A BOUND ON THE RANK OF $\pi_{q}\left(S^{n}\right)$

BY
Paul Selick ${ }^{1}$

Let p be an odd prime. In [7], Toda constructs two fibrations which he uses to give a bound on the exponent of $\pi_{q}\left(S^{n}\right)$. We show here how these fibrations can be used to give a bound on the rank of $\pi_{q}\left(S^{n}\right)$. These groups are known to be finitely generated from the work of Serre [6]. It suffices to consider odd n since, again from Serre [5],

$$
\pi_{q}\left(S^{2 n}\right)_{(p)} \cong \pi_{q-1}\left(S^{2 n-1}\right)_{(p)} \oplus \pi_{q}\left(S^{4 n-1}\right)_{(p)}
$$

Although analogues of Toda's fibrations exist for the prime 2, (James [2]), the arguments given here fail because unlike the situation for odd primes, $\pi_{*}(X ; Z / 2 Z)$ fails to be a $Z / 2 Z$ vector space.

Let X be a compactly generated topological space with basepoint "*". Let $J_{k}(X)$ denote the k th stage of the James Construction on X. That is, $J_{k}(X)=X^{k} / \sim$ where

$$
\left(x_{1}, \ldots, x_{j-1}, *, x_{j+1}, \ldots, x_{k}\right) \sim\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, *, x_{j+2}, \ldots, x_{k}\right)
$$

After localizing to p, there are fibrations up to homotopy:

$$
J_{p-1}\left(S^{2 n}\right) \xrightarrow{i} \Omega S^{2 n+1} \xrightarrow{H} \Omega S^{2 p n+1}
$$

and

$$
S^{2 n-1} \stackrel{j}{\rightarrow} \Omega J_{p-1}\left(S^{2 n}\right) \stackrel{T}{\rightarrow} \Omega S^{2 p n-1} .
$$

We use mod-p homotopy in order to be able to make use of vector space arguments. Of course,

$$
\begin{aligned}
& \operatorname{dim}\left(\pi_{q}\left(S^{2 n+1} ; \frac{Z}{p Z}\right)\right) \\
&=\operatorname{rank}\left(\pi_{q}\left(S^{2 n+1}\right)\right)+\operatorname{rank}\left(\pi_{q-1}\left(S^{2 n+1}\right)\right) \text { for } q>2 n+2
\end{aligned}
$$

Let x be a non-zero element of $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ with $n>0$. Construct a non-zero element x^{\prime}, in some mod-p homotopy group of some sphere as follows:

If $H_{\#}(x) \neq 0$, let $x^{\prime}=H_{\#}(x)$. If $H_{\#}(x)=0$, select a non-zero element,

$$
y \in \pi_{q-1}\left(J_{p-1}\left(S^{2 n}\right)\right)=\pi_{q-2}\left(\Omega J_{p-1}\left(S^{2 n}\right)\right)
$$

[^0]such that $i_{\#}(y)=x$. If $T_{\#}(y) \neq 0$, let $x^{\prime}=T_{\#}(y)$. If $T_{\#}(y)=0$, select $x^{\prime} \in \pi_{q-2}\left(S^{2 n-1}\right)$ such that $j_{\#}\left(x^{\prime}\right)=y$.

In this manner, construct a sequence $\left(x, x^{\prime}, \ldots, x^{(s)}\right)$ in which each term is a non-zero element of some mod-p homotopy group of some sphere and is produced from the preceding term by the above procedure. Observe that throughout such a sequence, q never increases and must eventually decrease since for degree reasons one cannot continue indefinitely to get non-zero elements upon applying $H_{\#}$. Thus the sequence must eventually reach an element of $\pi_{1}\left(S^{1} ; Z / p Z\right)$ at which point it terminates.

The sequence $\left(x, x^{\prime}, \ldots, x^{(s)}\right)$ is referred to as "a sequence belonging to x ". The sequence of groups to which the terms of the sequence belong, beginning with $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ and ending with $\pi_{1}\left(S^{1} ; Z / p Z\right)$, is referred to as the "trace sequence". Note that neither the sequence nor the trace sequence is uniquely determined by x.

Theorem 1. There exists a basis v_{1}, \ldots, v_{r} for $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ and sequences belonging to v_{1}, \ldots, v_{r} having the property that for any subset of the v_{i} 's which have the first k terms of their trace sequences identical, the kth terms of the sequences for these elements form a linearly independent set in that kth group.

Proof. Select a basis w_{1}, \ldots, w_{r} for $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ and select a sequence

$$
\left(w_{i}, \ldots, w_{i}^{\left(r_{i}\right)}\right)
$$

for each w_{i}. Suppose by induction that the basis w_{1}, \ldots, w_{r} and the chosen sequences have the desired property for all $k \leq t$.

Divide the w_{i} 's into sets having the first t terms of their trace sequences identical. Renumbering, let w_{1}, \ldots, w_{m} form such a set. Suppose that the nonzero elements of the set

$$
\left\{H_{\#}\left(w_{1}^{(t)}\right), \ldots, H_{\#}\left(w_{m}^{(t)}\right)\right\}
$$

are linearly dependent. Renumbering, if necessary, there is a relation of the form

$$
H_{\#}\left(w_{1}^{(t)}\right)=\sum_{j=2}^{m} \lambda_{j} H_{\#}\left(w_{j}^{(t)}\right) .
$$

Replace w_{1} in the original basis by

$$
\hat{w}_{1}=w_{1}-\sum_{j=2}^{m} \lambda_{j} w_{j}
$$

There is a natural choice for the first t terms of the sequence for \hat{w}_{1} using the sequences for w_{1}, \ldots, w_{m}. Choose any completion of the sequence. By the induction hypothesis the first t terms of the trace sequence for \hat{w}_{1} are identical with those of w_{2}, \ldots, w_{m}. However, by construction, the $(t+1)$ st term is different. By continuing to change the original basis in this way, we may arrange for
the non-zero elements of the set

$$
\left\{H_{\#}\left(w_{1}^{(t)}\right), \ldots, H_{\#}\left(w_{m}^{(t)}\right)\right\}
$$

to be linearly independent.
Forming the $(t+1)$ st terms of the sequences of those w_{i} 's for which $H_{\#}\left(w_{i}\right)=0$ involves taking inverse images under $i_{\#}$. Taking inverse images always preserves linear independence, so the resulting set is linearly independent. Proceeding as before, change the original basis so that the non-zero elements of the set of images under $T_{\#}$ are linearly independent. At this point, the remaining elements will have the $(t+1)$ st terms of their sequences formed by taking inverse images under $j_{\#}$ which again preserves linear independence. This completes the induction step.

Corollary 2. There is a basis for $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ whose elements have distinct trace sequences.

Proof. Select a basis having sequences as in Theorem 1. Since all sequences terminate in $\pi_{1}\left(S^{1} ; Z / p Z\right)$, which has dimension 1 , the trace sequences must be distinct.

Corollary 3. $\operatorname{dim} \pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ is less than or equal to the number of possible trace sequences beginning with $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$.

The exact number of possible trace sequences beginning with $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ is not easy to compute and would not give the exact dimension of $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ in any event. However, it is easy to give an upper bound. Here is one method:

From the construction, number of possible trace sequences $\leq 3^{\text {(maximum length of a sequence) }}$;
clearly, any trace sequence beginning with $\pi_{q}\left(S^{2 n+1} ; Z / p Z\right)$ has less than q^{2} terms since no sequence can go through the same group twice and there are only q^{2} groups under consideration. Thus $\operatorname{dim} \pi_{q}\left(S^{2 n+1} ; Z / p \dot{Z}\right) \leq 3^{q^{2}}$.

References

1. I. James, Reduced product spaces, Ann. of Math., vol. 62 (1955), pp. 170-197.
2. ———, On the suspension sequence, Ann. of Math., vol. 65 (1957), pp. 74-107.
3. F. Peterson, Thesis, Princeton University, 1955.
4. P. Selick, Thesis, Princeton University, 1977.
5. J.-P. Serre, Homologie singulière des espaces fibres. Applications, Ann. of Math., vol. 54 (1951), pp. 425-505.
6. ———, Groupes d'homotopie et classes de groupes abeliens, Ann. of Math., vol. 58 (1953), pp. 258-294.
7. H. Toda, On the double suspension E^{2}, J. Inst. Polytech. Osaka City Univ., Ser. A, vol. 7 (1956), pp. 103-145.

[^0]: Received May 27, 1980.
 ${ }^{1}$ Partially supported by a National Science Foundation grant.

