INVARIANTLY COMPLEMENTED SUBSPACES OF $L_{\infty}(G)$ AND AMENABLE LOCALLY COMPACT GROUPS

BY

ANTHONY TO-MING LAU¹

1. Introduction

Let G be a locally compact group and let $L_{\infty}(G)$ be the W*-algebra of essentially bounded measurable complex-valued functions on G with pointwise operations and essential sup norm. Let X be a weak*-closed left translation invariant subspace of $L_{\infty}(G)$. Then X is *invariantly complemented* in $L_{\infty}(G)$ if X admits a left translation invariant closed complement, or equivalently, X is the range of a continuous projection on $L_{\infty}(G)$ commuting with left translations.

In this paper, we are concerned with the following question: Under what condition will X be invariantly complemented?

H. Rosenthal proved in [14, Theorem 1.1] that if G is abelian and X is complemented in $L_{\infty}(G)$, then X is invariantly complemented in $L_{\infty}(G)$. Actually, Rosenthal's proof is valid for any locally compact group G which is amenable as discrete. However, we do not know whether the same conclusion still holds when G is an amenable locally compact group but G is not amenable as discrete (e.g. when G is the compact orthogonal group $SO(3, \mathbb{R})$ [8, p. 9]).

We prove in Section 3 (Theorem 3.3) that G is amenable if and only if each left translation invariant W*-subalgebra of $L_{\infty}(G)$ is invariantly complemented. Proof of this theorem depends on an improvement of some recent results of P. K. Pathak and H. S. Shapiro [13] and G. Crombez and W. Govaerts [3] in associating translation invariant W*-subalgebras of $L_{\infty}(G)$ with the set of functions in $L_{\infty}(G)$ fixed under translations by elements in a closed subgroup of G (see Lemma 3.2).² We also prove in Section 4 (Corollary 4.2) that G is amenable if and only if each weak*-closed weak*-complemented left translation invariant subspace of $L_{\infty}(G)$ is invariantly complemented. This is equivalent to Corollary 4.4: Each weak*-closed left translation invariant subspace of $UBC_r(G)$ which is complemented in $UBC_r(G)$ admits a left translation invariant closed complement in $UBC_r(G)$. Here $UBC_r(G)$ denotes the space of bounded right uniformly continuous complex-valued functions on G [9, p. 275]. Both Corollary 4.2 and Corollary 4.4 are direct consequences of characterizations of amenability of G

© 1982 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received April 23, 1980.

¹ This research is supported by the National Research Council.

² Professor Ole Nielsen has kindly informed the author (orally) that Lemma 3.2 is known and proved by M. Takesaki and N. Tatsuuma in Theorem 2, *Duality and subgroups*, Ann. of Math., vol. 93, 1971, pp. 344–364.

in terms of certain invariant complemented subspace property on dual Banach spaces. Finally, in Section 5, we give conditions when a weak*-closed left translation invariant subspace in $L_{\infty}(G)$ of a compact group G is the range of a weak*-weak* continuous projection on $L_{\infty}(G)$ commuting with left translations.

2. Preliminaries

If E is a Banach space, then E^* denotes its continuous dual. Also if $\phi \in E^*$ and $x \in E$, then the value of ϕ at x will be written as $\phi(x)$ or $\langle \phi, x \rangle$. If F is another Banach space, then $\mathscr{B}(E, F)$ will denote the space of bounded continuous linear operators from E into F.

Throughout this paper, G denotes a locally compact group with a fixed left Haar measure. Let C(G) denote the Banach algebra of bounded continuous complex-valued functions on G with the supremum norm, and let $C_0(G)$ be the closed subspace of C(G) consisting of all functions in C(G) which vanishes at infinity. The Banach spaces $L_p(G)$, $1 \le p \le \infty$, are as defined in [9]. If f is a complex-valued function defined locally almost everywhere on G, and if a, $t \in G$, then $l_a f(t) = f(a^{-1}t)$ and $r_a f(t) = f(ta)$ whenever this is defined. We say G is amenable if there exists $m \in L_{\infty}(G)^*$ such that $m \ge 0$, ||m|| = 1 and $m(l_a f) = m(f)$ for each $f \in L_{\infty}(G)$ and $a \in G$. Amenable locally compact groups include all compact groups and all solvable groups. However, the free group on two generators is not amenable.

We will need the following simple observation:

LEMMA 2.1. Let X be a weak*-closed left translation invariant subspace of $L_{\infty}(G)$. Then $X \cap UBC_r(G)$ is weak*-dense in X.

Proof. Let $\{\phi_{\alpha}\}$ be a bounded approximate identity in $L_1(G)$ and $f \in X$. Then the net $\{\phi_{\alpha} * f\}$ is in $X \cap UBC_r(G)$ (see [9, p. 295] and [12, Theorem 4.1]) and converges in the weak*-topology to f.

3. W*-subalgebras of $L_{\infty}(G)$

A W^* -subalgebra X of $L_{\infty}(G)$ is a weak*-closed subalgebra of $L_{\infty}(G)$ such that $\overline{f} \in X$ whenever $f \in X$, where $\overline{f}(x) = \overline{f(x)}$, $x \in G$. In this section, we characterize the class of left translation invariant W^* -subalgebras of $L_{\infty}(G)$. This result is applied to show that if G is amenable, then any left translation invariant W^* -subalgebra of $L_{\infty}(G)$ is invariantly complemented.

LEMMA 3.1. Let X be a left translation invariant W*-subalgebra of $L_{\infty}(G)$ and $X \neq \{0\}$, then X contains constants.

Proof. Indeed let h_0 be the identity of X (see [16, Proposition 1.6.1]). If $g \in G$, $f \in X$, we have $(l_g h_0)(f) = l_g [h_0(l_g^{-1}f)] = f$. Hence $l_g h_0 = h_0$. Let $\phi \in L_1(G)$ such that $\phi \ge 0$ and $\|\phi\| = 1$. Then $\phi * h_0 = h_0$ by Theorem 4.1 (b) [12]. In particular $h_0 \in UBC_r(G)$. Consequently $h_0 = 1$.

LEMMA 3.2. X is a non-zero left translation invariant W*-subalgebra of $L_{\infty}(G)$ if and only if there exists a unique closed subgroup N_X of G such that

$$X = \{ f \in L_{\infty}(G); r_g f = f \text{ for each } g \in N_X \}$$

Furthermore, X is translation invariant if and only if N_X is normal.

Proof. If N is a closed subgroup of G, it is easy to see that

 $\{f \in L_{\infty}(G), r_a f = f \text{ for each } g \in N\}$

is a non-zero left translation invariant W^* -subalgebra of $L_{\infty}(G)$.

Conversely, if X is a left translation invariant W*-subalgebra of $L_{\infty}(G)$, let

$$N = N_x = \{g \in G; r_a f = f \text{ for each } f \in X\}.$$

Then, as readily checked, N is a subgroup of G. Also, since the map

 $G \to (L_{\infty}(G), \text{ weak}^*)$

defined by $g \to r_g f$ ($f \in L_{\infty}(G)$) is continuous and X is weak*-closed, N is closed in G. Let

$$Y = \{ f \in L_{\infty}(G); r_{a} f = f \text{ for each } g \in N \};$$

clearly $Y \supseteq X$. To prove equality, it suffices, by Lemma 2.1, to show that $Y \cap C(G) \subseteq X$.

Let G/N denote the homogeneous space of left cosets $\{gN; g \in G\}$. Then G/N is locally compact and Hausdorff [9, p. 38]. Also, each $f \in Y \cap C(G)$ can be regarded as a continuous function \overline{f} on G/N. Let K be a compact subset of G, and \overline{K} be its image in G/N under the quotient map. Then an application of Lemmas 2.1 and 3.1 shows that $\mathscr{A} = \{q(\overline{f}); f \in X \cap C(G)\}$, where $q(\overline{f})$ is the restriction of \overline{f} to \overline{K} , separate points on K, closed under conjugation and contains constants. So, by the Stone-Weierstrass Theorem, \mathscr{A} is uniformly dense in $C(\overline{K})$.

Let $f_0 \in Y \cap C(G)$ be fixed. For any finite subset $\sigma = \{\psi_1, \ldots, \psi_n\} \subseteq C_{00}(G)$ (continuous functions with compact support) with $\|\psi_i\| \le 1$, let K be a compact subset of G such that $\psi_i(x) = 0$ if $x \notin K$, $i = 1, \ldots, n$. Then for each $0 < \varepsilon < 1$, there exists (by density of \mathscr{A} in $C(\overline{K})$) $h \in X \cap C(G)$ such that

$$||f_0 - h||_K = \sup \{|(f_0 - h)(x)|; x \in K\} < \varepsilon.$$

In particular, $\|h\|_{K} \leq \|f_{0}\|_{\infty} + 1$. Let $\phi: C \to C$ be a continuous function such that $\phi(z) = z$ if $|z| \leq \|f_{0}\|_{\infty} + 1$ and $|\phi(z)| \leq \|f_{0}\|_{\infty} + 1$ if $|z| > \|f_{0}\|_{\infty} + 1$. Let $k_{(\sigma,\varepsilon)} = k = \phi \circ h \in X$. Then $k \in X$ (by [16, Proposition 1.18.1]), $\|k\| \leq \|f_{0}\|_{\infty} + 1$ and $\|f_{0} - k\|_{K} < \varepsilon$. Hence

$$\left|\int (f_0-k)(t)\psi_i(t)dt\right|<\varepsilon$$

for each i = 1, ..., n. Consequently the bounded net $\{k_{(\sigma,\varepsilon)}\}$ in X converges to f_0 in the topology \mathcal{T} determined by the seminorms

$$\{p_{\psi}; \psi \in C_{00}(G)\}, \|\psi\|_{1} \leq 1\}, \text{ where } p_{\psi}(f) = \left|\int f(t)\psi(t)dt\right|, f \in L_{\infty}(G).$$

Since the topology \mathcal{T} and the weak*-topology coincide on bounded spheres of $L_{\infty}(G), f_0 \in X$.

Suppose N_0 is another closed subgroup of G such that

 $X = \{ f \in L_{\infty}(G); l_q f = f \text{ for each } g \in N_0 \};$

then $N_0 \subseteq N$. If $g \in N$ and $g \notin N_0$, there exists an $f \in C(G)$, f is constant on the left cosets $\{tN_0; t \in G\}$ and $f(g) \neq f(e)$. Hence $f \in X$, but $r_g f \neq f$, which is impossible. Hence $N_0 = N$.

Finally, if X is translation invariant, $g \in G$ and $a \in N$, then

$$r_{g^{-1}ag}(f) = r_{g^{-1}}r_a(r_g f) = r_{g^{-1}}r_g f = f$$

since $r_g f \in X$. Hence N is normal. Conversely, if N is normal $f \in X$ and $g \in G$, then for each $a \in N$, $r_a(r_g f) = r_{ga} f = r_{bg} f = r_g f$ where $b = gag^{-1} \in N$. In particular $r_g f \in X$.

Remark. Note that if X is translation invariant, then

$$N_X = \{a \in G; r_a f = l_a f = f \text{ for all } f \in X\}$$

In particular, Lemma 3.2 implies the main theorem in [3]. Indeed, let $a \in N_X$. If $f \in X \cap C(G)$, then f is constant on the coset $aN_X = N_X a$ (by normality) and $l_a f = f$. Consequently $l_a f = f$ for each $f \in X$ by Lemma 2.1.

THEOREM 3.3. G is amenable if and only if every left translation invariant W^* -subalgebra of $L^{\infty}(G)$ is invariantly complemented.

Proof. Let X be a left translation invariant W^* -subalgebra of $L^{\infty}(G)$. We may assume that $X \neq \{0\}$. By Lemma 3.2, there exists a closed subgroup N of G such that

$$X = \{ f \in L^{\infty}(G); r_a f = f \text{ for all } g \in N \}$$

If G is amenable, then N is also amenable. For each $f \in L^{\infty}(G)$, let K_f denote the weak*-closure of the convex hull of $\{r_g f; g \in N\}$. Then the affine action $N \times K_f \to K_f$, defined by $(g, k) \to r_g(k)$ is separately (hence jointly) continuous when K_f has the weak*-topology. By the Day's fixed point theorem [4, Theorem 3], there exists $k \in K_f$; $r_g k = k$ for each $g \in N$. Consequently $K_f \cap X \neq \emptyset$. Now applying the proposition of Yeadon [21] (see also [11]), there exists a continuous projection P from $L_{\infty}(G)$ onto X such that P commutes with any weak*-weak* continuous linear operators from $L_{\infty}(G)$ into $L_{\infty}(G)$ which commutes with the right translations $\{r_g; g \in H\}$. In particular, P commutes with the left translations on $L_{\infty}(G)$.

To prove the converse, we consider the subalgebra X of $L_{\infty}(G)$ consisting of constant functions. If $P: L_{\infty}(G) \to X$ is continuous projection of $L_{\infty}(G)$ onto X commuting with left translations, define $\phi(f) = \lambda$ if $P(f) = \lambda \cdot 1$. Then ϕ is a non-zero left translation invariant linear functional on $L_{\infty}(G)$. Let $\psi = \frac{1}{2}(\phi + \phi^*)$, where $\phi^*(f) = \overline{\phi(\overline{f})}$, $f \in L_{\infty}(G)$; then ψ is non-zero (since $\psi(1) = 1$), self-adjoint, and left translation invariant. Write $\psi = \psi^+ - \psi^-$, its unique decomposition as difference of two positive linear functionals ψ^+, ψ^- such that $\|\psi\| = \|\psi^+\| + \|\psi^-\|$ (see [16, Theorem 1.14.3]). Then, as readily checked, for each $a \in G$, $l_a^*\psi^+$ and $l_a^*\psi^-$ are positive and have the same norm as ψ^+ and ψ^- respectively. Hence $l_a^*\psi^+ = \psi^+$ and $l_a^*\psi^- = \psi^-$. Consequently, if $\psi^+ \neq 0$ (say), then $m = \psi^+/\psi^+(1)$ is a left invariant mean on $L_{\infty}(G)$.

4. Weak* invariant complemented subspace property

Let E be a dual Banach space with a fixed predual E_* . We say that E has the weak* G-invariant complemented subspace property if the following condition holds: Whenever $\mathscr{G} = \{T_g : g \in G\}$ is a representation of G as linear isometries from E onto E such that the map $(g, x) \to T_g x$ is a separately continuous linear map from $G \times E$ into E when E has the weak* topology, if X is a weak*-closed invariant subspace of E and if there exists a weak*-weak* continuous projection Q from E onto X with $||Q|| \leq \alpha$, then there exists a continuous projection P from E onto X such that $T_q P = PT_q$ for each $g \in G$ with $||P|| \leq \alpha$.

THEOREM 4.1. G is amenable if and only if any dual Banach space has the weak* G-invariant complemented subspace property.

Proof. If any dual Banach space has the weak* G-invariant complemented subspace property, we consider the representation $\mathscr{G} = \{l_g; g \in G\}$ of G on $L_{\infty}(G)$ and the one-dimensional subspace consisting of constant functions, then an argument similar to that for Theorem 3.3 shows that G is amenable.

Conversely, if G is amenable, $\mathscr{G} = \{T_g; g \in G\}$ is a representation of G as linear isometries from a dual Banach space E such that $(g, x) \to T_g(x)$ is a separately continuous linear map when E has the weak*-topology, let X be a weak*-closed invariant subspace of E and Q be a weak*-weak* continuous projection of E onto X such that $||Q|| \leq \alpha$. Following an idea of Rosenthal in [14, Lemma 3.1], let \mathscr{P} denote the set of continuous projections P from E onto X such that $||P|| \leq \alpha$. Then \mathscr{P} is a non-empty subset of $\mathscr{B}(E, X)$. Let τ denote the weak*-operator topology on $\mathscr{B}(E, X)$ determined by the family of seminorms

$$\{p_{z,\phi}; z \in E, \phi \in E_*\}, \text{ where } p_{z,\phi}(T) = |\phi(Tz)|, T \in \mathscr{B}(E, X)$$

An application of the Theorem in [10, p. 973] shows that (\mathcal{P}, τ) is also compact. Consider now the affine action $G \times (\mathcal{P}, \tau) \rightarrow (\mathcal{P}, \tau)$ defined by the map

$$(g, P) \to T_{g^{-1}}PT_g, g \in G, P \in \mathscr{P}.$$

Clearly, if $g \in G$, that map $P \to T_{g^{-1}}PT_g$ from (\mathcal{P}, τ) into (\mathcal{P}, τ) is continuous. Also, the map $g \to T_{g^{-1}}PT_g$ from G into (\mathcal{P}, τ) is continuous at P = Q. Indeed, by assumption, $\Phi: (g, x) \to T_g x$ is a separately continuous map from $G \times B$ into B when B has the weak*-topology and $B = \{x \in E; \|x\| \le \alpha\}$. Also, since (B, weak*) is compact, Ellis' result [6, Theorem 1] implies that Φ is even jointly continuous. Hence if $\{g_n\}$ is a net in G, $g_n \to g$, $g \in G$, $x \in E$, $\|x\| \le 1$, then $Q(T_{g_n}(x))$ is a net in B converging to $Q(T_g(x))$ in the weak*-topology. In particular, the net $T_{g_n^{-1}}QT_{g_n}(x)$ converges to $T_{g^{-1}}QT_g(x)$ in the weak* topology of E also. By Day's fixed point theorem [5, Theorem 4], there exists $P \in \mathcal{P}$ such that $T_{g^{-1}}PT_g = P$ for each $g \in G$.

Remark. Theorem 4.1 implies Lemma 3.1 in [14].

A weak*-closed subspace X of $L_{\infty}(G)$ is weak*-complemented if there exists a weak*-weak* continuous projection from $L_{\infty}(G)$ onto X.

COROLLARY 4.2. G is amenable if and only if any weak*-complemented left translation invariant weak*-closed subspace of $L_{\infty}(G)$ is invariantly complemented.

We do not know if a weak*-closed left translation invariant complemented subspace of $L_{\infty}(G)$ of an amenable group G is necessarily invariantly complemented unless G is abelian (or more generally when G is amenable as discrete). However, we have the following:

THEOREM 4.3. G is amenable if and only if G has the following property:

(C) Whenever $\mathscr{G} = \{T_g; g \in G\}$ is a representation of G as weak*-weak* continuous linear isometries from E onto E and A is a closed invariant subspace of E such that the maps $(g, x) \to T_g x$ is a continuous linear map of the product subspace $G \times A$ into A, if X is a weak*-closed invariant subspace of E contained in A and if there exists a continuous projection Q from A onto X with $||Q|| \leq \alpha$, then there exists a continuous projection P from A onto X such that $T_g P = PT_g$ for each $g \in G$ with $||P|| \leq \alpha$.

Proof. If property (C) holds, consider the representation $\mathscr{G} = \{l_g; g \in G\}$ of $G \text{ on } L_{\infty}(G)$ and the closed subspaces $A = UBC_r(G), X = \{\lambda 1; \lambda \in C\}$. Then A and X satisfies the conditions of (C) (see [9, p. 275]). Let Q be the continuous projection from A onto X defined by Q(f) = f(e)1, where e is the identity of G. Then $\|Q\| = 1$. Hence there exists a continuous projection P from A onto X commuting with each l_g ; $g \in G$ and $\|P\| \leq 1$. Define m(f) = P(f)(e) for each $f \in A$. Then $m(1) = \|m\| = 1$ and $m(l_g f) = m(f)$ for each $g \in G, f \in A$. Hence G is amenable by [8, Theorem 2.2.1].

Proof of the converse is very similar to that for Theorem 4.1, observing that the affine action $G \times (\mathcal{P}, \tau) \to (\mathcal{P}, \tau)$ is even continuous in this case when $G \times (\mathcal{P}, \tau)$ has the product topology by continuity of the map $G \times A \to A$ and Ellis' Theorem [6, Theorem 1]. We safely suppress the details. *Remark.* Theorem 4.4 implies Theorem 1.1 and Lemma 3.1 in [14].

COROLLARY 4.4. G is amenable if and only if every weak*-closed left translation subspace of $L_{\infty}(G)$ which is contained and complemented in $UBC_r(G)$ admits a left translation invariant complement in $UBC_r(G)$.

Remarks (1) Let G be a (discrete) semigroup. An argument similar to that of Theorem 3.3 shows that if G has the weak* G-invariant complemented subspace property, then G is left amenable. However, we do not know whether a left amenable semigroup G has the weak* G-invariant complemented subspace property even when G is commutative. Our proof of Theorem 4.1 (and Theorem 3.3) depends heavily on the fact that G is a group.

(2) It follows from Theorem 9 in [17] and Theorem 3 in [18] of Silverman and their proofs that if G is a left amenable semigroup, then G has a certain montone projection property (MPP):

(MPP) Let $\mathscr{G} = \{T_g; g \in G\}$ be an antirepresentation of G as linear operators on an ordered linear space Y with an invariant cone C. Let V be a vector subspace of Y such that the induced cone in V is sharp, V considered as an order linear space is a boundedly complete vector lattice (see [19, p. 75]), $y + V \cap C \neq \emptyset$ for all $y \in V$ and $T_g(v) = v$ for all $g \in G, v \in V$. Then there exists a montone projection P from Y onto V such that $PT_g = P$ for all $g \in G$.

Conversely if G has the (MPP), then G is left amenable. In fact, let Y be the space of bounded real valued functions on G, $V = \{\alpha 1; \alpha \in \mathbb{R}\}$, and $(T_g f)(x) = f(gx), f \in Y, g, x \in G$. If P is a montone projection from Y onto V such that $PT_g = P$ for $g \in G$, let $a \in G$ be fixed, then $m \in Y^*$ defined by $m(f) = (Pf)(a), f \in Y$, is a left invariant mean on Y.

(We thank the referee for bringing our attention to the work of Silverman).

5. Compact groups

A Banach space E is said to have the G-invariant complemented subspace property if: Whenever $\mathscr{G} = \{T_g; g \in G\}$ is a representation of G as linear isometries from E onto E such that the map $(g, x) \to T_g x$ is a continuous map of the product space $G \times E$ into E, if X is a closed invariant subspace of E and if there exists a continuous projection Q from E onto X with $||Q|| \leq \alpha$, then there exists a continuous projection P from E onto X commuting with each $T_g, g \in G$, with $||P|| \leq \alpha$.

Rudin [15, Theorem 1] proved that if G is compact, then any Banach space has that G-invariant complemented subspace property. The following observation shows that the converse is also true:

PROPOSITION 5.1. G is compact if and only if every Banach space has the G-invariant complemented subspace property.

232

Proof. Consider the representation $\{l_g; g \in G\}$ of G as linear isometries on $L_1(G)$. If $L_1(G)$ has the G-invariant complemented subspace property, let

$$X = \left\{ f \in L_1(G); \int f(x) dx = 0 \right\}.$$

Then X is a closed invariant subspace of $L_1(G)$ with codimension 1, hence complemented. By assumption, there exists a continuous projection P from $L_1(G)$ onto X such that $l_{g-1}Pl_g = P$ for all $g \in G$. Then $K = \{f \in L_1(G);$ $P(f) = 0\}$ is also invariant and one-dimensional. Pick $f \in K$ and $f \neq 0$. If $a \in G$, then $l_a f = \lambda f$ for some $\lambda \in C$. Hence

$$\lambda \int f(x)dx = \int l_a f(x)dx = \int f(x)dx.$$

Since $\int f(x)dx \neq 0$, $\lambda = 1$. In particular $l_a f = f$ for all $a \in G$. Hence G is compact.

LEMMA 5.2. Let X be a weak*-closed invariantly complemented subspace of $L_{\infty}(G)$. Then there exists a weak*-weak* continuous projection from $L_{\infty}(G)$ onto X commuting with left translations if and only if $X \cap C_0(G)$ is weak*-dense in X.

Proof. Let P be a continuous projection from $L_{\infty}(G)$ onto X commuting with left translations. If $f \in UBC_r(G)$, then an argument similar to that of de Leeuw in the proof of Theorem 4.1 [7] shows that $P(f) \in UBC_r(G)$. Let $\mu \in M(G)$ such that

$$P(f)(e) = \int f(x)d\mu(x).$$

Then, as readily checked,

$$P(f) = \mu_l(f), f \in C_0(G), \text{ where } \mu_l(f)(g) = \int f(gx) d\mu(x).$$

Define $S: L_1(G) \to L_1(G)$ by $S(h) = h * \mu$, $h \in L_1(G)$. Hence $Q = S^*$ commutes with left translations on $L_{\infty}(G)$ also. Furthermore Q(f) = f for each $f \in C_0(G) \cap X$. Now if $C_0(G) \cap X$ is weak*-dense in X, then Q(f) = f for each $f \in X$ by weak*-continuity of Q. Also if $f \in C_0(G)$ and $h \in X^{\perp}$, $h \in L_1(G)$, then $\langle Q(f), h \rangle = \langle h, \mu_l(f) \rangle = 0$. Consequently $\langle Q(f), h \rangle = 0$ for each $f \in L_{\infty}(G)$ by weak* density of $C_0(G)$ in $L_{\infty}(G)$; i.e., $Q(f) \in X^{\perp \perp} = X$. Hence Q is a projection of $L_{\infty}(G)$ onto X.

Conversely if Q is a weak*-weak* continuous projection from $L_{\infty}(G)$ onto X commuting with left translation, by Wendel's result [17, Theorem 1], there exists $\mu \in M(G)$ such that $Q^*(h) = h * \mu$, $h \in L_1(G)$. If $f \in C_0(G)$, then $Q(f) = \mu_l(f)$, which is also in $C_0(G)$. Since $C_0(G)$ is weak*-dense in $L_{\infty}(G)$, it follows that $C_0(G) \cap X$ is weak*-dense in $X = \{Q(f); f \in L_{\infty}(G)\}$.

Rosenthal [14, p. 19] proved that if G is a compact abelian group, then any translation invariant weak*-closed complemented subspace of $L_{\infty}(G)$ is the range of a weak*-weak* continuous projection commuting with translations. Our next result is an improvement of this fact.

THEOREM 5.3. Let G be a compact group. Let X be a weak*-closed left translation invariant subspace of $L_{\infty}(G)$. Then there exists a weak*-weak* continuous projection from $L_{\infty}(G)$ onto X provided any one of the following conditions hold:

- (i) X is also closed under multiplication and conjugation.
- (ii) X is weak*-complemented.
- (iii) X is complemented and G amenable as discrete.

Proof. Using Lemmas 2.1 and 5.2, each of the three cases follow directly from Theorem 3.3, Corollary 4.2 and Theorem 4.3 respectively.

Remark. It follows from Lemma 5.2 and [1, Theorem 1] that if G abelian and \hat{G} is connected, then there exists no non-trivial weak*-weak* continuous projection from $L_{\infty}(G)$ into $L_{\infty}(G)$ commuting with translations. This result also follows easily from Cohen's theorem on idempotent measure [2, Theorem 3] and Wendel's theorem [20, Theorem 1].

REFERENCES

- 1. W. CHOJNACHI, On projections of $L_{\infty}(G)$ onto translation-invariant sub-spaces, Colloq. Math., vol. 39 (1978), pp. 361-365.
- 2. P. J. COHEN, On a conjecture of Littlewood and idempotent measure, Amer. J. Math., vol. 82 (1960), pp. 191–212.
- 3. G. CROMBEZ and W. GOVAERTS, A characterization of certain weak*-closed subalgebras of $L_{\infty}(G)$, J. Math. Anal. Appl., vol. 73 (1979), pp. 430–434.
- 4. M. M. DAY, Fixed point theorems for compact convex sets, Illinois J. Math., vol. 5 (1961), pp. 585-589.
- Correction to my paper "Fixed-point theorems for compact convex sets", Illinois J. Math., vol. 8 (1964), p. 713.
- 6. R. Ellis, Locally compact transformation groups, Duke Math. J., vol. 24 (1957), pp. 119-125.
- I. GLICKSBERG, Some uncomplemented function algebras, Trans. Amer. Math. Soc., vol. 111 (1964), pp. 121–137.
- 8. F. P. GREENLEAF, Invariant means on topological groups, Van Nostrand Mathematical Studies, vol. 16, 1969.
- 9. E. HEWIT and K. Ross, Abstract harmonic analysis I, Springer-Verlag, New York, 1963.
- 10. R. V. KADISON, The trace in finite operator algebras, Proc. Amer. Math. Soc., vol. 12 (1961), pp. 973–977.
- 11. A. T. LAU, Semigroup of operators on dual Banach space, Proc. Amer. Math. Soc., vol. 54 (1976), pp. 393-396.
- 12. ——, Closed convex invariant subsets of $L_p(G)$, Trans. Amer. Math. Soc., vol. 232 (1977), pp. 131–142.
- P. K. PATHAK and H. S. SHAPIRO, A characterization of certain weak*-closed subalgebra of L[∞], J. Math. Anal. Appl., vol. 58 (1977), pp. 174–177.
- 14. H. P. ROSENTHAL, Projections onto translation invariant subspaces of $L^p(G)$, Mem. Amer. Math. Soc., vol. 63, 1966.

- 15. W. RUDIN, Projection on invariant subspaces, Proc. Amer. Math. Soc., vol. 13 (1962), pp. 429-432.
- 16. S. SAKAJ, C*-algebras and W*-algebras, Springer-Verlag, New York, 1971.
- 17. J. G. WENDEL, Left centralizers and isomorphisms of group algebras, Pacific J. Math., vol. 2 (1952), pp. 251–261.
- 18. F. J. YEADON, Fixed points and amenability: a counterexample, J. Math. Anal. Appl., vol. 45 (1974), pp. 718-720.

University of Alberta Edmonton, Alberta, Canada