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PERFECT, u-ADDITIVE MEASURES AND STRICT
TOPOLOGIES

BY

G. KOUMOULLIS

Let X be a completely regular space, and let C(X) denote the space of
bounded continuous real-valued functions on X. The finest locally convex
topology on C(X) which coincides on the supremum-norm bounded sets with
the compact-open topology is denoted by /30 (see [19]). This topology has
been examined by several authors and it is well known that the dual of (C(X),
flo) is the space Mr(X) of tight measures on X. If X is locally compact, flo
coincides with the strict topology of Buck [1].

If fiX denotes the Stone-Cech compactification of X, then for every
Q c fix X the spaces C(flX Q) and C(X) are isomorphic. So the topology
flo on C(flX (2) can be regarded as a topology on C(X), which is denoted by
fla" We think of a strict topology on C(X) as an inductive limit of topologies
flQ for some family of sets Q c fiX- x not necessarily compact. Such
topologies on C(X) are the topologies fll and fl studied by Sentilles [19],
which yield as duals the spaces M,,(X) and M,(X) of a-additive and z-additive
measures.

This paper deals with the spaces M,(X) and Mu(X) of perfect [18] and
u-additive [20] measures. In Sections 2 and 3, strict topologies fl, and flu are
defined, so that (C(X), fly)’= M,(X) and (C(X), flu)’= Mu(X). The topology flu
is the same as that introduced by Wheeler [23]; but the different definition
leads to simple proofs of some known results. In Section 4, characterizations of
the spaces X for which Mp(X) Mu(X are given. One such characterization,
which contains an extension of Shirota’s theorem, is the fairly weak condition
that certain closed discrete subsets of X have non-(Ulam-) measurable cardi-
nal. Using this condition one can decide whether a perfect measure is u-
additive essentially avoiding the set theoretical difficulties which appear in the
general case of a a-additive measure. Section 1 contains preliminaries and
generalities about strict topologies.
The author wishes to thank Professor S. Negrepontis for much useful advice

during the work which led to the preparation of this paper.

1. Preliminaries and the general strict topology

All topological spaces X are assumed to be completely regular (and
Hausdorff). Basic reference for the theory of measures on topological spaces is
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[22]. A zero set in X is a set of the formf-x({0}) for somef C(X). A cozero
set is a complement of a zero set. The Baire sets in X are the members of the
a-algebra (X) generated by the zero sets. We are primarily concerned with
Baire measures. For the definition of the spaces of measures M(X) M,,(X)
M,(X) Mt(X see [22]. For n M(X) we denote by HI the set HI { Il:
# H}. According to the Aleksandrov representation theorem [22, p. 165-1,
M(X) can be identified with the dual of C(X) under the (supremum-)norm. All
topological statements about M(X) will be relative to the weak topology
a(M(X), C(X)).
Our principal references for results about perfect and u-additive measures

are [18] and [20] respectively. A countably additive measure # on a
measurable space (S, M) is said to be perfect, if for every -measurable
function #: S--,R there is a Borel set B in R such that B e(S) and
I#l(#-t(B)) I#1 (S). If X is a completely regular space, M(X) denotes the
space of all perfect measures defined on the a-algebra ’(X) of Baire sets. We
have M,(X) M(X) Mt(X), and M(X) M,(X) if X is separable
metrizable [ 18].
A partition of unity for a completely regular space X is a family (f) a of

positive functions in C(X) such that

A

and {x X: f(x) > 0} A is locally finite. A measure # on X is u-additive if

#(f) #(1)

for every partition of unity (f),4. If M(X) denotes the spae of u-additive
measures on X, we have M(X) M(X) M,(X) [20].
The topology flo on C(X) is defined to be the finest locally onvex topology

which coincides on the norm bounded sets with the ompact-open topology
(that is, the topology of uniform convergence on compact, sets). The dual
(C(X), rio)’ of C(X) endowed with this topology is the space M,(X) [19].

If X is locally compact, then flo coincides with the strict topology of Buck
[1], that is, flo is determined by the seminorms p,(f)= f.d [[, as runs
through the space Co(X) of continuous functions vanishing at infinity (see [4,
p. 119] or [19, Theorem 2.3]).
The following characterization of flo-equiontinuity will be used.

1.1 PROPOSITION [4], [19]. A subset H of M,(X) is flo-equicontinuous if and
only if (a) H is norm bounded, and (b)for every e > 0 there is a compact set
K X such that I#I*(K) > I#I(X) e for all # H (where Ira I* denotes the
outer measure).
A space X is said to be a Prohorov space if every compact subset of M+(X)

is flo-cquicontinuous. It is well known that locally compact spaces arc
Prohorov (cf. [19]).
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For every Q c fix- x, the spaces C(X) and C(flX- Q) are isomorphic
since (flX Q) fiX. So the topology flo on C(flX Q) can be regarded as a
topology on C(X), which is denoted by . If Q1 c Q2 then obviously fie1
e" If 0 is a family of subsets of fiX- X we define fl Lin {e: Q e } as
the inductive limit of (fle)e, i.e., the finest locally convex topology which is
contained in each fie" By the term strict topology we mean any locally convex
topology on C(X) of the form for some non-empty family 0 of subsets of
fix- x.

Clearly flo fl(ax-x)and I1" , where I1" denotes the norm topology
of C(X). So o and I1" are strict topologies and every strict topology lies
between them, hence M(X) (C(X), fl,)’ Mr(X). Since o is Hausdorff, every
strict topology is Hausdorff. A number of significant properties of the strict
topologies (see [19]) can now be deduced from the properties of the topology
flo. Here we shall use only the following.

1.2. PROPOSITION. Let be a family of subsets of fiX- X and fl the
corresponding strict topology on C(X). Then

(i) (C(X), tiff= M,(flX Q); and
(ii) if contains only compact sets, then fl, is the topology of uniform

convergence on the compact subsets (C(X), fl,)’ consisting ofpositive measures.

The proof follows from standard duality arguments [17, pp. 79, 80]. We
only note that to show (ii) one uses the fact that fl is an inductive limit of
topologies flo for locally compact, hence Prohorov, spaces, and that
fl-equicontinuity of any H c (C(X), fl,)’ is equivalent to fl-equicontinuity of
H I, since this is true for the topology flo (Proposition 1.1).
For every /2 e M(X) we denote by fi the corresponding regular Borel

measure on fiX (via the isometry of C(X) and C(flX)). Then fl(f)= fi(f) for
every f e C(X), where f denotes the continuous extensiort of f to fiX.
The measure / is a-additive (resp. z-additive) if and only if Ifil(Q)= 0 for
all zero (resp. compact) sets Q fix- x; also # e Mt(X if and only if

fi I*(flX X) 0 (Knowles [12]). Therefore if we define the strict topologies
fl and fl by

and

fll Lin {fie: Q zero set, Q c fiX- X}

fl Lin {fie: Q compact, Q fix- x}

then Proposition 1.2(i) yields (C(X), ill)’= M,,(X) and (C(X), fl)’= M,(X)
(Sentilles [19, Theorem 4.4.]). Topologies equivalent to fl and have been
introduced independently by Fremlin, Garling and Haydon [4].
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2. Perfect measures

Every Baire measurable function f: X---, Y induces a map f,:
M,(X)--- M,(Y) defined by f,(#)(n)= It(f-l(n)) for all n ’(Y). It is easily
seen that a a-additive measure It on X is perfect if and only if 9,(it) Mt(9(X))
for every Baire measurable function 9: X 9(X) c R. This means thatf, pres-
erves perfect measures. Moreover, using the corresponding properties of Mt we
can show that Mp(X) is a band, norm closed, vector subspace of M(X).

In general, the dual of C(X) under any strict topology has the above
mentioned properties. So a natural question is whether M,(X) is the dual of
C(X) under a strict topology. Indeed this is the case. Towards this purpose we
use the distinguishable sets of Frolik: a subset G of a completely regular space
Y is distinguishable if there is a continuous function b from Y onto a
separable metric space such that G b-l(tk(G)). We denote by (Y) the
family of distinguishable sets in Y. 59(Y) is a a-algebra containing the
a-algebra of Baire sets (see I-5, p. 408]).
We start with a relation between perfect measures and distinguishable sets.

2.1. THEOREM. For a measure # M(X) thefollowing are equivalent:

(i) It is perfect;
(ii) Il*(G) Ofor all G (flX), G c fiX X.

We will use the following.

2.2 LEMMA. If It M,+(X), then It is perfect if and only if for every
continuous function f from X onto a separable metric space, f,(#) is a tight
measure.

Proof If It is perfect then the measure f,(it) is a perfect measure on a
separable metric space, hence tight.

Conversely, assume that fg(It) is perfect for every continuous functionf from
X onto a separable metric space. Let 9: X R be a Baire measurable function
and 9-I((R)). It suffices to show that the restriction It I of It to is a
perfect measure.

Let { V.} be a countable base for the topology of R and A. 9-I(V.) Since
each A. is a Baire set, there is a continuous functionffrom X onto a separable
metric space Y such that A, =f-(B,), where each B. is a Baire set in Y [5, p.
408]. Nowf-t((Y)) is a a-algebra containing all A.. Thereforef-((Y)) =

and it is enough to show that It ly- lr)) is perfect.
We consider the family

og {f l(K): K compact, K = Y}.
oaf is "compact" and, since f,(It) is tight, d approximates the measure It from
within on every element off-l((Y)). It follows from [18, Theorem 2-1 that
It I/- lr)) is perfect.
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Proof of Theorem 2.1. Without loss of generality we assume that # is
positive.

(i) (ii) Let G (flX), G c fiX- X and let b be a continuous function
from fiX onto a (compact) metric space Y such that G -l(tk(G)). Iff is the
restriction of b to X, then f,(/) is a tight measure on f(X). Let L be a
a-compact subset of f(X)qb(X) such that #(f-l(L))= #(X). The set
B b-I(L) is a Baire set in fiX, B G , and we have

ft(B) #(B X)= #(f-(L))= #(X)= (flX),
where the first equality follows from the fact that/(A) 0 for all Baire sets
A c fiX X since # is a-additive (Section 1). Therefore/*(G) 0.

(ii) = (i) Since every zero set of fiX is distinguishable, (ii) implies that/ is
a-additive (Section 1). Letfbe a continuous function from X onto a separable
metric space Y. By Lemma 2.2, it suffices to show thatf,(#) is tight. Let Y be a
metrizable compactification of Y andf: fiX Y the continuous extension off.
The set G =f-(- Y) is distinguishable and, by (ii), *(G)= 0. Let L be a
a-compact subset of fiX G such that (L) (flX). Thenf(L) is a a-compact
subset of Y and it is easy to see that f,(#)(f(L))=f,(#)(Y). Therefore f,(#) is
tight.

We denote by vX the realcompatification of X. We have X vX fiX and
X vX if and only if X is realcompact (see [2] or [6]).

2.3. COROLLARY. M(X) M(vX) (as subsets of M(X)).

Proof. The spaces X and vX have the same Stone-Cech compactification.
So M(X) and M(vX) can be considered as subsets of M(flX)= M(X). The
conclusion follows from Theorem 2.1 since every distinguishable set G in fiX
which is contained in fiX- X doesn’t meet vX. Indeed, this is well known
when G is a zero set and for the general case it is enough to observe that G is a
union of zero sets.

Next we define the strict topology fl, by

fl, Lin {fl: G (flX), G fiX X}.
Since every zero set is distinguishable, we have fl fl, flo. Theorem 2.1 and
Proposition 1.2(i) yield the following.

2.4 COROLLARY. (C(X), tip)’ Mp(X).

2.5. PROPOSITION. (i) fll fl, if and only if M,(X)= M,(X) and every
compact subset of M(X) is flp-equicontinuous; (ii) fl, fl if and only if
Mp(X) M(X); (iii) ifX is a Prohorov space and M,(X) Mt(X) then flo fl,.

Proof. We give a proof only for the "if" part of (ii) since the rest is similar
(see also [19, Theorem 5.8]). So we assume that M(X) M(X) and we show
that every fl,-equicontinuous subset H of M(X) is fl-equicontinuous. By
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Proposition 1.1, there is no loss of generality to assume that H consists of
positive measures. Then H c M;(X) M+(X) is relatively compact and
Proposition 1.2(ii) implies that H is fl-equicontinuous.

Since flp-equicontinuity is involved in Proposition 2.5 we mention the
following.

2.6. PROPOSITION. A subset H of Mp(X) is flp-equicontinuous if and only if
(a) H is norm bounded, and (b)for every continuous function ffrom X onto a
separable metric space Y and every e > O, there is a compact set K c Y such
that l#l(X f I(K)) < efor all # n.

Proof. H is flp-equicontinuous if and only if H is flo equicontinuous for
every G (flX), G fiX- X. The result follows then easily from
Proposition 1.1.

Remarks. 1. Every compact distinguishable set is a zero .set. In general,
there are non-compact distinguishable sets in fiX which are contained in
fiX- X. It follows that tip, unlike fll and fl, is not determined by a family of
compact subsets of fiX- X. Moreover, any strict topology fl with (C(X),
fl)’= Mp(X) cannot in general be determined by a family of compact sets.
Indeed, if this happened, then we should have M Mp. But this fails even
when X is a separable metric space I-18, p. 248].

2. If X YfiX, then Y@(fiX) if and only if Y admits a perfect
function onto a separable metric space (cf. [11, Remark D]) or, equivalently, Y
is a Lindel6f M-space in the terminology of [15]. Therefore the topology tip on
C(X) is the inductive limit of the topologies flo on C(Y) for all Lindel6f
M-spaces Y with X Y fiX.

3. If Y is a Lindel6f M-space, then by [10, Corollary 9] every compact
countable subset of M(Y) is flo-equicontinuous. Therefore Remark 2 implies

+(X) isthat for any space X, every compact countable subset of Mp
flp-equicontinuous.

4. The conclusion of Proposition 2.5(iii) may hold without X being
Prohorov. Indeed, if X is a Lindcl6f M-space then flo tip by Remark 2.
However, X is not necessarily Prohorov since there arc separable metric
spaces which arc not Prohorov (scc [16]). On the other hand, the assumption
that X is Prohorov cannot bc dropped. Indeed Varadarajan [22, p. 225] gives
an example of a space Y which is countable and a convergent sequence {#} in
M+(Y) which is not o-equicontinuous. Then Mp(Y)= M(Y) but flo tip
since the sequence {#} is flp-cquicontinuous by Remark 3.

3. u-additive measures

In this section a strict topology on C(X) is defined, which yields Mu(X) as
dual space. The idea to define such a strict topology using the notion of
paracompactness is discussed in [20, p. 495] where a natural straightforward
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approach is proved to fail. However, using a property involved in a
characterization [2, Theorem 4.4-c-I of paracompactness, it is possible to define
such a strict topology. The family of compact subsets of fiX- X which
determines this topology is specified in the following lemma by several
equivalences.

3.1. LEMMA. For a compact set K c fiX X thefollowint are equivalent"

(i) There is a cozero cover (U)A of X which is (a) locally finite, (b)
a-locallyfinite or (c) a-discrete such that

cltx U c K b for all A.

(ii) There is a continuous function ffrom X onto a metric space Y such that
f(K) fl Y Y, wheref: fiX flY is the continuous extension off.

There is a partition of unity (f)a for X such that flK 0 for all(iii)
A.

(iv) There is a partition ofunity (f) a for X and 0 < e < such that

f(x) < 1- e for all x K.
A

Proof. (i)..(ii) If X is paraCompact, then every compact set K fiX X
satisfies (i) (a)-(c) (cf. [-2, Theorem 4.4-c)]). Since every metric space is
paracompact, (ii) implies (i) (a)-(c). The converse follows from [2, Theorem
3.2-1.

(i) (iii) Let (U) a be a locally finite cozero cover of X such that

clax UcK=O for allA.

We choosef C(X),f > O, such that U {x e X’f(x) > 0}. Since

K fiX clax U clax (X U),

we have ftt: 0. So {f ( , f)-} , is the desired partition of unity.
(iii) =:, (iv) Obvious.
(iv) =:, (i) For every finite F A, let

V= {x flX" r f(x) > l e}"
Since Vv is a cozero set in fiX, Vv is Lindel6f and every cozero set in Vv is also
a cozero set in fiX. Let (Ur,.).N be a cozero cover of Vv with clax Uv,. c
K and let /’. { Uv,, c X" F finite, F c A}, n N. Since (f,), a is a
partition of unity for X, ). N

, is the desired a-locally finite cozero cover of
X.

Let q/x q/be the family of all compact subsets of fiX- X satisfying any
of the equivalent assertions of Lemma 3.1. Then we have"
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3.2. THEOREM. For a measure la M(X) thefollowing are equivalent"

(i) # is u-additive;
(ii) Il(K) 0for all K .
Proof. Without loss of generality we assume that # is positive.
(i)=(ii) Let K q/ and e > 0. By Lcmma 3.1(iii), there is a partition of

unity (f) for X such that ]’lr 0 for all A. Since # is u-additive, there
is a finite F c A such that #(1) e _< r #(f). Then

(flX)- e (1)-e_<
v
(f)=

since r f-< Z(ax-) (the characteristic function of fiX- K). Therefore
(K) O.

(ii) (i) Let (f,), a be a partition of unity for X and 0 < < 1. For every
finite F c A we consider the set

Zr= {x flX" ,v J"(x) < l e)
and let K be the intersection of all Zr. Then K is a compact subset of fiX X
and, by Lemma 3.1(iv), K q/. Therefore, infr (Zr) #(K) 0 and

_< (zr) + . (/x).

It follows that/(1) ,A /(f,); that is,/ is u-additive.

Now the following corollary [8], [14], [20], [23] is an immediate
consequence of Theorem 3.2 and the following characterization of
paracompactness: X is paracompact if and only if every compact subset of
fiX X satisfies (i)(a) of Lemma 3.1 (see [2, Theorem 4.4-c]).

3.3. COROLLARY. Mu(X M,(X) whenever X is paracompact.

Proof If X is paracompact, then, by the above, q/ is the family of all
compact subsets of fiX X. So, if # M,(X) then [[(K) 0 for all compact
K fiX X which means that # is z-additive (Section 1).

We denote by OX the topological completion of X. We have X OX vX
and X OX if and only if X is topologically complete (see [2] or [6]).
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3.4. COROLLARY. Mu(X M.(OX).

Proof Since every K q/ doesn’t meet OX (cf. [2, Theorem 4.4-d]), the
conclusion follows from Theorem 3.2.

Next we define the strict topology flu by

flu Lin {fir: K all}.
We have fl ft. fl because the corresponding families of subsets of fiX X
are related in the opposite direction. Theorem 3.2 and Proposition 1.2(i) yield
the following.

3.5. COROLLARY. (C(X), flu)’= Mu(X).

in order to show that ft. coincides with the topology studied by Wheeler
[23], we need the following.

3.6. PROPOSITION. A subset H ofMu(X) is fl.-equicontinuous if and only if(a)
H is norm bounded, and (b)for every partition of unity (f) a for X and every
e > 0 there is afinite set F A such that

A proof of this proposition follows using arguments similar to those used in
the proof of Theorem 5.2 in [19] and it is omitted. Notice that here we use the
coincidence of the strict topology Bo for a locally compact space with the
original strict topology of Buck (determined by the seminorms mentioned in
Section 1).

Proposition 3.6 and [20, Theorem 5.2] yield that every relatively countably
compact subset of Mu(X is flu-equicontinuous, that is, (C(X), flu) is a strong
Mackey space. This shows that the topology fie in [23] coincides with flu. We
note that also Mosiman has shown that fie can be determined by a family of
compact subsets of fiX- X [3, pp. 124, 139"1, but no proof of this result has
been published.
As it is already mentioned, if X is paracompact then 0//is the family of all

compact subsets of fiX X. Therefore the following becomes obvious.

3.7. COROLLARY [23, 3.8]. If X is paracompact then fl=flu and
consequently (C(X), fl) is a stron# Mackey space.

It follows from the above corollary that for a paracompact space X the
equality fl flo implies that (C(X), flo) is strong Mackey. I don’t know
whether the converse is true; that is, if X is paracompact and (C(X), o) is
strong Mackey, is it then true that o? Without the assumption that X is
paracompact the answer is negative by an example of Haydon [9, 2.5].
However, at least for metric spaces the answer is affirmative.
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3.8. PROPOSITION. IfX is a metric space, then (C(X), flo) is a strong Mackey
space if and only if fl flo.

Proof. Clearly the "if’ part follows from Corollary 3.7. Now assume that
(C(X), flo) is strong Mackey. We have that flo c fl and flo is the finest locally
convex topology on C(X) which yields Mr(X) as dual; so it is enough to show
that M,(X) Mt(X). Suppose that this is not valid. Then there is # 6 M+(X)
with /({x})= 0 for all x 6 X, which is not tight. By the z-additivity, # is
concentrated on a closed separable set and, using [22, Part II, Theorem 23],
we can find a sequence {/n} in M(X) with #n 0 and I/n [/. Then H {/n:
n 1, 2,...} is relatively compact in Mt(X) but not flo-equicontinuous. This is
a contradiction since (C(X), flo) is strong Mackey.

4. Do-spaces

We denote by the family of all continuous pseudometrics on a completely
regular space X. If d we set Yc {y X" d(x, y) 0} and Xd (YC" X X}.
Then Xd is a metric space by defining d(, )= d(x, y) and the function ha"
X Xd with rid(X)= , is continuous onto. A subset Y of X is d-discrete if
there is an e > 0 such that d(x, y) > e for all x, y Y, x 4: Y.

Replacing cardinals of measure zero in the definition of D-spaces of
Granirer I-7] by non-(Ulam-) measurable cardinals, we say that a space X is a
Do-space if for every d all d-discrete subsets of X have non-measurable
cardinal. We recall that a cardinal m is (Ulam-) measurable if there is a
non-zero {0, 1}-valued a-additive measure defined on all subsets of m and
vanishing on singletons.

Every D-space is a Do-space and, under the continuum hypothesis, the two
notions are identical by a well-known result of Ulam [21]. However, even the
discrete space of cardinality 2 has not yet been proved to be a D-space
without any set theoretical assumption. Such difficulties for Do-spaces do not
appear because of the large size of measurable cardinals.

In [8] Haydon proved that a space X is a D-space if and only if M,(X)
Mu(X). For Do-spaces we prove the following theorem which is the main result
of this section.

4.1. THEOREM.
equivalent"

For any completely regular space X the following are

(i) M,(X) c Mu(X);
(ii) vX OX
(iii) X is a Do-space.

The equivalence (ii),(iii) is a known strong form of Shirota’s theorem (see
[6, Theorem 5.21]) which is not used in our proof. In the essential direction
(iii) = (i) we use the following.
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4.2. THEOREM [13, 2.5]. Let (X, , p) be a non-zero, positive, perfect
measure space and {A i" it I} a partition of X such that #*(At) 0 for all I
and the cardinal of I is non-measurable. Then there is J c I such that j At is
not p-measurable.

Proof of Theorem 4.1 (i) => (ii) The non-zero {0, }-valued a-additive (resp.
u-additive) measures on X are precisely the points of vX (resp. OX). Also, every
{0, 1}-valued a-additive measure is perfect. Therefore, (i) implies that
vX c OX, hence vX OX.

(ii) =(iii) Let Y be a d-discrete subset of X for some d 9. Since Xd is
topologically complete, there is a continuous extension d" OX Xd of
Now, d can be extended to a continuous pseudometric on OX by defining
6(x, y)= d(d(x), d(Y)), X, y OX. Then Y is f-discrete in OX which is
realcompact by (ii), so Y is realcompact and discrete; therefore it has
non-measurable cardinal [2, Theorem 2.6].

(iii) =(i) By [20, Theorem 4.1], a measure/ M+,(X) is u-additive if and
only if for every a-discrete cozero cover of X, there is a countable
such that #(X)=/( #). This result can also be deduced from Theorem 3.2
and Lemma 3.1 (i)(c). Now assume (for the purpose of a contradiction) that X
is a Do-space and (i) doesn’t hold. Then there is a non-zero positive perfect
measure/ on X and a cozero cover [,_), r , of X such that each , is
discrete and/(V) 0 for all V /.

We fix n and set /, V/’i I). For every I we choose xi V and a
continuous functionf" X---, R such thatf > 0,f/(xi) and

v, {x x" f,(x) > 0}.

Then d(x, y)= If(x)-f(Y)l is a continuous pseudometric on X and
d(x, xfl 2 for i, j I, =/= j. So {x" it 1} is d-discrete and, by assumption, the
cardinal of I is non-measurable. For every ar c 1 the function fj a f is
continuous, so the set ia V {x X’fa(x) > 0} is a cozero set. In particu-
lar, the union vo /, V is measurable. Since # is non-zero and positive
we may assume that n has been chosen so that/,(w W.) > 0.
Now let v(B)= #(B c( V3) for all B o@(X). Then v is a non-zero

positive perfect [ 18, 1.6] measure on X and

is a partition of X into sets of v-measure zero. By Theorem 4.2, the union of
some members of this partition is non-v-measurable. This is a contradiction
since every such union is a Baire set.

We note that (ii) and (iii) of Theorem 4.1 are assumption about {0, 1}-valued
measures. The equivalence of them, that is, the strong form of Shirota’s
theorem, can be stated as follows" every {0, 1}revalued (perfect) measure on a
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completely regular space is u-additive if and only if X is a Do-space. So
direction (iii)= (i) can be considered as an extension of Shirota’s theorem to
real-valued measures.
The equivalence (i) (ii) implies immediately the following.

4.3. COROLLARY. A topologically complete space X is realcompact if and
only if Mp(X) c Mu(X).

Since every paracompact space is topologically complete (cf. [2, Theorem
4.4], the next corollary follows from 3.3 and 4.3.

4.4 COROLLARY [- 13, 5.11].
only ifMp(X) c Ms(X).

A paracompact space X is realcompact if and

Another consequence of the equivalence (i)(ii) of Theorem 4.1 is the
following.

4.5. COROLLARY. For any space X, M,(X) Mu(vX).

Proof For any realcompact space Y, we have M(Y) Mu(Y) by Theorem
4.1 (ii) = (i) since Y vY OY. For Y vX, using Corollary 2.3 we conclude
that Mp(X) Mp(vX) = M,(vX).

We notice that Corollary 4.5 also implies Theorem 4.1 (ii)=(i); for, if
OX vX and mp(x) M,(vX), then M(X)c M,(OX)= M,(X) by Corollary
3.4.

Finally, we give some other characterizations of Do-spaces.

4.6. PROPOSITION. For any space X thefollowin9 are equivalent:

(i) X is a Do-space;
(ii) Xa is realcompactfor every d

(iii) tip flu.

Proof (i)= (ii) For every d 9, Xa is a Do-space as a continuous image of
a Do-space. Since Xa is also topologically complete, Theorem 4.1 (iii)=(ii)
implies that Xa is realcompact.

(ii) = (i) Let Y be a d-discrete subset of X for some d 9. Then gd(Y) is
closed and discrete in the realcompact space Xa; so the cardinal of Ir,d(Y which
is equal to the cardinal of Y is non-measurable.

(i) (iii) As in the proof of Proposition 2.5(ii) we can show that fl c flu if
and only if Mp(X) Mu(X). So the equivalence (i) (iii) follows from Theorem
4.1 (i) (iii).



478 G. KOUMOULLIS

REFERENCES

1. R. C. BUCK, Bounded continuous functions on a locally compact space, Michigan Math. J.
vol. 5 (1958), pp. 95-104.

2. W. W. COMFORT and S. NEGREPONTIS, Continuous pseudometrics, Marcel Dekker, New York,
1975.

3. J. B. COOPER, Saks spaces and applications to functional analysis, North Holland, Amsterdam,
1978.

4. D. H. FREMLIN, O. J. H. GARLING and R. G. HAYDON, Bounded measures on topolooical spaces,
Proc. London Math. Soc., vol. 25 (1972), pp. 115-136.

5. Z. FROLIK, A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J.,
vol. 20 (1970), pp. 406-467.

6. L. GILLMAN and M. JERISON, Rinos of continuous functions, Van Nostrand, Princeton, N.J.,
1960.

7. E. GRANIRER, On Baire measures on D-topolooical spaces, Fund. Math., vol. 60 (1967), pp.
1-22.

8. R. G. HAYDON, Sur les espaces M(T) et M(T), C.R. Acad. Sci. Paris S6r. A, vol. 275 (1972),
pp. 989-991.

9., On compactness in spaces of measures and measurecompact spaces, Proe. London
Math. Sue., vol. 29 (1974), pp. 1-16.

10. J. HOFFMAN-JeRGENSEN, Weak compactness and tiohtness of subsets of M(X), Math. Stand.,
vol. 31 (1972), pp. 127-150.

11. J. E. JAYNE, Continuous imaoes of proper analytic and proper Borel spaces, Proc. Cambridge
Phil. Soc., vol. 75 (1974), pp. 185-191.

12. J. D. KNOWLES, Measures on topolooical spaces, Proc. London Math. Sue., vol. 17 (1967), pp.
139-156.

13. G. KOUMOULLIS, On perfect measures, Trans. Amer. Math. Sue., vol. 264 (1981), pp. 521-537.
14. C. LlGER and P. SOURY, Le convexe topolooique des probabilitbs sur un espace topolooique, J.

Math. Pures Appl., vol. 50 (1971), pp. 363-425.
15. K. MORITA, A survey of the theory of M-spaces, General Topology and Appl., vol. (1971), pp.

49-55.
16. D. PREISS, Metric spaces in which Prohorov’s theorem is not valid, Z. Wahrscheinlichkeits-

theorie und Verw. Gebiete, vol. 27 (1973), pp. 109-116.
17. A. P. ROBERTSON and W. J. ROBERTSON, Topolooical vector spaces, Cambridge Univ. Press,

Cambridge, England, 1966.
18. V. V. SAZONOV, On perfect measures, Amer. Math. Soc. Transl., vol. 48 (1965,), pp. 229-254.
19. F. D. SENTILLES, Bounded continuous functions on a completely reoular space, Trans. Amer.

Math. Soc., vol. 168 (1972), pp. 311-336.
20. F. D. SENTILLES and R. F. WHEELER, Linear functionals and partitions of unity in Ct,(X), Duke

Math. J., vol. 41 (1974), pp. 483496.
21. S. ULAM, Zur Masstheorie in der alloemeinen Menoenlehre, Fund. Math., vol. 16 (1930), pp.

140-150.
22. V. S. VARADARAJAN, Measures on topolooical spaces, Amer. Math. Soc. Transl., vol. 48 (1965),

pp. 161-228.
23. R. F. WHEELER, The strict topolooy, separable measures and paracompactness, Pacific J. Math.,

vol. 47 (1973), pp. 283-302.

ATHENS UNIVERSITY, PANEPISTEMIOPOLIS
ATHENS, GREECE

UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA


