cdot W_{j}$. Applying the Bruhat decomposition of G, we now see that

$$
W_{i} \subset \cup U s B \cdot W_{j}=\cup U s W_{j} .
$$

But W_{i} is U-invariant so $W_{i} \subset \cup s W_{j}$. Since W_{i} is irreducible, we obtain the desired result that $W_{i} \subset s \cdot W_{j}$ for some $s T \in W(T)$.

Corollary 3. Suppose that there is an element sT in the Weyl group of G so that $s \chi=-\chi$ for all weights χ of T. Let X be the set of points in V which are not semi-stable. Then $\operatorname{dim} X \leq \frac{1}{2} \operatorname{dim} V+\operatorname{dim} U$.

Proof. Let us use the notation for $V(\chi)$ introduced in the proof of Corollary 2. Let $\lambda_{i}: G_{m} \rightarrow T$ be as in Corollary 2. If χ is a weight of T on V and if $V(\chi) \subset W\left(\lambda_{i}\right)$, then $V(-\chi) \cap W\left(\lambda_{i}\right)=\{0\}$. Since $s \cdot V(\chi)=V(-\chi)$, we have $\operatorname{dim} V(\chi)=\operatorname{dim} V(-\chi)$. Thus $\operatorname{dim} W\left(\lambda_{i}\right) \leq \frac{1}{2} \operatorname{dim} V$. The statement about $\operatorname{dim} X$ now follows from the Bruhat decomposition of G and the fact that $B \cdot W\left(\lambda_{i}\right)$ is contained in $W\left(\lambda_{i}\right)$. For $G \cdot W\left(\lambda_{i}\right)=\cup U s B \cdot W\left(\lambda_{i}\right)=\cup U s W\left(\lambda_{i}\right)$.

Notes. Let G be a simple algebraic group, not of type A_{n}, D_{n} (n odd), or E_{6}. Then there is an element $s T$ in the Weyl group of G satisfying $s \chi=-\chi$ for all weights χ of T [11; p. 226].
(2.4) Properly stable points. Let G be a reductive algebraic subgroup of $G L(V)$. A point v in V is called properly stable if the orbit $G \cdot v$ is closed and has dimension equal to that of G. A point v in V is not properly stable if and only if there is a one-parameter subgroup $\lambda: G_{\boldsymbol{m}} \rightarrow G$ such that $\lambda(\alpha) \cdot v$ has a specialization in V as α specializes to 0 [10; Section 2].

In case char $k=0$, one may prove the following result analogous to the Theorem of (1.3): Let G be a connected semsimple algebraic group and let $\rho: G \rightarrow G L(V)$ be a finite-dimensional representation of G. There is an integer M so that if $\operatorname{dim} V>M$, then the set of properly stable points in V contains a non-empty open set [12] and [1]-the first paper holds in any characteristic.

Let us assume char $k \geq 0$ and let $\lambda: G_{\boldsymbol{m}} \rightarrow G$ be a one-parameter subgroup of G. Let

$$
W^{\prime}(\lambda)=\{v \in V: \lambda(\alpha) \cdot v \text { has a specialization in } V \text { as } \alpha \rightarrow 0\} .
$$

Then we may show that $P(\lambda) \cdot W^{\prime}(\lambda) \subset W^{\prime}(\lambda)$ as in (2.1) and prove the following theorem and corollaries just as in (2.2) and (2.3).

Theorem. Let G be a connected reductive algebraic subgroup of GL(V). Let $B=T U$ be a Borel subgroup of G and let $W(T)=N(T) / T$ be the Weyl group of T. Let v_{0} be a point in V which is not properly stable. There is a one-parameter subgroup $\lambda: G_{m} \rightarrow T$ such that the following statements hold:
(a) $B \subset P(\lambda)$, i.e., if μ is a root of B relative to T, then $\langle\mu, \lambda\rangle \geq 0$;
(b) $B \cdot W^{\prime}(\lambda) \subset W^{\prime}(\lambda)$;
(c) there are elements $u \in U, s T \in W(T)$ such that $v_{0} \in u s \cdot W^{\prime}(\lambda)$.

Corollary 1. There is a one-parameter subgroup $\lambda_{0}: G_{m} \rightarrow B$ such that $v_{0} \in W^{\prime}\left(\lambda_{0}\right)$.

Corollary 2. Let X^{\prime} be the set of points in V which are not properly stable. There are one-parameter subgroups $\lambda_{1}, \ldots, \lambda_{r}$ of T such that the following statements hold:
(a) $B \subset P\left(\lambda_{i}\right)$ and $B \cdot W^{\prime}\left(\lambda_{i}\right) \subset W^{\prime}\left(\lambda_{i}\right)$ for all $i=1, \ldots, r$;
(b) each $G \cdot W^{\prime}\left(\lambda_{i}\right)$ is closed;
(c) $X^{\prime}=G \cdot W^{\prime}\left(\lambda_{1}\right) \cup \cdots \cup G \cdot W^{\prime}\left(\lambda_{r}\right)$ and this is the unique decomposition of X^{\prime} into irreducible components unless there exist $i, j, i \neq j, s T \in W(T)$ such that $W^{\prime}\left(\lambda_{i}\right) \subset s \cdot W^{\prime}\left(\lambda_{j}\right)$.

3. Borel subgroups and semi-stable points

(3.1) Theorem. Let B be a connected solvable algebraic group acting on an affine variety X. Let $x \in X$ and $Z=\operatorname{cl}(B \cdot x)$. Then either $B \cdot x$ is closed or there is an $f \in k[Z]$ such that

$$
Z-B \cdot x=\{z \in Z: f(z)=0\}
$$

In the latter case, there is an element c in k^{*} so that the mapping $\chi: B \rightarrow k$ given by $\chi(b)=c f(b \cdot x)$ is a character of B.

Proof. The group B operates on $k[Z]$ via $(b \cdot f)(z)=f\left(b^{-1} \cdot z\right)$ for all $f \in k[Z], z \in Z$, and $b \in B$. Let I be the ideal in $k[Z]$ vanishing on $Z-B \cdot x$. Then I is B-invariant, i.e., $b \cdot I \subset I$ for all $b \in B$. Suppose now that $I \neq\{0\}$ and let f be any non-zero element in I. There is a finite-dimensional B-invariant subspace $E \subset I$ such that $f \in E$ [6; Proposition, p. 62]. By the Lie-Kolchin theorem, there is a non-zero common eigenvector h in E for $B[6 ; 17.6$, p. 113]. Let $b \cdot h=c_{b} h$. Then

$$
h\left(b^{-1} \cdot x\right)=(b \cdot h)(x)=c_{b} h(x)
$$

If $h(x)=0$, then $h=0$ on $B \cdot x$ and $h=0$. Hence, $h(x) \neq 0$ and h is non-zero on $B \cdot x$. Since h is in I, h is 0 on $Z-B \cdot x$.

The mapping $b \rightarrow h(b \cdot x)$ is non-zero on B and, so is a character of B if $h(e \cdot x)=1$ [9; Proposition 3, p. 29]. Modifying h by a constant, we obtain the theorem.

Corollary (Kostant, Rosenlicht). Let U be a unipotent group acting on an affine variety X. For every $x \in X$, the orbit $U \cdot x$ is closed.

Proof. The corollary follows at once from the theorem since the only character of U is trivial.

Notes. The corollary above was first proved by B. Kostant. A shorter proof was found by M. Rosenlicht. Another proof was found by A. Borel [3; Theorem 12.1]. A modification of Borel's proof gives the theorem above.
(3.2) Theorem. Let G be a connected reductive algebraic subgroup of $G L(V)$ and let $B=T U$ be a Borel subgroup of G. Suppose that 0 is the only point in V fixed by G. Let v_{0} be a non-zero vector in V which is not semi-stable. There is a non-zero vector $v \in \mathrm{cl}\left(B \cdot v_{0}\right)$ such that $U \cdot v=v$.

Proof. According to Corollary 1 in Section 2.3, the point 0 is in $\mathrm{cl}\left(B \cdot v_{0}\right)$. Let $w \in \operatorname{cl}\left(B \cdot v_{0}\right)$ be chosen so that $B \cdot w$ has the smallest possible positive dimension. Then $\mathrm{cl}(B \cdot w)-B \cdot w$ consists of points fixed by B. Since G / B is complete, each of these points is fixed by G. However, by our assumption, then, $\mathrm{cl}(B \cdot w)-B \cdot w$ is $\{0\}$. The theorem in (3.1) now implies that $\operatorname{dim}(B \cdot w)=1$.

Now U must fix w. For otherwise, $U \cdot w$ is a closed subset (by the corollary above) of $B \cdot w$ having dimension 1 . This would imply that $U \cdot w=B \cdot w$ and $B \cdot w$ is closed.

Corollary. Let G be a connected reductive algebraic subgroup of $G L(V)$ which acts irreducibly on V. Let B be a Borel subgroup of G. Let v_{0} be a non-zero vector in V which is not semi-stable. Then the highest weight vector of G on V (relative to B) is $\mathrm{cl}\left(G \cdot v_{0}\right)$.

4. Examples

(4.1) The adjoint representation. Let G be a connected reductive algebraic group and let $L(G)$ denote the Lie algebra of G. Then G acts on $L(G)$ via the adjoint representation.

Let $B=T \cdot U$ be a Borel subgroup of G. Let $L(T), L(U)$, and $L(B)$ be the Lie algebras of T, U, and B, respectively. We shall denote the roots of T acting on $L(U)$ by α, β, \ldots. Then there is a basis $\left\{e_{\alpha}\right\}$ of $L(U)$ so that $t \cdot e_{\alpha}=\alpha(t) e_{\alpha}$ for all $t \in T$.

Next, let W be a subspace of $L(G)$ which is B-invariant. If W contains $e_{-\beta}$ (where $e_{\beta} \in L(U)$), then $w=\left[e_{\beta}, e_{-\beta}\right]$ is a non-zero element in W which is fixed by T.

Let $\lambda: G_{m} \rightarrow T$ be a one-parameter subgroup of T such that $W(\lambda)$ is B invariant. Then $W(\lambda) \subset L(U)$ by the argument just given. Also, there is a oneparameter subgroup λ of T so that $\langle\lambda, \alpha\rangle>0$ if $\alpha>0$ [4; Theorem, p. 317]. For this one-parameter subgroup, we have $W(\lambda)=L(U)$ and $P(\lambda)=B$.

Finally, let X be the set of points in $L(G)$ which are not semi-stable. According to the remarks above and Corollary 2 in (2.3), we have

$$
X=G \cdot L(U)
$$

It is known that $G \cdot L(U)$ is precisely the set of nilpotent elements in $L(G)$. Hence, we obtain a result of B. Kostant: a point v in $L(G)$ is not semi-stable if and only if v is nilpotent.
(4.2) Certain actions of $S L_{n}$. Let $S L_{n}$ be the group of all $n \times n$ matrices with entries in k and having determinant 1 . Let

$$
T=\left\{t=\left(t_{i j}\right) \in S L_{n}: t_{i j}=0 \quad \text { for } i \neq j\right\} .
$$

We shall denote a typical matrix $t=\left(t_{i j}\right)$ in T by $t=\left[t_{11}, \ldots, t_{n n}\right]$. Let us define characters $\chi_{1}, \ldots, \chi_{n}$ of T by

$$
\chi_{i}\left[t_{11}, \ldots, t_{n n}\right]=t_{i i} \quad \text { for each } i=1, \ldots, n
$$

(so $\chi_{1}+\cdots+\chi_{n}=0$). Let

$$
B=\left\{\left(b_{i j}\right) \in S L_{n}: b_{i j}=0 \quad \text { for } i>j\right\}
$$

Then B is a Borel subgroup with maximal torus T. A simple system of roots for T on B is $\left\{\mu_{1}, \ldots, \mu_{n-1}\right\}$ where $\mu_{i}=\chi_{i}-\chi_{i+1}$. If λ is a one-parameter subgroup of T, then there are integers u_{1}, \ldots, u_{n} so that

$$
\lambda(\alpha)=\left[\alpha^{u_{1}}, \ldots, \alpha^{u_{n}}\right]
$$

and $u_{1}+\cdots+u_{n}=0$. The subgroup B is contained in $P(\lambda)$ if and only if each $\langle\mu, \lambda\rangle \geq 0$, that is, if and only if

$$
u_{i} \geq u_{i+1} \text { for } i=1, \ldots, n-2 \text { and } 2 u_{n-1}+u_{1}+\cdots+u_{n-2} \geq 0
$$

The group $S L_{n}$ acts on the vector space k^{n} of all $n \times 1$ column matrices in the natural way, namely, $g \cdot v=g v$ for all $g \in S L_{n}, v \in k^{n}$. This action gives rise to an action on $k\left[x_{1}, \ldots, x_{n}\right]$, the algebra of regular functions on k^{n}, via

$$
(g \cdot f)(v)=f\left(g^{-1} \cdot v\right) \quad \text { for all } g \in S L_{n}, v \in k^{n}, f \in k\left[x_{1}, \ldots, x_{n}\right]
$$

Let S_{m} be the vector space consisting of all those polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$ which are homogeneous of degree m. Then S_{m} is a finite-dimensional subspace of $k\left[x_{1}, \ldots, x_{n}\right]$ which is stable under the action of $S L_{n}$. We shall study the variety X in S_{m}.

Let $v=x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}, e_{1}+\cdots+e_{n}=m$, be in S_{m} and let

$$
\lambda(\alpha)=\left[\alpha^{u_{1}}, \ldots, \alpha^{u_{n}}\right]
$$

be a one-parameter subgroup of T. Then

$$
\lambda(\alpha) \cdot v=\alpha^{e} v \quad \text { where } e=u_{1}\left(e_{n}-e_{1}\right)+\cdots+u_{n-1}\left(e_{n}-e_{n-1}\right)
$$

To summarize, we have seen that:
(1) a one-parameter subgroup λ of T may be identified with a point $\left(u_{1}, \ldots, u_{n-1}\right)$ where each u_{i} is an integer;
(2) $B \subset P(\lambda)$ if and only if
$u_{1}-u_{2} \geq 0, \ldots, u_{n-2}-u_{n-1} \geq 0, \quad$ and $2 u_{n-1}+u_{1}+\cdots+u_{n-2} \geq 0 ;$
(3) $x_{1}^{e_{1}} \cdots x_{n}^{e_{n}} \in W(\lambda)$ if and only if $u_{1}\left(e_{n}-e_{1}\right)+\cdots+u_{n-1}\left(e_{n}-e_{n-1}\right)>0$.

We turn now to the cases $n=2$ and $n=3$.
$S L_{2}$. Let us put $\lambda(\alpha)=\left[\alpha^{u}, \alpha^{-u}\right]$ where we may assume that $u>0$ (by (2)). Then, by (3), $x_{1}^{e} x_{2}^{m-e}$ is in $W(\lambda)$ if and only if $u(m-2 e)>0$, i.e., $e<m / 2$.

If $m=2 s$, then $W(\lambda)$ is spanned by $x_{2}^{m}, x_{1} x_{2}^{m-1}, \ldots, x_{1}^{s-1} x_{2}^{m-s+1}$. In each of these monomials, the multiplicity of x_{2} is $\geq s+1$. Hence, $G \cdot W(\lambda)$ consists of all those polynomials in S_{m} having a linear factor whose multiplicity is $\geq \mathrm{s}+1$.

If $m=2 s+1$, we arrive at a conclusion just like the one just given: $G \cdot W(\lambda)$ consists of all those polynomials in S_{m} having a linear factor whose multiplicity is $\geq s+1$.

In both cases above, X has only one component and $P(\lambda)=B$.
$S L_{3}$. Let us change notation here and write u, t instead of u_{1}, u_{2} and a, b, c instead of e_{1}, e_{2}, e_{3}. According to (2) and (3) above, we should study pairs u, t so that $u \geq t$ and $u+2 t \geq 0$. (If λ is to be non-trivial, we should take $u>0$.) Then $x_{1}^{a} x_{2}^{b} x_{3}^{c}$ is in $W(\lambda)$ if and only if $u(c-a)+t(c-b)>0$. Let us distinguish two types of one-parameter subgroups of T, namely:
(I) $u>0, u \geq t \geq 0$;
(II) $u>0, t \leq 0, u+2 t \geq 0$.

The chart below summarizes the conditions u, t must satisfy for $x_{1}^{a} x_{2}^{b} x_{3}^{c}$ to be in $W(\lambda)$.

I II
$a=b=c \quad$ impossible
$a=b \neq c \quad \begin{cases}c>a & \text { all } u, t \\ c<a & \text { impossible }\end{cases}$
$a=c \neq b \quad \begin{cases}c>b & \text { all } t \neq 0 \\ c<b & \text { impossible }\end{cases}$
$a \neq b=c \quad \begin{cases}c>a & \text { all } u, t \\ c<a & \text { impossible }\end{cases}$
$a>b>c \quad$ impossible
$a>c>b \quad t / u>(a-c) /(c-b)$
$b>a>c \quad$ impossible
$b>c>a \quad t / u<(c-a) /(b-c)$
impossible
$\begin{cases}c>a & \text { all } u, t \\ c<a & \text { impossible }\end{cases}$
$\begin{cases}c>b & \text { impossible } \\ c<b & \text { all } t \neq 0\end{cases}$
$\begin{cases}c>a & \text { all } u, t\end{cases}$
$\mid c<a \quad$ impossible
impossible
impossible
$-t / u>(a-c) /(b-c)$
all u, t
$c>b>a \quad$ all u, t
$c>a>b \quad$ all u, t
all u, t
$-t / u<(c-a) /(c-b)$

To illustrate how this chart may be used, let us look at the case $m=8$. Using Corollary 2c, (2.3), one may show that

$$
X=G \cdot W\left(\lambda_{1}\right) \cup G \cdot W\left(\lambda_{2}\right) \cup G \cdot W\left(\lambda_{3}\right) \cup G \cdot W\left(\lambda_{4}\right)
$$

is the unique decomposition of X into irreducible components where

$$
\begin{aligned}
& \lambda_{1} \text { is of type I with } 0<t / u<1 / 6 \\
& \lambda_{2} \text { is of type I with } 2 / 3<t / u<1 \\
& \lambda_{3} \text { is of type II with } 1 / 4<-t / u<1 / 3 \\
& \lambda_{4} \text { is of type II with } 1 / 3<-t / u<1 / 2
\end{aligned}
$$

In each case, $P\left(\lambda_{i}\right)=B$.

References

1. E. M. Andreev and V. L. Popov, Stationary subgroups of points of general position in the representation space of a semisimple Lie group, Funcional Anal. i Prilozen., vol. 5 (1971), no. 4, pp. 1-8.
2. E. M. Andreev, E. B. Vinberg, and A. G. Elashvili, Orbits of greatest dimension in semisimple linear Lie groups, Funkcional Anal. i Prilozen., vol. 1 (1967), no. 4, pp. 3-7.
3. D. Birkes, Orbits of linear algebraic groups, Ann. of Math., vol, 93 (1971), pp. 459-475.
4. A. Borel, Linear algebraic groups, W. A. Benjamin, New York, 1969.
5. W. Haboush, Reductive groups are geometrically reductive, Ann. of Math., vol. 102 (1975), pp. 67-83.
6. J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975.
7. D. Mumford, Geometric invariant theory, Springer-Verlag, New York, 1965.
8. M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., vol. 78 (1956), pp. 401-443.
9. - Some rationality questions on algebraic groups, Ann. Mat. Pure Appl., vol. 43 (4) (1957), pp. 25-50.
10. C. S. SESHADRI, Quotient spaces modulo reductive algebraic groups, Ann. of Math., vol. 95 (1972), pp. 511-556.
11. R. Steinberg, Lectures on Chevalley groups, Yale University, Department of Mathematics, New Haven, 1967.
12. V. L. Popov, On the stability of the action of an algebraic group on an algebraic variety, Math. USSR Izvestija, vol. 6 (1972), no. 2, pp. 367-379.

West Chester State College
West Chester, Pennsylvania

