CERTAIN SECONDARY OPERATIONS THAT DETECT INCOMPRESSIBLE MAPS

BY

Jay E. Goldfeather

Introduction

Let $f: X \rightarrow K\left(Z_{2}, n\right)$ be a non-trivial map and let $\operatorname{im} f^{*}$ be the subset of $H^{*}\left(X ; Z_{2}\right)$ induced by f. If all primary Steenrod operations act trivially on im f^{*} then the incompressibility of such maps cannot be detected by such primary operations. In this paper it is shown that if $H^{*}\left(X ; Z_{2}\right)$ satisfies certain conditions, there is a sequence of secondary operations that can be used to detect the incompressibility of f. These secondary operations are of the form $S q^{Q_{k}} \Phi$ where Φ is a secondary operation and $Q_{k}=\left(q_{k}, \ldots, q_{1}\right)$ is an admissible sequence.

Let Φ be a secondary operation associated to the relation $\alpha \circ \beta=0$. If $x=f^{*}\left(l_{n}\right)$ and $\Phi(x)$ is defined, there is a fibration

$$
\Omega K_{1} \xrightarrow{i} E \stackrel{\pi}{\rightarrow} K\left(Z_{2}, n\right),
$$

a map $\tilde{f}: X \rightarrow E$ and an element $w \in H^{*}\left(E ; Z_{2}\right)$ such that $\Phi(x)=\tilde{f}^{*}(w) \bmod$ indeterminacy. The following are proved:

Theorem. Let $f: X \rightarrow K\left(Z_{2}, n\right)$ classify $x \in H^{n}\left(X ; Z_{2}\right), Q_{k}=\left(q_{k}, \ldots, q_{1}\right)$ be an admissible sequence and Φ be a secondary operation associated with $\alpha \circ \beta=0$ and defined on x. If for all positive integers k,
(a) $S q^{Q_{k}\left(i^{*}(w)\right)}=\sum_{j} S q^{p_{j, k}} v_{j, k}$ where $0<p_{j, k} \leq q_{k}$ for all j,
(b) $v_{j, k}$ transgresses to a non-zero element for all j,
(c) $M_{k}-n<q_{k} \leq M_{k}$ where $M_{k}=\operatorname{deg} w+\sum_{i=1}^{k-1} q_{i}$,
(d) $S q^{Q_{k}} \Phi(x) \neq 0 \bmod \left(\operatorname{im} S q^{Q_{k}} \alpha+\sum_{j, k} \operatorname{im} S q^{p_{j, k}}\right)$,
then f is incompressible.
Corollary. Let $\pi_{n}: E_{n} \rightarrow K\left(Z_{2}, n\right)$ be the universal fibration classifying $x \in$ $H^{n}\left(X ; Z_{2}\right)$ for which x is annihilated by A_{2}, the mod 2 Steenrod algebra. π_{n} is incompressible.

Corollary. Let $f: X \rightarrow K\left(Z_{2}, n\right)$ classify $x \in H^{n}\left(X ; Z_{2}\right)$. If x is annihilated by A_{2} and for every $k \geq 1$,

$$
S q^{2 k_{n}} \circ \cdots \circ S q^{n} \beta_{(2)}(x) \neq 0 \bmod \left(\operatorname{im} S q^{2 k+1}+\operatorname{im} S q^{2 k_{n}} \cdots S q^{n} S q^{1}\right),
$$

thenf is incompressible.
I would like to thank the referee for invaluable suggestions that led to the improvement of this paper.

Notation and conventions

All cohomology is assumed to have Z_{2} coefficients. If $f: X \rightarrow Y$ then f^{*} always denotes the induced homomorphism in cohomology. If $A=\left(a_{t}, \ldots, a_{1}\right)$ then $S q^{A}$ means $S q^{a_{t}} \cdots S q^{a_{1}}$. The generator of $H^{n}\left(K\left(Z_{2}, n\right)\right)$ will be denoted by l_{n}, or more simply ${ }_{l}$ if the context is clear.
If $Y=\prod_{s=1}^{k} Y_{s}$, then $p_{j}: Y \rightarrow Y_{j}$ denotes projection and inc ${ }_{j}: Y_{j} \rightarrow Y$ denotes inclusion.

All diagrams are homotopy commutative and all spectral sequences are assumed to be Z_{2} cohomology spectral sequences.

Spectral operations

Let

$$
\stackrel{i}{\rightarrow} E \xrightarrow{\pi} B
$$

be a fibration and let $\left\{E_{r}, d_{r}\right\}$ be its spectral sequence. For information about spectral sequences, see [3]. If there is no confusion we will write $v \in E_{r}$ and $v \in E_{r+1}$ if $d_{r} v=0$ and there is no u such that $d_{r} u=v$.

In particular, there is the injection $I: E_{\infty}^{0, n} \rightarrow E_{2}^{0, n}=H^{n}(F)$ such that $I(v)=v$.
Because Z_{2} is a field, there is a map $\theta: H^{n}(E) \rightarrow \oplus_{i=0}^{n} E_{\infty}^{i, n-i}$ which is a Z_{2} module isomorphism.
Let $F^{k} H^{n}(E)=\oplus_{i=k}^{n} E_{\infty}^{i, n-i}$ and let $\theta_{1}: H^{n}(E) \rightarrow E_{\infty}^{0, n} \oplus F^{1} H^{n}(E)$ be the isomorphism induced by θ. If $p: E_{\infty}^{0, n} \oplus F^{1} H^{n}(E) \rightarrow E_{\infty}^{0, n}$ is projection, then $i^{*}=I \circ p \circ \theta_{1}$.
Kristenson [2] has defined spectral operations $S q^{i}$ which are compatible with Steenrod operations. One feature of these operations is that they can increase base filtration. In particular:

Lemma 1. Let $u \in F^{p} H^{p+q}(E)$ and let $q<i \leq p+q$. Then

$$
S q^{i} u \in F^{p+i-q} H^{p+q+i}(E)
$$

Proof. See Theorem 7.9 of [2].

One consequence of Lemma 1 is that we can deduce that Steenrod operations annihilate elements in $H^{*}(E)$ by observing that their spectral counterparts push base filtration into regions where E_{∞} is zero. We summarize the necessary results:

Lemma 2. Suppose $E_{\infty}^{p, q}=0$ for all $1 \leq p<n$ and all $p>N$ and let $u \in$ $H^{M}(E)$ be such that $u \in F^{1} H^{M}(E)$. If for each $k \geq 1, Q_{k}=\left(q_{k}, \ldots, q_{1}\right)$ is a sequence of positive integers such that
(a) $M-n<q_{1} \leq M$,
(b) $2^{k-1}(M-n)<q_{k} \leq M+\sum_{i=1}^{k-1} q_{i}$, for $k>1$,
then there is an integer k such that $S q^{Q_{k}} u=0$.
Proof. Let $s_{k}=q_{k}-2^{k-1}(M-n), t_{k}=1+\sum_{i=1}^{k} s_{k}$ and $r_{k}=M+\sum_{i=1}^{k} q_{i}$. By Lemma 1,

$$
S q^{Q_{1}} u \in F^{t_{1}} H^{r_{1}}(E) \text { and in general } S q^{Q_{k}} u \in F^{t_{k}} H^{r_{k}}(E)
$$

For some $k, t_{k}>N$, and since $E_{\infty}^{p, q}=0$ for all $p>N, F^{t_{k}} H^{*}(E)=0$. Hence for this $k, S q^{Q_{k}} u=0$.

A relation between secondary operations and primary operations mod filtration

Let $S q^{Q_{l_{n}}}=\sum_{i} S q^{A_{i}} S q^{B_{i}} l_{n}$ and suppose $S q^{Q_{l_{n}}}=0$. We will define a secondary operation Φ associated to this decomposition of $S q^{Q}$.

Let

$$
K_{1}=\prod_{i} K\left(Z_{2}, n+\operatorname{deg} B_{i}\right) \quad \text { and } \quad K_{2}=K\left(Z_{2}, n+\operatorname{deg} Q\right)
$$

Let $\beta: K\left(Z_{2}, n\right) \rightarrow K_{1}$ be such that $p_{i} \circ \beta$ classifies $S q^{B_{i}} l_{n}$. Let $\alpha: K_{1} \rightarrow K_{2}$ be such that $\alpha \circ \operatorname{inc}_{i}: K\left(Z_{2}, n+\operatorname{deg} B_{i}\right) \rightarrow K_{2}$ classifies $S q^{A_{i}}$. Since $\alpha \circ \beta \simeq 0$ we can define the following diagram

where E is the fibre of β. Let $w \in H^{*}(E)$ be classified by $p_{2} \circ j$. Let $f: X \rightarrow$ $K\left(Z_{2}, n\right)$ and $x=f^{*}\left(l_{n}\right)$. If $\beta \circ f \simeq 0$ then f has a lifting $\tilde{f}: X \rightarrow E$ and we define $\Phi(x)=\tilde{f}^{*}(w) . \Phi$ is well defined mod (image α).

Let $K^{N}\left(Z_{2}, n\right) \rightarrow K\left(Z_{2}, n\right)$ be the inclusion of the N skeleton and let

$$
\Omega K_{1} \xrightarrow{i_{N}} E_{N} \longrightarrow K^{N}\left(Z_{2}, n\right)
$$

be the pullback fibration associated to this inclusion.
Hence we have a diagram

Since $\beta \circ \pi \circ j_{N} \simeq 0, \Phi$ is defined on $y_{N}=j_{N}^{*} \pi^{*}\left(l_{n}\right) \in H^{*}\left(E_{N}\right)$.
The following lemma establishes a relationship between $\Phi\left(y_{N}\right)$ and primary operations on $H^{*}\left(E_{N}\right)$.

Lemma 3. Let $Q_{k}=\left(q_{k}, \ldots, q_{1}\right)$ and let $y_{N}=j_{N}^{*} \pi^{*}\left(l_{n}\right)$. If, for all $k \geq 1$,
(a) $S q^{Q_{k}}\left(i^{*}(w)\right)=\sum_{j} S q^{p_{j, k}} v_{j, k}$ where $0<p_{j, k} \leq q_{k}$ for all j,
(b) $v_{j, k}$ transgresses to a non-zero element for all j,
then for every positive integer N, there is a k such that

$$
S q^{Q_{k}} \Phi\left(y_{N}\right) \bmod \left(\operatorname{im} S q^{Q_{k}} \alpha\right)=\sum_{J} S q^{p_{j, k}} v_{j, k} \bmod F^{1} H^{*}\left(E_{N}\right)
$$

Proof. Let k be such that $q_{k-1}+\cdots+q_{1}+\operatorname{deg} w>N$. Then $\operatorname{deg} v_{j, k}>$ N and since $v_{j, k}$ transgresses in the spectral sequence of

$$
\Omega K_{1} \rightarrow E \rightarrow K\left(Z_{2}, n\right)
$$

it follows that $v_{j, k}$ transgresses to 0 in the spectral sequence of

$$
\Omega K_{1} \rightarrow E_{N} \rightarrow K^{N}\left(Z_{2}, n\right) .
$$

Since $i_{N}^{*}\left(S q^{Q_{k}} \Phi\left(y_{N}\right)\right)=\sum S q^{p_{j, k}} v_{j, k}$, it follows that

$$
S q^{Q_{k}} \Phi(x) \bmod \left(\operatorname{im} S q^{Q_{k}} \alpha\right)=\sum_{j} S q^{p_{j, k}} v_{j, k} \bmod F^{1} H^{*}\left(E_{N}\right)
$$

The main results

Theorem. Let $f: X \rightarrow K\left(Z_{2}, n\right)$ classify $x \in H^{n}\left(X ; Z_{2}\right), Q_{k}=\left(q_{k}, \ldots, q_{1}\right)$ be an admissible sequence and Φ be a secondary operation associated with $\alpha \circ \beta=0$ and defined on x. If for all positive integers k,
(a) $S q^{Q_{k}}\left(i^{*}(w)\right)=\sum_{j} S q^{p_{j, k}} v_{j, k}$ where $0<p_{j, k} \leq q_{k}$ for all j,
(b) $v_{j, k}$ transgresses to a non-zero element for all j,
(c) $M_{k}-n<q_{k} \leq M_{k}$ where $M_{k}=\operatorname{deg} w+\sum_{i=1}^{k-1} q_{i}$,
(d) $S q^{Q_{k}} \Phi(x) \neq 0 \bmod \left(\operatorname{im} S q^{Q_{k}} \alpha+\sum_{j, k}\right.$ im $\left.S q^{p_{j, k}}\right)$,
then f is incompressible.
Proof. Suppose f compresses into $K^{N}\left(Z_{2}, n\right)$ so that there exists

$$
f_{N}: X \rightarrow K^{N}\left(Z_{2}, n\right)
$$

such that inc $\circ f_{N} \simeq \tilde{f}$. By Proposition 1.2 of [1], there exists a map

$$
\tilde{f_{N}}: X \rightarrow E_{N}
$$

such that $j_{N} \circ \tilde{f}_{N} \simeq \tilde{f}$. Let $w_{N}=j_{N}^{*}(w)=\Phi\left(y_{N}\right)$ where $y_{N}=j_{N}^{*} \pi^{*}\left(l_{n}\right)$. By Lemma 3, there is an integer k such that

$$
S q^{Q_{k}} w_{N} \bmod \left(\operatorname{im} S q^{Q_{k}} \alpha\right)=\sum_{j} S q^{p_{j, k}} v_{j, k}+u
$$

where $u \in F^{1} H^{*}\left(E_{N}\right)$.
Let $M=\operatorname{deg} u$ and let $\bar{q}_{1}=q_{k+1}, \ldots, \bar{q}_{s}=q_{k+s}$. It is easy to show that for every $s \geq 1, \bar{Q}_{s}=\left(\bar{q}_{s}, \ldots, \bar{q}_{1}\right)$ satisfies the conditions of Lemma 2 and since $E_{\infty}^{p, q}=0$ for all $1 \leq p<n$ and all $p>N$, there is an s such that

$$
S q^{\bar{Q}_{s}} u=0
$$

Hence

$$
S q^{Q_{k+s}} w_{N}=S q^{\bar{Q}_{s}} S q^{Q_{k}} w_{N}=\sum S q^{p_{j, k+s}} v_{j, k+s}
$$

Hence

$$
\begin{aligned}
S q^{Q_{k+s}} \Phi(x) & =S q^{Q_{k+s}} \tilde{f}^{*}(w)=S q^{Q_{k+s}} \tilde{f}_{N}^{*} j_{N}^{*}(w) \\
& =S q^{Q_{k+s}} \tilde{f}_{N}^{*}\left(w_{N}\right)=\tilde{f}_{N}^{*}\left(\sum S q^{p_{j, k+s}} v_{j, k+s}\right) \\
& =\sum S q^{p_{j, k+s}} \tilde{f}_{N}^{*}\left(v_{j, k+s}\right)
\end{aligned}
$$

This contradicts hypothesis (d) so that f is incompressible.
Let

$$
\Omega K_{0} \xrightarrow{i_{n}} E_{n} \xrightarrow{\pi_{n}} K\left(Z_{2}, n\right)
$$

be the universal fibration classifying $x \in H^{n}\left(X ; Z_{2}\right)$ for which x is annihilated by A_{2}, the $\bmod 2$ Steenrod algebra. If t is the largest integer such that $2^{t} \leq n$ and $K_{0}=\prod_{s=0}^{t} K\left(Z_{2}, n+2^{s}\right)$, then E_{n} is the fibre of the map $g: K\left(Z_{2}\right.$, $n) \rightarrow K_{0}$ where $p_{s} \circ g$ classifies $S q^{2 s}{ }_{n}$.

Lemma 4. Let $y=\pi_{n}^{*}(l)$ and $Q_{k}=\left(2^{k} n, \ldots, 2 n, n\right)$. Then

$$
S q^{Q_{k}} \beta_{(2)} y \neq 0 \bmod \left(\mathrm{im} S q^{2^{k+1}}+\operatorname{im} S q^{Q_{k}} S q^{1}\right)
$$

Proof. Suppose to the contrary that $S q^{Q_{k}} \beta_{(2)} y \in\left(\mathrm{im} S q^{2^{k+1}}+\mathrm{im} S q^{Q_{k}} S q^{1}\right)$. Since $S q^{{ }^{\alpha_{k}}} S q^{1}$ annihilates $H^{n}\left(E_{n}\right)$ this implies that

$$
S q^{Q_{k}} \beta_{(2)} y=S q^{2 k+1} u
$$

Let $V_{k}=\left(2^{k} n-2^{k}, \ldots, 2 n-2, n-1\right)$ and note that $i_{n}^{*}\left(\beta_{(2)} y\right)=S q^{1} l_{n}$. Then

$$
S q^{Q_{k} i_{n}^{*}\left(\beta_{(2)} y\right)=S q^{Q_{k}} S q^{1} l_{n}=S q^{2^{k+1}} S q^{V_{k}} l_{n}}
$$

Hence $S q^{V_{k}} l_{n}=i_{n}^{*}(u)+v$ where $S q^{2 k+1} v=0$.
But $i_{n}^{*}(u)$ and $S q^{V_{k} l_{n}}$ transgress and moreover, $S q^{V_{k}{ }_{n}}$ transgresses to the non-zero class $S q^{V_{k}} S q^{1}{ }^{1}$. Hence v transgresses and $v=i_{n}^{*}(u)$ in E_{∞}. But this implies that

$$
0 \neq S q^{Q_{k}} S q^{1} l_{n}=i_{n}^{*}\left(S q^{Q_{k}} \beta_{(2)} y\right)=i_{n}^{*}\left(S q^{2^{k+1}} u\right)=S q^{2^{k+1}} v=0
$$

Hence

$$
S q^{Q_{k}} \beta_{(2)} y \notin\left(\operatorname{im} S q^{2 k+1}+\operatorname{im} S q^{Q_{k}} S q^{1}\right)
$$

Corollary 1. π_{n} is incompressible.
Proof. Let Q_{k} and V_{k} be as in Lemma 4. Let Φ be the secondary operation $\beta_{(2)}$. That is, Φ is defined by the relation $S q^{1} S q^{1}=0$. Then we have the diagram

It suffices to show that hypotheses (a), (b), (c), and (d) of the theorem are satisfied. To check (a) we identify w as $\beta_{(2)}(l)$ and $i^{*}(w)$ as $S q^{1} l_{n}$ and use the Adem relations to deduce

$$
S q^{Q_{k}} S q^{1} l_{n}=S q^{2 k+1} S q^{V_{k}} l_{n}
$$

Then there is one summand with $p_{1, k}=2^{k+1}, v_{1, k}=S q^{V_{k} l_{n}}$.
Condition (b) follows since $S q^{V_{k} l_{n}}$ transgresses to $S q^{V_{k}} S q^{1} \imath \neq 0$.

Condition (c) follows by observing that

$$
M_{k}=n+1+\sum_{j=0}^{k-1} 2^{j} n=2^{k} n+1
$$

Condition (d) is Lemma 4.
Corollary 2. Let $Q_{k}=\left(2^{k} n, \ldots, n\right)$. Let $f: X \rightarrow K\left(Z_{2}, n\right)$ classify $x \in H^{n}(X$; Z_{2}). If x is annihilated by A_{2} and for every $k \geq 1$,

$$
S q^{Q_{k}} \beta_{(2)}(x) \neq 0 \quad \bmod \left(\operatorname{im} S q^{2^{k+1}}+\operatorname{im} S q^{Q_{k}} S q^{1}\right)
$$

then f is incompressible.
Proof. Conditions (a), (b), and (c) of the theorem are exactly as in Corollary 1.

References

1. J. Goldfeather, Incompressibility and fibrations, Illinois J. Math., vol. 21 (1977), pp. 688-702.
2. L. Kristenson, On the cohomology of two stage Postnikov systems, Acta Math., vol. 107 (1962), pp. 73-123.
3. J. P. Serre, Homologie singuliere des espaces fibres, Ann. of Math., vol. 54 (1951), pp. 425-505.

Northfield, Minnesota

