PERFECT, *u*-ADDITIVE MEASURES AND STRICT TOPOLOGIES

BY

G. KOUMOULLIS

Let X be a completely regular space, and let C(X) denote the space of bounded continuous real-valued functions on X. The finest locally convex topology on C(X) which coincides on the supremum-norm bounded sets with the compact-open topology is denoted by β_0 (see [19]). This topology has been examined by several authors and it is well known that the dual of $(C(X), \beta_0)$ is the space $M_t(X)$ of tight measures on X. If X is locally compact, β_0 coincides with the strict topology of Buck [1].

If βX denotes the Stone-Cech compactification of X, then for every $Q \subset \beta X - X$ the spaces $C(\beta X - Q)$ and C(X) are isomorphic. So the topology β_0 on $C(\beta X - Q)$ can be regarded as a topology on C(X), which is denoted by β_Q . We think of a strict topology on C(X) as an inductive limit of topologies β_Q for some family of sets $Q \subset \beta X - X$ not necessarily compact. Such topologies on C(X) are the topologies β_1 and β studied by Sentilles [19], which yield as duals the spaces $M_{\sigma}(X)$ and $M_{\tau}(X)$ of σ -additive and τ -additive measures.

This paper deals with the spaces $M_p(X)$ and $M_u(X)$ of perfect [18] and u-additive [20] measures. In Sections 2 and 3, strict topologies β_p and β_u are defined, so that $(C(X), \beta_p)' = M_p(X)$ and $(C(X), \beta_u)' = M_u(X)$. The topology β_u is the same as that introduced by Wheeler [23]; but the different definition leads to simple proofs of some known results. In Section 4, characterizations of the spaces X for which $M_p(X) \subset M_u(X)$ are given. One such characterization, which contains an extension of Shirota's theorem, is the fairly weak condition that certain closed discrete subsets of X have non-(Ulam-) measurable cardinal. Using this condition one can decide whether a perfect measure is *u*additive essentially avoiding the set theoretical difficulties which appear in the general case of a σ -additive measure. Section 1 contains preliminaries and generalities about strict topologies.

The author wishes to thank Professor S. Negrepontis for much useful advice during the work which led to the preparation of this paper.

1. Preliminaries and the general strict topology

All topological spaces X are assumed to be completely regular (and Hausdorff). Basic reference for the theory of measures on topological spaces is

Received November 4, 1980.

^{© 1982} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

[22]. A zero set in X is a set of the form $f^{-1}(\{0\})$ for some $f \in C(X)$. A cozero set is a complement of a zero set. The Baire sets in X are the members of the σ -algebra $\mathscr{B}(X)$ generated by the zero sets. We are primarily concerned with Baire measures. For the definition of the spaces of measures $M(X) \supset M_{\sigma}(X) \supset M_{\tau}(X) \supset M_{\tau}(X)$ see [22]. For $H \subset M(X)$ we denote by |H| the set $|H| = \{|\mu|: \mu \in H\}$. According to the Aleksandrov representation theorem [22, p. 165], M(X) can be identified with the dual of C(X) under the (supremum-)norm. All topological statements about M(X) will be relative to the weak topology $\sigma(M(X), C(X))$.

Our principal references for results about perfect and *u*-additive measures are [18] and [20] respectively. A countably additive measure μ on a measurable space (S, \mathscr{A}) is said to be *perfect*, if for every \mathscr{A} -measurable function $g: S \to \mathbb{R}$ there is a Borel set B in \mathbb{R} such that $B \subset g(S)$ and $|\mu|(g^{-1}(B)) = |\mu|(S)$. If X is a completely regular space, $M_p(X)$ denotes the space of all perfect measures defined on the σ -algebra $\mathscr{B}(X)$ of Baire sets. We have $M_{\sigma}(X) \supset M_p(X) \supset M_t(X)$, and $M_p(X) = M_t(X)$ if X is separable metrizable [18].

A partition of unity for a completely regular space X is a family $(f_{\alpha})_{\alpha \in A}$ of positive functions in C(X) such that

$$\sum_{\alpha \in A} f_{\alpha} \equiv \sup \left\{ \sum_{\alpha \in F} f_{\alpha} : F \text{ finite, } F \subset A \right\} = 1$$

and $\{x \in X : f_{\alpha}(x) > 0\}_{\alpha \in A}$ is locally finite. A measure μ on X is *u*-additive if

$$\sum_{\alpha \in A} \mu(f_{\alpha}) = \mu(1)$$

for every partition of unity $(f_{\alpha})_{\alpha \in A}$. If $M_{u}(X)$ denotes the space of *u*-additive measures on X, we have $M_{\sigma}(X) \supset M_{u}(X) \supset M_{\tau}(X)$ [20].

The topology β_0 on C(X) is defined to be the finest locally convex topology which coincides on the norm bounded sets with the compact-open topology (that is, the topology of uniform convergence on compact.sets). The dual $(C(X), \beta_0)'$ of C(X) endowed with this topology is the space $M_t(X)$ [19].

If X is locally compact, then β_0 coincides with the strict topology of Buck [1], that is, β_0 is determined by the seminorms $p_{\phi}(f) = || f \cdot \phi ||$, as ϕ runs through the space $C_0(X)$ of continuous functions vanishing at infinity (see [4, p. 119] or [19, Theorem 2.3]).

The following characterization of β_0 -equicontinuity will be used.

1.1 PROPOSITION [4], [19]. A subset H of $M_t(X)$ is β_0 -equicontinuous if and only if (a) H is norm bounded, and (b) for every $\varepsilon > 0$ there is a compact set $K \subset X$ such that $|\mu|^*(K) > |\mu|(X) - \varepsilon$ for all $\mu \in H$ (where $|\mu|^*$ denotes the outer measure).

A space X is said to be a Prohorov space if every compact subset of $M_t^+(X)$ is β_0 -equicontinuous. It is well known that locally compact spaces are Prohorov (cf. [19]).

For every $Q \subset \beta X - X$, the spaces C(X) and $C(\beta X - Q)$ are isomorphic since $\beta(\beta X - Q) = \beta X$. So the topology β_0 on $C(\beta X - Q)$ can be regarded as a topology on C(X), which is denoted by β_Q . If $Q_1 \subset Q_2$ then obviously $\beta_{Q_1} \supset \beta_{Q_2}$. If α is a family of subsets of $\beta X - X$ we define $\beta_{\alpha} = \text{Lin } \{\beta_Q : Q \in \alpha\}$ as the inductive limit of $(\beta_Q)_{Q \in \alpha}$, i.e., the finest locally convex topology which is contained in each β_Q . By the term strict topology we mean any locally convex topology on C(X) of the form β_{α} for some non-empty family α of subsets of $\beta X - X$.

Clearly $\beta_0 = \beta_{(\beta X - X)}$ and $\|\cdot\| = \beta_{\phi}$, where $\|\cdot\|$ denotes the norm topology of C(X). So β_0 and $\|\cdot\|$ are strict topologies and every strict topology β_{α} lies between them, hence $M(X) \supset (C(X), \beta_{\alpha})' \supset M_t(X)$. Since β_0 is Hausdorff, every strict topology is Hausdorff. A number of significant properties of the strict topologies (see [19]) can now be deduced from the properties of the topology β_0 . Here we shall use only the following.

1.2. PROPOSITION. Let α be a family of subsets of $\beta X - X$ and β_{α} the corresponding strict topology on C(X). Then

(i) $(C(X), \beta_{\alpha})' = \bigcap_{Q \in \alpha} M_t(\beta X - Q);$ and

(ii) if α contains only compact sets, then β_{α} is the topology of uniform convergence on the compact subsets $(C(X), \beta_{\alpha})'$ consisting of positive measures.

The proof follows from standard duality arguments [17, pp. 79, 80]. We only note that to show (ii) one uses the fact that β_{α} is an inductive limit of topologies β_0 for locally compact, hence Prohorov, spaces, and that β_{α} -equicontinuity of any $H \subset (C(X), \beta_{\alpha})'$ is equivalent to β_{α} -equicontinuity of |H|, since this is true for the topology β_0 (Proposition 1.1).

For every $\mu \in M(X)$ we denote by $\bar{\mu}$ the corresponding regular Borel measure on βX (via the isometry of C(X) and $C(\beta X)$). Then $\mu(f) = \bar{\mu}(\bar{f})$ for every $f \in C(X)$, where \bar{f} denotes the continuous extension of f to βX . The measure μ is σ -additive (resp. τ -additive) if and only if $|\bar{\mu}|(Q) = 0$ for all zero (resp. compact) sets $Q \subset \beta X - X$; also $\mu \in M_t(X)$ if and only if $|\bar{\mu}|^*(\beta X - X) = 0$ (Knowles [12]). Therefore if we define the strict topologies β_1 and β by

$$\beta_1 = \text{Lin} \{ \beta_0 : Q \text{ zero set}, Q \subset \beta X - X \}$$

and

$$\beta = \text{Lin} \{\beta_o : Q \text{ compact}, Q \subset \beta X - X\}$$

then Proposition 1.2(i) yields $(C(X), \beta_1)' = M_{\sigma}(X)$ and $(C(X), \beta)' = M_{\tau}(X)$ (Sentilles [19, Theorem 4.4.]). Topologies equivalent to β_1 and β have been introduced independently by Fremlin, Garling and Haydon [4].

2. Perfect measures

Every Baire measurable function $f: X \to Y$ induces a map $f_*: M_{\sigma}(X) \to M_{\sigma}(Y)$ defined by $f_*(\mu)(B) = \mu(f^{-1}(B))$ for all $B \in \mathscr{B}(Y)$. It is easily seen that a σ -additive measure μ on X is perfect if and only if $g_*(\mu) \in M_t(g(X))$ for every Baire measurable function $g: X \to g(X) \subset \mathbb{R}$. This means that f_* preserves perfect measures. Moreover, using the corresponding properties of M_t we can show that $M_p(X)$ is a band, norm closed, vector subspace of M(X).

In general, the dual of C(X) under any strict topology has the above mentioned properties. So a natural question is whether $M_p(X)$ is the dual of C(X) under a strict topology. Indeed this is the case. Towards this purpose we use the distinguishable sets of Frolik: a subset G of a completely regular space Y is distinguishable if there is a continuous function ϕ from Y onto a separable metric space such that $G = \phi^{-1}(\phi(G))$. We denote by $\mathcal{D}(Y)$ the family of distinguishable sets in Y. $\mathcal{D}(Y)$ is a σ -algebra containing the σ -algebra of Baire sets (see [5, p. 408]).

We start with a relation between perfect measures and distinguishable sets.

2.1. THEOREM. For a measure $\mu \in M(X)$ the following are equivalent:

- (i) μ is perfect;
- (ii) $|\bar{\mu}|^*(G) = 0$ for all $G \in \mathcal{D}(\beta X), G \subset \beta X X$.

We will use the following.

2.2 LEMMA. If $\mu \in M_{\sigma}^{+}(X)$, then μ is perfect if and only if for every continuous function f from X onto a separable metric space, $f_{*}(\mu)$ is a tight measure.

Proof. If μ is perfect then the measure $f_*(\mu)$ is a perfect measure on a separable metric space, hence tight.

Conversely, assume that $f_*(\mu)$ is perfect for every continuous function f from X onto a separable metric space. Let $g: X \to \mathbf{R}$ be a Baire measurable function and $\mathscr{B} = g^{-1}(\mathscr{B}(\mathbf{R}))$. It suffices to show that the restriction $\mu|_{\mathscr{B}}$ of μ to \mathscr{B} is a perfect measure.

Let $\{V_n\}$ be a countable base for the topology of **R** and $A_n = g^{-1}(V_n)$. Since each A_n is a Baire set, there is a continuous function f from X onto a separable metric space Y such that $A_n = f^{-1}(B_n)$, where each B_n is a Baire set in Y [5, p. 408]. Now $f^{-1}(\mathscr{B}(Y))$ is a σ -algebra containing all A_n . Therefore $f^{-1}(\mathscr{B}(Y)) \supset$ \mathscr{B} and it is enough to show that $\mu|_{f^{-1}(\mathscr{B}(Y))}$ is perfect.

We consider the family

 $\mathscr{K} = \{ f^{-1}(K) \colon K \text{ compact, } K \subset Y \}.$

 \mathscr{K} is "compact" and, since $f_*(\mu)$ is tight, \mathscr{K} approximates the measure μ from within on every element of $f^{-1}(\mathscr{B}(Y))$. It follows from [18, Theorem 2] that $\mu|_{f^{-1}(\mathscr{B}(Y))}$ is perfect.

Proof of Theorem 2.1. Without loss of generality we assume that μ is positive.

(i) \Rightarrow (ii) Let $G \in \mathcal{D}(\beta X)$, $G \subset \beta X - X$ and let ϕ be a continuous function from βX onto a (compact) metric space Y such that $G = \phi^{-1}(\phi(G))$. If f is the restriction of ϕ to X, then $f_*(\mu)$ is a tight measure on f(X). Let L be a σ -compact subset of $f(X) = \phi(X)$ such that $\mu(f^{-1}(L)) = \mu(X)$. The set $B = \phi^{-1}(L)$ is a Baire set in βX , $B \cap G = \emptyset$, and we have

$$\bar{\mu}(B) = \mu(B \cap X) = \mu(f^{-1}(L)) = \mu(X) = \bar{\mu}(\beta X),$$

where the first equality follows from the fact that $\bar{\mu}(A) = 0$ for all Baire sets $A \subset \beta X - X$ since μ is σ -additive (Section 1). Therefore $\bar{\mu}^*(G) = 0$.

(ii) \Rightarrow (i) Since every zero set of βX is distinguishable, (ii) implies that μ is σ -additive (Section 1). Let f be a continuous function from X onto a separable metric space Y. By Lemma 2.2, it suffices to show that $f_*(\mu)$ is tight. Let \overline{Y} be a metrizable compactification of Y and $\overline{f}: \beta X \rightarrow \overline{Y}$ the continuous extension of f. The set $G = \overline{f}^{-1}(\overline{Y} - Y)$ is distinguishable and, by (ii), $\overline{\mu}^*(G) = 0$. Let L be a σ -compact subset of $\beta X - G$ such that $\overline{\mu}(L) = \overline{\mu}(\beta X)$. Then $\overline{f}(L)$ is a σ -compact subset of Y and it is easy to see that $f_*(\mu)(\overline{f}(L)) = f_*(\mu)(Y)$. Therefore $f_*(\mu)$ is tight.

We denote by vX the realcompatification of X. We have $X \subset vX \subset \beta X$ and X = vX if and only if X is realcompact (see [2] or [6]).

2.3. COROLLARY. $M_p(X) = M_p(vX)$ (as subsets of M(X)).

Proof. The spaces X and vX have the same Stone-Cech compactification. So $M_p(X)$ and $M_p(vX)$ can be considered as subsets of $M(\beta X) = M(X)$. The conclusion follows from Theorem 2.1 since every distinguishable set G in βX which is contained in $\beta X - X$ doesn't meet vX. Indeed, this is well known when G is a zero set and for the general case it is enough to observe that G is a union of zero sets.

Next we define the strict topology β_p by

$$\beta_p = \text{Lin } \{\beta_G : G \in \mathcal{D}(\beta X), G \subset \beta X - X\}.$$

Since every zero set is distinguishable, we have $\beta_1 \supset \beta_p \supset \beta_0$. Theorem 2.1 and Proposition 1.2(i) yield the following.

2.4 COROLLARY. $(C(X), \beta_p)' = M_p(X).$

2.5. PROPOSITION. (i) $\beta_1 = \beta_p$ if and only if $M_{\sigma}(X) = M_p(X)$ and every compact subset of $M_p^+(X)$ is β_p -equicontinuous; (ii) $\beta_p \subset \beta$ if and only if $M_p(X) \subset M_t(X)$; (iii) if X is a Prohorov space and $M_p(X) = M_t(X)$ then $\beta_0 = \beta_p$.

Proof. We give a proof only for the "if" part of (ii) since the rest is similar (see also [19, Theorem 5.8]). So we assume that $M_p(X) \subset M_r(X)$ and we show that every β_p -equicontinuous subset H of $M_p(X)$ is β -equicontinuous. By

Proposition 1.1, there is no loss of generality to assume that H consists of positive measures. Then $H \subset M_p^+(X) \subset M_\tau^+(X)$ is relatively compact and Proposition 1.2(ii) implies that H is β -equicontinuous.

Since β_p -equicontinuity is involved in Proposition 2.5 we mention the following.

2.6. PROPOSITION. A subset H of $M_p(X)$ is β_p -equicontinuous if and only if (a) H is norm bounded, and (b) for every continuous function f from X onto a separable metric space Y and every $\varepsilon > 0$, there is a compact set $K \subset Y$ such that $|\mu|(X - f^{-1}(K)) < \varepsilon$ for all $\mu \in H$.

Proof. H is β_p -equicontinuous if and only if H is β_G equicontinuous for every $G \in \mathcal{D}(\beta X)$, $G \subset \beta X - X$. The result follows then easily from Proposition 1.1.

Remarks. 1. Every compact distinguishable set is a zero set. In general, there are non-compact distinguishable sets in βX which are contained in $\beta X - X$. It follows that β_p , unlike β_1 and β , is not determined by a family of compact subsets of $\beta X - X$. Moreover, any strict topology $\overline{\beta}$ with $(C(X), \overline{\beta})' = M_p(X)$ cannot in general be determined by a family of compact sets. Indeed, if this happened, then we should have $M_{\tau} \subset M_p$. But this fails even when X is a separable metric space [18, p. 248].

2. If $X \subset Y \subset \beta X$, then $Y \in \mathcal{D}(\beta X)$ if and only if Y admits a perfect function onto a separable metric space (cf. [11, Remark D]) or, equivalently, Y is a Lindelöf M-space in the terminology of [15]. Therefore the topology β_p on C(X) is the inductive limit of the topologies β_0 on C(Y) for all Lindelöf M-spaces Y with $X \subset Y \subset \beta X$.

3. If Y is a Lindelöf M-space, then by [10, Corollary 9] every compact countable subset of $M_t^+(Y)$ is β_0 -equicontinuous. Therefore Remark 2 implies that for any space X, every compact countable subset of $M_p^+(X)$ is β_p -equicontinuous.

4. The conclusion of Proposition 2.5(iii) may hold without X being Prohorov. Indeed, if X is a Lindelöf M-space then $\beta_0 = \beta_p$ by Remark 2. However, X is not necessarily Prohorov since there are separable metric spaces which are not Prohorov (see [16]). On the other hand, the assumption that X is Prohorov cannot be dropped. Indeed Varadarajan [22, p. 225] gives an example of a space Y which is countable and a convergent sequence $\{\mu_n\}$ in $M_t^+(Y)$ which is not β_0 -equicontinuous. Then $M_p(Y) = M_t(Y)$ but $\beta_0 \neq \beta_p$ since the sequence $\{\mu_n\}$ is β_p -equicontinuous by Remark 3.

3. *u*-additive measures

In this section a strict topology on C(X) is defined, which yields $M_u(X)$ as dual space. The idea to define such a strict topology using the notion of paracompactness is discussed in [20, p. 495] where a natural straightforward

approach is proved to fail. However, using a property involved in a characterization [2, Theorem 4.4-c] of paracompactness, it is possible to define such a strict topology. The family of compact subsets of $\beta X - X$ which determines this topology is specified in the following lemma by several equivalences.

3.1. LEMMA. For a compact set $K \subset \beta X - X$ the following are equivalent:

(i) There is a cozero cover $(U_{\alpha})_{\alpha \in A}$ of X which is (a) locally finite, (b) σ -locally finite or (c) σ -discrete such that

$$\operatorname{cl}_{\beta X} U_{\alpha} \cap K = \emptyset$$
 for all $\alpha \in A$.

(ii) There is a continuous function f from X onto a metric space Y such that $\overline{f}(K) \subset \beta Y - Y$, where $\overline{f}: \beta X \to \beta Y$ is the continuous extension of f.

(iii) There is a partition of unity $(f_{\alpha})_{\alpha \in A}$ for X such that $\overline{f}_{\alpha|K} = 0$ for all $\alpha \in A$.

(iv) There is a partition of unity $(f_{\alpha})_{\alpha \in A}$ for X and $0 < \varepsilon < 1$ such that

$$\sum_{\alpha \in A} \bar{f}_{\alpha}(x) \le 1 - \varepsilon \quad for \ all \ x \in K.$$

Proof. (i) \Leftrightarrow (ii) If X is paracompact, then every compact set $K \subset \beta X - X$ satisfies (i) (a)–(c) (cf. [2, Theorem 4.4-c)]). Since every metric space is paracompact, (ii) implies (i) (a)–(c). The converse follows from [2, Theorem 3.2].

(i) \Rightarrow (iii) Let $(U_{\alpha})_{\alpha \in A}$ be a locally finite cozero cover of X such that

$$\operatorname{cl}_{\beta X} U_{\alpha} \cap K = \emptyset \quad \text{for all } \alpha \in A.$$

We choose $f_{\alpha} \in C(X), f_{\alpha} \ge 0$, such that $U_{\alpha} = \{x \in X : f_{\alpha}(x) > 0\}$. Since

$$K \subset \beta X - \operatorname{cl}_{\beta X} U_{\alpha} \subset \operatorname{cl}_{\beta X} (X - U_{\alpha}),$$

we have $\bar{f}_{\alpha|K} = 0$. So $\{f_{\alpha} \cdot (\sum_{\alpha \in A} f_{\alpha})^{-1}\}_{\alpha \in A}$ is the desired partition of unity. (iii) \Rightarrow (iv) Obvious.

(iv) \Rightarrow (i) For every finite $F \subset A$, let

$$V_F = \bigg\{ x \in \beta X \colon \sum_{\alpha \in F} \bar{f}_{\alpha}(x) > 1 - \varepsilon \bigg\}.$$

Since V_F is a cozero set in βX , V_F is Lindelöf and every cozero set in V_F is also a cozero set in βX . Let $(U_{F,n})_{n \in \mathbb{N}}$ be a cozero cover of V_F with $cl_{\beta X} U_{F,n} \cap K = \emptyset$ and let $\mathscr{V}_n = \{U_{F,n} \cap X : F \text{ finite, } F \subset A\}$, $n \in \mathbb{N}$. Since $(f_{\alpha})_{\alpha \in A}$ is a partition of unity for X, $\bigcup_{n \in \mathbb{N}} \mathscr{V}_n$ is the desired σ -locally finite cozero cover of X.

Let $\mathcal{U}_X = \mathcal{U}$ be the family of all compact subsets of $\beta X - X$ satisfying any of the equivalent assertions of Lemma 3.1. Then we have:

472

3.2. THEOREM. For a measure $\mu \in M(X)$ the following are equivalent:

- (i) μ is u-additive;
- (ii) $|\bar{\mu}|(K) = 0$ for all $K \in \mathcal{U}$.

Proof. Without loss of generality we assume that μ is positive.

(i) \Rightarrow (ii) Let $K \in \mathcal{U}$ and $\varepsilon > 0$. By Lemma 3.1(iii), there is a partition of unity $(f_{\alpha})_{\alpha \in A}$ for X such that $\overline{f}_{\alpha|K} = 0$ for all $\alpha \in A$. Since μ is *u*-additive, there is a finite $F \subset A$ such that $\mu(1) - \varepsilon \leq \sum_{\alpha \in F} \mu(f_{\alpha})$. Then

$$\bar{\mu}(\beta X) - \varepsilon = \bar{\mu}(1) - \varepsilon \leq \sum_{\alpha \in F} \bar{\mu}(\bar{f}_{\alpha}) = \bar{\mu}\left(\sum_{\alpha \in F} \bar{f}_{\alpha}\right) \leq \bar{\mu}(\beta X - K)$$

since $\sum_{\alpha \in F} \bar{f}_{\alpha} \leq \chi_{(\beta X - K)}$ (the characteristic function of $\beta X - K$). Therefore $\bar{\mu}(K) = 0$.

(ii) \Rightarrow (i) Let $(f_{\alpha})_{\alpha \in A}$ be a partition of unity for X and $0 < \varepsilon < 1$. For every finite $F \subset A$ we consider the set

$$Z_F = \left\{ x \in \beta X \colon \sum_{\alpha \in F} \tilde{f}_{\alpha}(x) \le 1 - \varepsilon \right\}$$

and let K be the intersection of all Z_F . Then K is a compact subset of $\beta X - X$ and, by Lemma 3.1(iv), $K \in \mathcal{U}$. Therefore, $\inf_F \overline{\mu}(Z_F) = \overline{\mu}(K) = 0$ and

$$\mu(1) - \sum_{\alpha \in F} \mu(f_{\alpha}) = \bar{\mu} \left(1 - \sum_{\alpha \in F} \bar{f}_{\alpha} \right)$$
$$= \int_{Z_F} \left(1 - \sum_{\alpha \in F} \bar{f}_{\alpha} \right) d\bar{\mu} + \int_{\beta X - Z_F} \left(1 - \sum_{\alpha \in F} \bar{f}_{\alpha} \right) d\bar{\mu}$$
$$\leq \bar{\mu}(Z_F) + \varepsilon \cdot \bar{\mu}(\beta X).$$

It follows that $\mu(1) = \sum_{\alpha \in A} \mu(f_{\alpha})$; that is, μ is *u*-additive.

Now the following corollary [8], [14], [20], [23] is an immediate consequence of Theorem 3.2 and the following characterization of paracompactness: X is paracompact if and only if every compact subset of $\beta X - X$ satisfies (i)(a) of Lemma 3.1 (see [2, Theorem 4.4-c]).

3.3. COROLLARY. $M_{\mu}(X) = M_{\tau}(X)$ whenever X is paracompact.

Proof. If X is paracompact, then, by the above, \mathcal{U} is the family of all compact subsets of $\beta X - X$. So, if $\mu \in M_u(X)$ then $|\bar{\mu}|(K) = 0$ for all compact $K \subset \beta X - X$ which means that μ is τ -additive (Section 1).

We denote by θX the topological completion of X. We have $X \subset \theta X \subset vX$ and $X = \theta X$ if and only if X is topologically complete (see [2] or [6]). 3.4. COROLLARY. $M_{\mu}(X) = M_{\mu}(\theta X)$.

Proof. Since every $K \in \mathcal{U}$ doesn't meet θX (cf. [2, Theorem 4.4-d]), the conclusion follows from Theorem 3.2.

Next we define the strict topology β_u by

$$\beta_u = \operatorname{Lin} \{\beta_K \colon K \in \mathscr{U}\}.$$

We have $\beta_1 \supset \beta_u \supset \beta$ because the corresponding families of subsets of $\beta X - X$ are related in the opposite direction. Theorem 3.2 and Proposition 1.2(i) yield the following.

3.5. COROLLARY.
$$(C(X), \beta_u)' = M_u(X).$$

In order to show that β_u coincides with the topology studied by Wheeler [23], we need the following.

3.6. PROPOSITION. A subset H of $M_u(X)$ is β_u -equicontinuous if and only if (a) H is norm bounded, and (b) for every partition of unity $(f_{\alpha})_{\alpha \in A}$ for X and every $\varepsilon > 0$ there is a finite set $F \subset A$ such that

$$|\mu|\left(1-\sum_{\alpha\in F}f_{\alpha}\right)<\varepsilon \text{ for all }\mu\in H.$$

A proof of this proposition follows using arguments similar to those used in the proof of Theorem 5.2 in [19] and it is omitted. Notice that here we use the coincidence of the strict topology β_0 for a locally compact space with the original strict topology of Buck (determined by the seminorms mentioned in Section 1).

Proposition 3.6 and [20, Theorem 5.2] yield that every relatively countably compact subset of $M_u(X)$ is β_u -equicontinuous, that is, $(C(X), \beta_u)$ is a strong Mackey space. This shows that the topology β_e in [23] coincides with β_u . We note that also Mosiman has shown that β_e can be determined by a family of compact subsets of $\beta X - X$ [3, pp. 124, 139], but no proof of this result has been published.

As it is already mentioned, if X is paracompact then \mathscr{U} is the family of all compact subsets of $\beta X - X$. Therefore the following becomes obvious.

3.7. COROLLARY [23, 3.8]. If X is paracompact then $\beta = \beta_u$ and consequently $(C(X), \beta)$ is a strong Mackey space.

It follows from the above corollary that for a paracompact space X the equality $\beta = \beta_0$ implies that $(C(X), \beta_0)$ is strong Mackey. I don't know whether the converse is true; that is, if X is paracompact and $(C(X), \beta_0)$ is strong Mackey, is it then true that $\beta = \beta_0$? Without the assumption that X is paracompact the answer is negative by an example of Haydon [9, 2.5]. However, at least for metric spaces the answer is affirmative.

3.8. PROPOSITION. If X is a metric space, then $(C(X), \beta_0)$ is a strong Mackey space if and only if $\beta = \beta_0$.

Proof. Clearly the "if' part follows from Corollary 3.7. Now assume that $(C(X), \beta_0)$ is strong Mackey. We have that $\beta_0 \subset \beta$ and β_0 is the finest locally convex topology on C(X) which yields $M_t(X)$ as dual; so it is enough to show that $M_t(X) = M_t(X)$. Suppose that this is not valid. Then there is $\mu \in M_t^+(X)$ with $\mu(\{x\}) = 0$ for all $x \in X$, which is not tight. By the τ -additivity, μ is concentrated on a closed separable set and, using [22, Part II, Theorem 23], we can find a sequence $\{\mu_n\}$ in $M_t(X)$ with $\mu_n \to 0$ and $|\mu_n| \to \mu$. Then $H = \{\mu_n: n = 1, 2, \ldots\}$ is relatively compact in $M_t(X)$ but not β_0 -equicontinuous. This is a contradiction since $(C(X), \beta_0)$ is strong Mackey.

4. D_0 -spaces

We denote by \mathcal{D} the family of all continuous pseudometrics on a completely regular space X. If $d \in \mathcal{D}$ we set $\bar{x} = \{y \in X : d(x, y) = 0\}$ and $X_d = \{\bar{x} : x \in X\}$. Then X_d is a metric space by defining $\bar{d}(\bar{x}, \bar{y}) = d(x, y)$ and the function π_d : $X \to X_d$ with $\pi_d(x) = \bar{x}$ is continuous onto. A subset Y of X is *d*-discrete if there is an $\varepsilon > 0$ such that $d(x, y) \ge \varepsilon$ for all $x, y \in Y$, $x \ne y$.

Replacing cardinals of measure zero in the definition of D-spaces of Granirer [7] by non-(Ulam-) measurable cardinals, we say that a space X is a D_0 -space if for every $d \in \mathcal{D}$ all d-discrete subsets of X have non-measurable cardinal. We recall that a cardinal m is (Ulam-) measurable if there is a non-zero $\{0, 1\}$ -valued σ -additive measure defined on all subsets of m and vanishing on singletons.

Every D-space is a D_0 -space and, under the continuum hypothesis, the two notions are identical by a well-known result of Ulam [21]. However, even the discrete space of cardinality 2^{\aleph_0} has not yet been proved to be a D-space without any set theoretical assumption. Such difficulties for D_0 -spaces do not appear because of the large size of measurable cardinals.

In [8] Haydon proved that a space X is a D-space if and only if $M_{\sigma}(X) = M_{\mu}(X)$. For D_0 -spaces we prove the following theorem which is the main result of this section.

4.1. THEOREM. For any completely regular space X the following are equivalent:

- (i) $M_p(X) \subset M_u(X);$
- (ii) $vX = \theta X$;
- (iii) X is a D_0 -space.

The equivalence (ii) \Leftrightarrow (iii) is a known strong form of Shirota's theorem (see [6, Theorem 5.21]) which is not used in our proof. In the essential direction (iii) \Rightarrow (i) we use the following.

G. KOUMOULLIS

4.2. THEOREM [13, 2.5]. Let (X, \mathcal{A}, μ) be a non-zero, positive, perfect measure space and $\{A_i: i \in I\}$ a partition of X such that $\mu^*(A_i) = 0$ for all $i \in I$ and the cardinal of I is non-measurable. Then there is $J \subset I$ such that $\bigcup_{i \in J} A_i$ is not μ -measurable.

Proof of Theorem 4.1 (i) \Rightarrow (ii) The non-zero $\{0, 1\}$ -valued σ -additive (resp. *u*-additive) measures on X are precisely the points of vX (resp. θX). Also, every $\{0, 1\}$ -valued σ -additive measure is perfect. Therefore, (i) implies that $vX \subset \theta X$, hence $vX = \theta X$.

(ii) \Rightarrow (iii) Let Y be a d-discrete subset of X for some $d \in \mathcal{D}$. Since X_d is topologically complete, there is a continuous extension $\bar{\pi}_d : \theta X \to X_d$ of π_d . Now, d can be extended to a continuous pseudometric on θX by defining $\delta(x, y) = \bar{d}(\bar{\pi}_d(x), \bar{\pi}_d(y))$, $x, y \in \theta X$. Then Y is δ -discrete in θX which is realcompact by (ii), so Y is realcompact and discrete; therefore it has non-measurable cardinal [2, Theorem 2.6].

(iii) \Rightarrow (i) By [20, Theorem 4.1], a measure $\mu \in M_{\sigma}^+(X)$ is *u*-additive if and only if for every σ -discrete cozero cover \mathscr{V} of X, there is a countable $\mathscr{W} \subset \mathscr{V}$ such that $\mu(X) = \mu(\bigcup \mathscr{W})$. This result can also be deduced from Theorem 3.2 and Lemma 3.1 (i)(c). Now assume (for the purpose of a contradiction) that X is a D_0 -space and (i) doesn't hold. Then there is a non-zero positive perfect measure μ on X and a cozero cover $\mathscr{V} = \bigcup_{n \in \mathbb{N}} \mathscr{V}_n$ of X such that each \mathscr{V}_n is discrete and $\mu(V) = 0$ for all $V \in \mathscr{V}$.

We fix *n* and set $\mathscr{V}_n = \{V_i : i \in I\}$. For every $i \in I$ we choose $x_i \in V_i$ and a continuous function $f_i : X \to \mathbf{R}$ such that $f_i \ge 0, f_i(x_i) = 1$ and

$$V_i = \{ x \in X : f_i(x) > 0 \}.$$

Then $d(x, y) = \sum_{i \in I} |f_i(x) - f_i(y)|$ is a continuous pseudometric on X and $d(x_i, x_j) = 2$ for $i, j \in I$, $i \neq j$. So $\{x_i: i \in I\}$ is d-discrete and, by assumption, the cardinal of I is non-measurable. For every $J \subset I$ the function $f_J = \sum_{i \in J} f_i$ is continuous, so the set $\bigcup_{i \in J} V_i = \{x \in X : f_j(x) > 0\}$ is a cozero set. In particular, the union $\cup \mathcal{V}_n = \bigcup_{i \in I} V_i$ is measurable. Since μ is non-zero and positive we may assume that n has been chosen so that $\mu(\cup \mathcal{V}_n) > 0$.

Now let $v(B) = \mu(B \cap (\bigcup_{i \in I} V_i))$ for all $B \in \mathscr{B}(X)$. Then v is a non-zero positive perfect [18, 1.6] measure on X and

$$\{V_i: i \in I\} \cup \left\{X - \bigcup_{i \in I} V_i\right\}$$

is a partition of X into sets of v-measure zero. By Theorem 4.2, the union of some members of this partition is non-v-measurable. This is a contradiction since every such union is a Baire set.

We note that (ii) and (iii) of Theorem 4.1 are assumption about $\{0, 1\}$ -valued measures. The equivalence of them, that is, the strong form of Shirota's theorem, can be stated as follows: every $\{0, 1\}$ -valued (perfect) measure on a

completely regular space is *u*-additive if and only if X is a D_0 -space. So direction (iii) \Rightarrow (i) can be considered as an extension of Shirota's theorem to real-valued measures.

The equivalence (i) \Leftrightarrow (ii) implies immediately the following.

4.3. COROLLARY. A topologically complete space X is realcompact if and only if $M_p(X) \subset M_u(X)$.

Since every paracompact space is topologically complete (cf. [2, Theorem 4.4], the next corollary follows from 3.3 and 4.3.

4.4 COROLLARY [13, 5.11]. A paracompact space X is realcompact if and only if $M_p(X) \subset M_t(X)$.

Another consequence of the equivalence (i) \Leftrightarrow (ii) of Theorem 4.1 is the following.

4.5. COROLLARY. For any space X, $M_{\nu}(X) \subset M_{\mu}(\nu X)$.

Proof. For any realcompact space Y, we have $M_p(Y) \subset M_u(Y)$ by Theorem 4.1 (ii) \Rightarrow (i) since $Y = vY = \theta Y$. For Y = vX, using Corollary 2.3 we conclude that $M_p(X) = M_p(vX) \subset M_u(vX)$.

We notice that Corollary 4.5 also implies Theorem 4.1 (ii) \Rightarrow (i); for, if $\theta X = vX$ and $M_p(X) \subset M_u(vX)$, then $M_p(X) \subset M_u(\theta X) = M_u(X)$ by Corollary 3.4.

Finally, we give some other characterizations of D_0 -spaces.

4.6. **PROPOSITION.** For any space X the following are equivalent:

- (i) X is a D_0 -space;
- (ii) X_d is realcompact for every $d \in \mathcal{D}$;
- (iii) $\beta_p \subset \beta_u$.

Proof. (i) \Rightarrow (ii) For every $d \in \mathcal{D}$, X_d is a D_0 -space as a continuous image of a D_0 -space. Since X_d is also topologically complete, Theorem 4.1 (iii) \Rightarrow (ii) implies that X_d is realcompact.

(ii) \Rightarrow (i) Let Y be a d-discrete subset of X for some $d \in \mathcal{D}$. Then $\pi_d(Y)$ is closed and discrete in the realcompact space X_d ; so the cardinal of $\pi_d(Y)$ which is equal to the cardinal of Y is non-measurable.

(i) \Leftrightarrow (iii) As in the proof of Proposition 2.5(ii) we can show that $\beta_p \subset \beta_u$ if and only if $M_p(X) \subset M_u(X)$. So the equivalence (i) \Leftrightarrow (iii) follows from Theorem 4.1 (i) \Leftrightarrow (iii).

G. KOUMOULLIS

REFERENCES

- 1. R. C. BUCK, Bounded continuous functions on a locally compact space, Michigan Math. J. vol. 5 (1958), pp. 95-104.
- 2. W. W. COMFORT and S. NEGREPONTIS, Continuous pseudometrics, Marcel Dekker, New York, 1975.
- 3. J. B. COOPER, Saks spaces and applications to functional analysis, North Holland, Amsterdam, 1978.
- 4. D. H. FREMLIN, D. J. H. GARLING and R. G. HAYDON, Bounded measures on topological spaces, Proc. London Math. Soc., vol. 25 (1972), pp. 115–136.
- Z. FROLIK, A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J., vol. 20 (1970), pp. 406–467.
- 6. L. GILLMAN and M. JERISON, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960.
- 7. E. GRANIRER, On Baire measures on D-topological spaces, Fund. Math., vol. 60 (1967), pp. 1–22.
- R. G. HAYDON, Sur les espaces M(T) et M[∞](T), C.R. Acad. Sci. Paris Sér. A, vol. 275 (1972), pp. 989-991.
- 9. ———, On compactness in spaces of measures and measurecompact spaces, Proc. London Math. Soc., vol. 29 (1974), pp. 1–16.
- 10. J. HOFFMAN-JØRGENSEN, Weak compactness and tightness of subsets of M(X), Math. Scand., vol. 31 (1972), pp. 127–150.
- 11. J. E. JAYNE, Continuous images of proper analytic and proper Borel spaces, Proc. Cambridge Phil. Soc., vol. 75 (1974), pp. 185–191.
- 12. J. D. KNOWLES, Measures on topological spaces, Proc. London Math. Soc., vol. 17 (1967), pp. 139–156.
- 13. G. KOUMOULLIS, On perfect measures, Trans. Amer. Math. Soc., vol. 264 (1981), pp. 521-537.
- 14. C. LÉGER and P. SOURY, Le convexe topologique des probabilités sur un espace topologique, J. Math. Pures Appl., vol. 50 (1971), pp. 363-425.
- 15. K. MORITA, A survey of the theory of M-spaces, General Topology and Appl., vol. 1 (1971), pp. 49–55.
- D. PREISS, Metric spaces in which Prohorov's theorem is not valid, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, vol. 27 (1973), pp. 109–116.
- 17. A. P. ROBERTSON and W. J. ROBERTSON, *Topological vector spaces*, Cambridge Univ. Press, Cambridge, England, 1966.
- 18. V. V. SAZONOV, On perfect measures, Amer. Math. Soc. Transl., vol. 48 (1965), pp. 229-254.
- 19. F. D. SENTILLES, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc., vol. 168 (1972), pp. 311–336.
- 20. F. D. SENTILLES and R. F. WHEELER, Linear functionals and partitions of unity in $C_b(X)$, Duke Math. J., vol. 41 (1974), pp. 483–496.
- 21. S. ULAM, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math., vol. 16 (1930), pp. 140–150.
- 22. V. S. VARADARAJAN, Measures on topological spaces, Amer. Math. Soc. Transl., vol. 48 (1965), pp. 161–228.
- 23. R. F. WHEELER, The strict topology, separable measures and paracompactness, Pacific J. Math., vol. 47 (1973), pp. 283-302.

Athens University, Panepistemiopolis Athens, Greece University of Minnesota Minneapolis, Minnesota