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INVARIANTLY COMPLEMENTED SUBSPACES OF Loo(G)
AND AMENABLE LOCALLY COMPACT GROUPS

BY

ANTHONY To-MING LAU

1. Introduction

Let G be a locally compact group and let Loo(G) be the W*-algebra of
essentially bounded measurable complex-valued functions on G with pointwise
operations and essential sup norm. Let X be a weak*-closed left translation
invariant subspace of Loo(G). Then X is invariantly complemented in L oo(G) ifX
admits a left translation invariant closed complement, or equivalently, X is the
range of a continuous projection on Loo(G) commuting with left translations.

In this paper, we are concerned with the following question: Under what
condition will X be invariantly complemented ?

H. Rosenthal proved in [14, Theorem 1.1] that if G is abelian and X is
complemented in L oo(G), then X is invariantly complemented in L oo(G). Ac-
tually, Rosenthal’s proof is valid for any locally compact group G which is
amenable as discrete. However, we do not know whether the same conclusion
still holds when G is an amenable locally compact group but G is not amenable
as discrete (e.g. when G is the compact orthogonal group $0(3, R) [8, p. 9]).
We prove in Section 3 (Theorem 3.3) that G is amenable if and only if each

left translation invariant W*-subalgebra ofL (R)(G) is invariantly complemented.
Proof of this theorem depends on an improvement of some recent results of P.
K. Pathak and H. S. Shapiro [13] and G. Crombez and W. Govaerts [3] in
associating translation invariant W*-subalgebras ofL oo(G) with the set of func-
tions in Loo(G) fixed under translations by elements in a closed subgroup of G
(see Lemma 3.2).2 We also prove in Section 4 (Corollary 4.2) that G is amenable
if and only ifeach weak*-closed weak*-complemented left translation invariant
subspace ofL o(G) is invariantly complemented. This is equivalent to Corollary
4.4: Each weak*-closed left translation invariant subspace of UBC,(G) which is
complemented in UBC,(G) admits a left translation invariant closed comple-
ment in UBC,(G). Here UBC,(G) denotes the space ofbounded right uniformly
continuous complex-valued functions on G [9, p. 275]. Both Corollary 4.2 and
Corollary 4.4 are direct consequences of characterizations of amenability of G
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in terms of certain invariant complemented subspace property on dual Banach
spaces. Finally, in Section 5, we give conditions when a weak*-closed left
translation invariant subspace in L(R)(G) of a compact group G is the range of a
weak*-weak* continuous projection on L oo(G) commuting with left
translations.

2. Preliminaries

If E is a Banach space, then E* denotes its continuous dual. Also if b E*
and x E, then the value of q at x will be written as b(x) or (b, x). If F is
another Banach space, then (E, F) will denote the space of bounded contin-
uous linear operators from E into F.
Throughout this paper, G denotes a locally compact group with a fixed left

Haar measure. Let C(G) denote the Banach algebra of bounded continuous
complex-valued functions on G with the supremum norm, and let Co(G) be the
closed subspace of C(G) consisting of all functions in C(G) which vanishes at
infinity. The Banach spaces Lp(G), 1 < p < o, are as defined in [9]. Iff is a
complex-valued function defined locally almost everywhere on G, and if a,
t G, then l,f(t) =f(a- xt)and r,f(t) =f(ta)whenever this is defined. We say
G is amenable if there exists rn L(R)(G)* such that rn > 0, ][mll--1 and
m(laf) m(f) for each f Loo(G) and a G. Amenable locally compact
groups include all compact groups and all solvable groups. However, the free
group on two generators is not amenable.
We will need the following simple observation"

LEMMA 2.1. Let X be a weak*-closed left translation invariant subspace of
Loo(G). Then X UBC,(G) is weak*-dense in X.

Proof Let {b,} be a bounded approximate identity in LI(G) and f X.
Then the net {b, f} is in X UBC,(G)(see [9, p. 295] and [12, Theorem 4.1])
and converges in the weak*-topology to f.

3. W*-subalgebras of L oo(G)
A W*-subalgebra X of Loo(G) is a weak*-closed subalgebra of Loo(G) such

thatf X wheneverf X, wheref(x) =f-, x G. In this section, we charac-
terize the class of left translation invariant W*-subalgebras of L oo(G). This
result is applied to show that if G is amenable, then any left translation invar-
iant W*-subalgebra of Loo(G) is invariantly complemented.

LEMMA 3.1. Let X be a left translation invariant W*-subaloebra ofL (R)(G) and
X {0}, then X contains constants.

Proof Indeed let ho be the identity of X (see [16, Proposition 1.6.1]). If
9 6 G, f6 X, we have (lgho)(f)= l[ho(l- if)] =f Hence lgho ho. Let
c Lx(G)such that b _> 0 and [[[I 1. Then b ho ho by Theorem 4.1 (b)
[12]. In particular ho UBC,(G). Consequently ho 1.
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LEMMA 3.2. X is a non-zero left translation invariant W*-subalgebra of
Loo(G) if and only if there exists a unique closed subgroup Nx ofG such that

X (fe Loo(G); rgf=ffor each g e Nx)
Furthermore, X is translation invariant if and only if Nx is normal.

Proof. If N is a closed subgroup of G, it is easy to see that

{fe Loo(G), rgf=ffor each g e N}
is a non-zero left translation invariant W*-subalgebra of L(G).

Conversely, if X is a left translation invariant W*-subalgebra of Loo(G), let

N Nx {g e G;ro f=ffor eachf X}.
Then, as readily checked, N is a subgroup of G. Also, since the map

G --. (Lo(G), weak*)
defined by g rof (fe Loo(G)) is continuous and X is weak*-closed, N is
closed in G. Let

Y {fe Loo(G); ro f=ffor each g e N};
clearly Y_ X. To prove equality, it suffices, by Lemma 2.1, to show that
Y c C(G)_ X.
Let GIN denote the homogeneous space of left cosets {gN; g e G}. Then

G/N is locally compact and Hausdorff [9, p. 38]. Also, each f e Y c C(G)
canbe regarded as a continuous functionfon GIN. Let K be a compact subset
of G, and be its image in GIN under the quotient map. Then an application of
Lemmas 2.1 and 3.1 shows that a’ {q(f); f e X C(G)}, where q(f)is the
restriction of f to , separate points on K, closed under conjugation and
contains constants. So, by the Stone-Weierstrass Theorem, a’ is uniformly dense
in C().
Let fo e Y c C(G) be fixed. For any finite subset a {,..., }

_
Coo(G)

(continuous functions with compact support)with I1, II-< 1, let K be a com-
pact subset of G such that $(x)= 0 if x K, i= 1, n. Then for each
0 < e < 1, there exists (by density of a’ in C(-)) h e X c C(G) such that

lifo hilt sup {I (fo h)(x)l x e K} < e.

In particular, Ilhll -< lifo / 1. Let " C -o C be a continuous function such
that (z) z if z < lifo I1 / 1 and I(z) -< lifo II / x if z >
lifo I1 / 1. Let kt,,, k bo h e X. Then k e X(by [16, Proposition 1.18.1]),
k -< To / 1 and fo k r < e. Hence

f (fo k)(t)Oi(t)dt < e
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for each 1, n. Consequently the bounded net {k{o,,} in X converges tof0
in the topology Y- determined by the seminorms

{Po; 0 e Coo(G)}, [IOIlx -< 1}, where pq,(f)= ff(t)(t)dtl,f Loo(G).

Since the topology " and the weak*-topology coincide on bounded spheres of
To x.

Suppose No is another dosed subgroup of G such that

X {f L(R)(G); I, f=f for each O No};
then No - N. If 9 N and 0 q No, there exists anf C(G),fis constant on the
left cosets {tNo;t G} and f(o) :/: f(e). Hence f X, but rof:/: f which is
impossible. Hence No N.

Finally, if X is translation invariant, 9 G and a N, then

%-.o(f) ro-r.(ro f)= ro-ro f f
since rofe X. Hence N is normal. Conversely, if N is normalfe X and 9 e G,
then for each a e N, r.(ro f) to. f ro f ro fwhere b 9ao- e N. In par-
ticular ro fe X.

Remark. Note that if X is translation invariant, then

Nx {a e G; r.f l.f f for allfe X}
In particular, Lemma 3.2 implies the main theorem in [3]. Indeed, let a e Nx. If
fe X c C(G), thenfis constant on the coset aNx Nxa (by normality)and
I. f=f Consequently I, f f for each fe X by Lemma 2.1.

THEOREM 3.3. G is amenable if and only if every left translation invariant

W*-subaloebra ofL(G) is invariantly complemented.

Proof Let X be a left translation invariant W*-subalgebra of U(G). We
may assume that X # {0}. By Lemma 3.2, there exists a closed subgroup N of G
such that

X {fe L(G); rf=ffor all 9 s N}.
If G is amenable, then N is also amenable. For eaehf L(G), let K. denote the
weak*-closure of the convex hull of {rf; 0 N}. Then the affine action
N x Ky Ky, defined by (O, k) r(k) is separately (hence jointly) continuous
when K has the weak*-topology. By the Day’s fixed point theorem [4,
Theorem 3], there exists k Ky; rk k for each 0 N. Consequently
K, c X 4: . Now applying the proposition of Yeadon [21] (see also [11]),
there exists a continuous projection P from Lo(G) onto X such that P eom-,mutes with any weak -weak continuous linear operators from Loo(G)into
Lo(G) which commutes with the right translations {r; O H}. In particular, P
commutes with the left translations on L(R)(G).
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To prove the converse, we consider the subalgebra X of L oo(G) consisting of
constant functions. If P: Loo(G) -, X is continuous projection of Loo(G) onto X
commuting with left translations, define $(f)= 2 if P(f)= . 1. Then $ is a
non-zero left translation invariant linear functional on L oo(G). Let

1/2(b + $*), where b*(f)= b(f), f Loo(G); then is non-zero (since
(1)= 1), self-adjoint, and left translation invariant. Write + -, its
unique decomposition as difference of two positive linear functionals +, $-
such that I[11 I[ + + [1-I[ (see [16, Theorem 1.14.3]). Then, as readily
checked, for each a G, l*$ + and l*$- are positive and have the same norm as

+ and - respectively. Hence l*$ + + and l*$- -. Consequently, if

+ 4:0 (say), then m +/+(1) is a left invariant mean on L(R)(G).

4. Weak* invariant complemented subspace property

Let E be a dual Banach space with a fixed predual E,. We say that E has the
weak* G-invariant complemented subspace property if the following condition
holds: Wheneverff {T:g G} is a representation ofG as linear isometrics from
EontoEsuch that themap (,x) - Txis a separately continuous linear map from
G x E into E when E has the weak* topology, if X is a weak*-closed invariant
subspace of E and if there exists a weak*-weak* continuous projection Q from
E onto X with IIQI[ < , then there exists a continuous projection P from E
onto X such that TP PT for each G with IIPII -< .
THEOREM 4.1. G is amenable if and only if any dual Banach space has the

weak* G-invariant complemented subspace property.

Proof. If any dual Banach space has the weak* G-invariant complemented
subspace property, we consider the representation (9 {/g; # G} of G on
L(G) and the one-dimensional subspace consisting of constant functions, then
an argument similar to that for Theorem 3.3 shows that G is amenable.

Conversely, if G is amenable, f {Tg; # G} is a representation of G as
linear isometries from a dual Banach space E such that (, x) To(x is a
separately continuous linear map when E has the weak*-topology, let X be a
weak*-closed invariant subspace of E and Q be a weak*-weak* continuous
projection of E onto X such that lit211 -< . Following an idea of Rosenthal in
[14, Lemma 3.1], let denote the set of continuous projections P from E onto
X such that IlPll < . Then is a non-empty subset of (E, X). Let z denote
the weak*-operator topology on (E, X)determined by the family of
seminorms

(p,,,; z E, b E,}, where p,,(T)= I (Tz)l, T (E, s).
An application of the Theorem in [10, p. 973] shows that (, z) is also compact.
Consider now the affine action G x (, z) (, z) defined by the map
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Clearly, if # G, that map P - T_PT from (, z) into (, z) is continuous.
Also, the map # T_PT from G into (, ) is continuous at P Q. Indeed,
by assumption, : (, x)--, Tx is a separately continuous map from G x B
into B when B has the weak*-topology and B {x E; Ilxll -< . Also, since
(B, weak*) is compact, Ellis’ result [6, Theorem 1] implies that (I) is even jointly
continuous. Hence if {g,} is a net in G, gn g, g G, x E, Ilxll-< 1, then
Q(To(x)) is a net in B converging to Q(To(x))in the weak*-topology. In particu-
lar, the net Tn-IQTon(x converges to Ta-IQTa(x in the weak* topology of E
also. By Day’s fixed point theorem [5, Theorem 4], there exists P e such that
T_PT0 P for each g G.

Remark. Theorem 4.1 implies Lemma 3.1 in [14].

A weak*-closed subspace X of L oo(G) is weak*-complemented if there exists
a weak*-weak* continuous projection from Loo(G) onto X.

COROLLARY 4.2. G is amenable if and only if any weak*-complemented left
translation invariant weak*-closed subspace of L oo(G) is invariantly
complemented.

We do not know if a weak*-closed left translation invariant complemented
subspace of Loo(G) of an amenable group G is necessarily invariantly comple-
mented unless G is abelian (or more generally when G is amenable as discrete).
However, we have the following:

THEOREM 4.3. G is amenable if and only if G has the following property:
(C) Whenever N (To; g e G} is a representation ofG as weak*-weak* con-

tinuous linear isometriesfrom E onto E and A is a closed invariant subspace ofE
such that the maps (g, x) Tg x is a continuous linear map of the product sub-
space G x A into A, ifX is a weak*-closed invariant subspace ofE contained in A
and if there exists a continuous projection Q from A onto X with IIQII -< , then
there exists a continuous projection P from A onto X such that TgP PTgfor
each g G with P < .
Proof. If property (C) holds, consider the representation f# {Ig; g e G} of

GonLo(G)and the closed subspaces A UBC,(G),X {21 ;2 C}. Then A and
X satisfies the conditions of (C) (see [9, p. 275]). Let Q be the continuous projec-
tion from A onto X defined by Q(f) =f(e)l, where e is the identity of G. Then

1. Hence there exists a continuous projection P from A onto X commut-
ing with each to; g e G and IIPII-< 1. Define m(f)= P(f)(e) for each fe A.
Then m(1)= Ilmll- 1 and m(lf)= m(f) for each # e G, fe A. Hence G is
amenable by [8, Theorem 2.2.1].

Proof of the converse is very similar to that for Theorem 4.1, observing that
the affine action G x (, z)---, (, z) is even continuous in this case when
G x (, z) has the product topology by continuity of the map G x A A and
Ellis’ Theorem [6, Theorem 1]. We safely suppress the details.
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Remark. Theorem 4.4 implies Theorem 1.1 and Lemma 3.1 in [14]..

COROLLARY 4.4. G is amenable ifand only ifevery weak*-closed left transla-
tion subspace ofLoo(G) which is contained and complemented in UBC,(G) admits
a left translation invariant complement in UBC,(G).

Remarks (1) Let G be a (discrete) semigroup. An argument similar to that
of Theorem 3.3 shows that if G has the weak* G-invariant complemented
subspace property, then G is left amenable. However, we do not know whether
a left amenable semigroup G has the weak* G-invariant complemented sub-
space property even when G is commutative. Our proof of Theorem 4.1 (and
Theorem 3.3) depends heavily on the fact that G is a group.

(2) It follows from Theorem 9 in [17] and Theorem 3 in [18] of Silverman
and their proofs that if G is a left amenable semigroup, then G has a certain
montone projection property (MPP)"

(MPP) Let ff {To; # G} be an antirepresentation of G as linear opera-
tors on an ordered linear space Y with an invariant cone C. Let V be a vector
subspace of Y such that the induced cone in V is sharp, V considered as an
order linear space is a boundedly complete vector lattice (see [19, p. 75]),
y + V c C # 0 for all y V and To(v v for all g G, v V. Then there exists
a montone projection P from Y onto V such that PT0 P for all O s G.

Conversely if G has the (MPP), then G is left amenable. In fact, let Y be the
space of bounded real valued functions on G, V {1; t R}, and (To f)(x)

f(ox), f Y, 9, x G. If P is a montone projection from Y onto V such
that PT P for # G, let a G be fixed, then m Y* defined by m(f)=
(Pf)(a), f Y, is a left invariant mean on Y.

(We thank the referee for bringing our attention to the work of Silverman).

5. Compact groups

A Banach space E is said to have the G-invariant complemented subspace
property if: Whenever f {To; 9 G} is a representation of G as linear isome-
trics from E onto E such that the map (O, x) Tx is a continuous map of the
product space G x E into E, ifX is a closed invariant subspace of E and if there
exists a continuous projection Q from E onto X with Q < , then there exists
a continuous projection P from E onto X commuting with each T, O G, with

Rudin [15, Theorem 1] proved that if G is eornpact, then any Banaeh space
has that G-invariant complemented subspace property. The following observa-
tion shows that the converse is also true"

PROPOSITION 5.1. G is compact if and only if every Banach space has the
G-invariant complemented subspace property.
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Proof Consider the representation {/; 9 G} of G as linear isometrics on
Lx(G). If L(G) has the G-invariant complemented subspace property, let

X= {f6 LI(G); ff(x)dx=O}.
Then X is a closed invariant subspace of Li(G)with codimension 1, hence
complemented. By assumption, there exists a continuous projection P from
Lx(G) onto X such that lg-1 PIg P for all 9 G. Then K {f Lx(G);
P(f) 0} is also invariant and one-dimensional. Pickf K andf 4: 0. If a G,
then I, f= ffor some 2 C. Hence

Since f(x)dx 4:0, 2 1. In particular laf=f for all a G. Hence G is
compact.

LEMMA 5.2. Let X be a weak*-closed invariantly complemented subspace of
Loo(G). Then there exists a weak*-weak* continuous projectionfrom Loo(G) onto
X commutino with left translations ifand only ifX c Co(G) is weak*-dense in X.

Proof Let P be a continuous projection from L(G)onto X commuting
with left translations. Iff UBC,(G), then an argument similar to that of de
Leeuw in the proof of Theorem 4.1 [7] shows that P(f) UBC,(G). Let
# M(G) such that

P(f)(e) f f(x)d(x).
Then, as readily checked,

P(f) g,(f), f6 Co(O), where g,(f)(9) f f(gx)dg(x).
Define S: L,(G) L, (G) by S(h)= h , h L, (G). Hence Q S* commutes
with left translations on L oo(G) also. Furthermore Q(f)=f for each
f Co(G) c X. Now if Co(G) c X is weak*-dense in X, then Q(f) ffor each
f X by weak*-continuity of Q. Also iff Co(G and h X+/-, h L(G), then
(Q(f), h) (h, la,(f)) 0. Consequently (Q(f), h) 0 for each f
by weak* density of Co(G) in Lo(G); i.e., Q(f) x+/-+/-= x. Hence Q is a
projection of Loo(G) onto X.

Conversely if Q is a weak*-weak* continuous projection from L oo(G) onto X
commuting with left translation, by Wendel’s result [17, Theorem 1], there
exists/ M(G) such that Q*(h) h !, h L1 (G). Iff Co(G), then Q(f)
/h(f), which is also in Co(G). Since Co(G) is weak*-dense in Loo(G), it follows
that Co(G) c X is weak*-dense in X {Q(f);f Loo(G)}.
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Rosenthal [14, p. 19] proved that if G is a compact abelian group, then any
translation invariant weak*-closed complemented subspace of L oo(G) is the
range of a weak*-weak* continuous projection commuting with translations.
Our next result is an improvement of this fact.

THEOREM 5.3. Let G be a compact troup. Let X be a weak*-closed left
translation invariant subspace ofL oo(G). Then there exists a weak*-weak* contin-
uous projection from Loo(G) onto X provided any one of thefollowing conditions
hold:

(i) X is also closed under multiplication and conjugation.
(ii) Xisweak*-complemented.
(iii) X is complemented and G amenable as discrete.

Proof. Using Lemmas 2.1 and 5.2, each of the three cases follow directly
from Theorem 3.3, Corollary 4.2 and Theorem 4.3 respectively.

Remark. It follows from Lemma 5.2 and [1, Theorem 1] that if G abelian
and ( is connected, then there exists no non-trivial weak*-weak* continuous
projection from L(R)(G) into L oo(G) commuting with translations. This result
also follows easily from Cohen’s theorem on idempotent measure [2, Theorem
3] and Wendel’s theorem [20, Theorem 1].
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