# **CERTAIN SECONDARY OPERATIONS** THAT DETECT INCOMPRESSIBLE MAPS

#### BY

# JAY E. GOLDFEATHER

#### Introduction

Let  $f: X \to K(Z_2, n)$  be a non-trivial map and let im  $f^*$  be the subset of  $H^*(X; \mathbb{Z}_2)$  induced by f. If all primary Steenrod operations act trivially on im  $f^*$  then the incompressibility of such maps cannot be detected by such primary operations. In this paper it is shown that if  $H^*(X; \mathbb{Z}_2)$  satisfies certain conditions, there is a sequence of secondary operations that can be used to detect the incompressibility of f. These secondary operations are of the form  $Sq^{Q_k}\Phi$  where  $\Phi$  is a secondary operation and  $Q_k = (q_k, \ldots, q_1)$  is an admissible sequence.

Let  $\Phi$  be a secondary operation associated to the relation  $\alpha \circ \beta = 0$ . If  $x = f^*(\iota_n)$  and  $\Phi(x)$  is defined, there is a fibration

$$\Omega K_1 \xrightarrow{i} E \xrightarrow{\pi} K(Z_2, n),$$

a map  $\tilde{f}: X \to E$  and an element  $w \in H^*(E; \mathbb{Z}_2)$  such that  $\Phi(x) = \tilde{f}^*(w) \mod C$ indeterminacy. The following are proved:

THEOREM. Let  $f: X \to K(Z_2, n)$  classify  $x \in H^n(X; Z_2)$ ,  $Q_k = (q_k, \ldots, q_1)$  be an admissible sequence and  $\Phi$  be a secondary operation associated with  $\alpha \circ \beta = 0$  and defined on x. If for all positive integers k,

- (a)  $Sq^{Q_k}(i^*(w)) = \sum_i Sq^{p_{j,k}} v_{j,k}$  where  $0 < p_{i,k} \le q_k$  for all j,
- (b)  $v_{j,k}$  transgresses to a non-zero element for all j,
- (c)  $M_k n < q_k \le M_k$  where  $M_k = \deg w + \sum_{i=1}^{k-1} q_i$ , (d)  $Sq^{Q_k}\Phi(x) \ne 0 \mod (\operatorname{im} Sq^{Q_k}\alpha + \sum_{j,k} \operatorname{im} Sq^{P_j,k})$ ,

then f is incompressible.

COROLLARY. Let  $\pi_n: E_n \to K(\mathbb{Z}_2, n)$  be the universal fibration classifying  $x \in \mathbb{Z}_2$  $H^n(X; \mathbb{Z}_2)$  for which x is annihilated by  $A_2$ , the mod 2 Steenrod algebra.  $\pi_n$  is incompressible.

Received August 21, 1980.

<sup>© 1982</sup> by the Board of Trustees of the University of Illinois Manufactured in the United States of America

COROLLARY. Let  $f: X \to K(Z_2, n)$  classify  $x \in H^n(X; Z_2)$ . If x is annihilated by  $A_2$  and for every  $k \ge 1$ ,

 $Sq^{2^{k_n}} \circ \cdots \circ Sq^n\beta_{(2)}(x) \neq 0 \mod (\operatorname{im} Sq^{2^{k+1}} + \operatorname{im} Sq^{2^{k_n}} \cdots Sq^nSq^1),$ 

then f is incompressible.

I would like to thank the referee for invaluable suggestions that led to the improvement of this paper.

# Notation and conventions

All cohomology is assumed to have  $Z_2$  coefficients. If  $f: X \to Y$  then  $f^*$  always denotes the induced homomorphism in cohomology. If  $A = (a_t, \ldots, a_1)$  then  $Sq^A$  means  $Sq^{a_t} \cdots Sq^{a_1}$ . The generator of  $H^n(K(Z_2, n))$  will be denoted by  $\iota_n$ , or more simply  $\iota$  if the context is clear.

If  $Y = \prod_{s=1}^{k} Y_s$ , then  $p_j: Y \to Y_j$  denotes projection and  $\text{inc}_j: Y_j \to Y$  denotes inclusion.

All diagrams are homotopy commutative and all spectral sequences are assumed to be  $Z_2$  cohomology spectral sequences.

### Spectral operations

Let

$$F \xrightarrow{i} E \xrightarrow{\pi} B$$

be a fibration and let  $\{E_r, d_r\}$  be its spectral sequence. For information about spectral sequences, see [3]. If there is no confusion we will write  $v \in E_r$  and  $v \in E_{r+1}$  if  $d_r v = 0$  and there is no u such that  $d_r u = v$ .

In particular, there is the injection  $I: E_{\infty}^{0, n} \to E_{2}^{0, n} = H^{n}(F)$  such that I(v) = v. Because  $Z_{2}$  is a field, there is a map  $\theta: H^{n}(E) \to \bigoplus_{i=0}^{n} E_{\infty}^{i, n-i}$  which is a  $Z_{2}$  module isomorphism.

Let  $F^k H^n(E) = \bigoplus_{i=k}^n E_{\infty}^{i,n-i}$  and let  $\theta_1 \colon H^n(E) \to E_{\infty}^{0,n} \oplus F^1 H^n(E)$  be the isomorphism induced by  $\theta$ . If  $p \colon E_{\infty}^{0,n} \oplus F^1 H^n(E) \to E_{\infty}^{0,n}$  is projection, then  $i^* = I \circ p \circ \theta_1$ .

Kristenson [2] has defined spectral operations  $Sq^i$  which are compatible with Steenrod operations. One feature of these operations is that they can increase base filtration. In particular:

LEMMA 1. Let  $u \in F^{p}H^{p+q}(E)$  and let  $q < i \leq p + q$ . Then

$$Sq^{i}u \in F^{p+i-q}H^{p+q+i}(E).$$

*Proof.* See Theorem 7.9 of [2].

413

One consequence of Lemma 1 is that we can deduce that Steenrod operations annihilate elements in  $H^*(E)$  by observing that their spectral counterparts push base filtration into regions where  $E_{\infty}$  is zero. We summarize the necessary results:

LEMMA 2. Suppose  $E_{\infty}^{p,q} = 0$  for all  $1 \le p < n$  and all p > N and let  $u \in$  $H^{M}(E)$  be such that  $u \in F^{1}H^{M}(E)$ . If for each  $k \geq 1$ ,  $Q_{k} = (q_{k}, \ldots, q_{1})$  is a sequence of positive integers such that

(a)  $M - n < q_1 \le M$ , (b)  $2^{k-1}(M-n) < q_k \le M + \sum_{i=1}^{k-1} q_i$ , for k > 1,

then there is an integer k such that  $Sq^{Q_k}u = 0$ .

*Proof.* Let  $s_k = q_k - 2^{k-1}(M - n)$ ,  $t_k = 1 + \sum_{i=1}^k s_k$  and  $r_k = M + \sum_{i=1}^k q_i$ . By Lemma 1,

 $Sq^{Q_1}u \in F^{t_1}H^{r_1}(E)$  and in general  $Sq^{Q_k}u \in F^{t_k}H^{r_k}(E)$ .

For some k,  $t_k > N$ , and since  $E_{\infty}^{p, q} = 0$  for all p > N,  $F^{t_k}H^*(E) = 0$ . Hence for this k,  $Sq^{Q_k}u = 0$ .

# A relation between secondary operations and primary operations mod filtration

Let  $Sq^{Q}\iota_{n} = \sum_{i} Sq^{A_{i}}Sq^{B_{i}}\iota_{n}$  and suppose  $Sq^{Q}\iota_{n} = 0$ . We will define a secondary operation  $\Phi$  associated to this decomposition of  $Sq^{Q}$ .

Let

$$K_1 = \prod_i K(Z_2, n + \deg B_i)$$
 and  $K_2 = K(Z_2, n + \deg Q)$ .

Let  $\beta: K(Z_2, n) \to K_1$  be such that  $p_i \circ \beta$  classifies  $Sq^{B_i}\iota_n$ . Let  $\alpha: K_1 \to K_2$  be such that  $\alpha \circ \operatorname{inc}_i$ :  $K(Z_2, n + \deg B_i) \rightarrow K_2$  classifies  $Sq^{A_i}\iota$ . Since  $\alpha \circ \beta \simeq 0$  we can define the following diagram

where E is the fibre of  $\beta$ . Let  $w \in H^*(E)$  be classified by  $p_2 \circ j$ . Let  $f: X \to K(\mathbb{Z}_2, n)$  and  $x = f^*(\iota_n)$ . If  $\beta \circ f \simeq 0$  then f has a lifting  $\tilde{f}: X \to E$  and we define  $\Phi(x) = \tilde{f}^*(w)$ .  $\Phi$  is well defined mod (image  $\alpha$ ).

Let  $K^{N}(Z_{2}, n) \rightarrow K(Z_{2}, n)$  be the inclusion of the N skeleton and let

 $\Omega K_1 \xrightarrow{i_N} E_N \longrightarrow K^N(Z_2, n)$ 

be the pullback fibration associated to this inclusion.

Hence we have a diagram



Since  $\beta \circ \pi \circ j_N \simeq 0$ ,  $\Phi$  is defined on  $y_N = j_N^* \pi^*(\iota_n) \in H^*(E_N)$ .

The following lemma establishes a relationship between  $\Phi(y_N)$  and primary operations on  $H^*(E_N)$ .

LEMMA 3. Let  $Q_k = (q_k, \ldots, q_1)$  and let  $y_N = j_N^* \pi^*(\iota_n)$ . If, for all  $k \ge 1$ ,

- (a)  $Sq^{Q_k}(i^*(w)) = \sum_j Sq^{p_{j,k}} v_{j,k}$  where  $0 < p_{j,k} \le q_k$  for all j,
- (b)  $v_{j,k}$  transgresses to a non-zero element for all j,

then for every positive integer N, there is a k such that

$$Sq^{\mathcal{Q}_k}\Phi(y_N) \mod (\operatorname{im} Sq^{\mathcal{Q}_k}\alpha) = \sum_J Sq^{p_{j,k}}v_{j,k} \mod F^1H^{\bigstar}(E_N).$$

*Proof.* Let k be such that  $q_{k-1} + \cdots + q_1 + \deg w > N$ . Then deg  $v_{j,k} > N$  and since  $v_{j,k}$  transgresses in the spectral sequence of

$$\Omega K_1 \to E \to K(Z_2, n),$$

it follows that  $v_{i,k}$  transgresses to 0 in the spectral sequence of

$$\Omega K_1 \to E_N \to K^N(Z_2, n).$$

Since  $i_N^*(Sq^{Q_k}\Phi(y_N)) = \sum Sq^{p_{j,k}}v_{j,k}$ , it follows that

$$Sq^{Q_k}\Phi(x) \mod (\operatorname{im} Sq^{Q_k}\alpha) = \sum_j Sq^{p_{j,k}}v_{j,k} \mod F^1H^*(E_N).$$

### The main results

THEOREM. Let  $f: X \to K(Z_2, n)$  classify  $x \in H^n(X; Z_2)$ ,  $Q_k = (q_k, \ldots, q_1)$  be an admissible sequence and  $\Phi$  be a secondary operation associated with  $\alpha \circ \beta = 0$  and defined on x. If for all positive integers k,

- (a)  $Sq^{\mathcal{Q}_k}(i^*(w)) = \sum_j Sq^{p_{j,k}}v_{j,k}$  where  $0 < p_{j,k} \le q_k$  for all j,
- (b)  $v_{i,k}$  transgresses to a non-zero element for all j,
- $$\begin{split} \tilde{M}_k &- n < q_k \le M_k \text{ where } M_k = \deg w + \sum_{i=1}^{k-1} q_i, \\ Sq^{Q_k} \Phi(x) \neq 0 \mod (\operatorname{im} Sq^{Q_k} \alpha + \sum_{j, k} \operatorname{im} Sq^{P_j, k}), \end{split}$$
  (c)
- (d)

then f is incompressible.

*Proof.* Suppose f compresses into  $K^{N}(\mathbb{Z}_{2}, n)$  so that there exists

$$f_N: X \to K^N(Z_2, n)$$

such that inc  $\circ f_N \simeq \tilde{f}$ . By Proposition 1.2 of [1], there exists a map

$$\tilde{f}_N \colon X \to E_N$$

such that  $j_N \circ \tilde{f}_N \simeq \tilde{f}$ . Let  $w_N = j_N^*(w) = \Phi(y_N)$  where  $y_N = j_N^* \pi^*(\iota_n)$ . By Lemma 3, there is an integer k such that

$$Sq^{Q_k}w_N \mod (\operatorname{im} Sq^{Q_k}\alpha) = \sum_j Sq^{p_{j,k}}v_{j,k} + u$$

where  $u \in F^1H^*(E_N)$ .

Let  $M = \deg u$  and let  $\bar{q}_1 = q_{k+1}, \ldots, \bar{q}_s = q_{k+s}$ . It is easy to show that for every  $s \ge 1$ ,  $\bar{Q}_s = (\bar{q}_s, \ldots, \bar{q}_1)$  satisfies the conditions of Lemma 2 and since  $E_{\infty}^{p, q} = 0$  for all  $1 \le p < n$  and all p > N, there is an s such that

$$Sq^{Q_s}u=0$$

Hence

$$Sq^{Q_{k+s}}w_N = Sq^{\bar{Q}_s}Sq^{Q_k}w_N = \sum Sq^{p_{j,k+s}}v_{j,k+s}$$

Hence

$$Sq^{Q_{k+s}}\Phi(x) = Sq^{Q_{k+s}}\tilde{f}^{*}(w) = Sq^{Q_{k+s}}\tilde{f}^{*}_{N}j^{*}_{N}(w)$$
  
=  $Sq^{Q_{k+s}}\tilde{f}^{*}_{N}(w_{N}) = \tilde{f}^{*}_{N}(\sum Sq^{p_{j,k+s}}v_{j,k+s})$   
=  $\sum Sq^{p_{j,k+s}}\tilde{f}^{*}_{N}(v_{j,k+s})$ 

This contradicts hypothesis (d) so that f is incompressible.

Let

$$\Omega K_0 \xrightarrow{i_n} E_n \xrightarrow{\pi_n} K(Z_2, n)$$

be the universal fibration classifying  $x \in H^n(X; \mathbb{Z}_2)$  for which x is annihilated by  $A_2$ , the mod 2 Steenrod algebra. If t is the largest integer such that  $2^t \le n$ and  $K_0 = \prod_{s=0}^{t} K(Z_2, n+2^s)$ , then  $E_n$  is the fibre of the map  $g: K(Z_2, n+2^s)$  $n \to K_0$  where  $p_s \circ g$  classifies  $Sq^{2s}\iota_n$ .

LEMMA 4. Let  $y = \pi_n^*(i)$  and  $Q_k = (2^k n, ..., 2n, n)$ . Then

$$Sq^{Q_k}\beta_{(2)}y \neq 0 \mod (\text{im } Sq^{2^{k+1}} + \text{im } Sq^{Q_k}Sq^1).$$

*Proof.* Suppose to the contrary that  $Sq^{Q_k}\beta_{(2)}y \in (\text{im } Sq^{2^{k+1}} + \text{im } Sq^{Q_k}Sq^1)$ . Since  $Sq^{Q_k}Sq^1$  annihilates  $H^n(E_n)$  this implies that

$$Sq^{Q_k}\beta_{(2)}y = Sq^{2^{k+1}}u$$

Let  $V_k = (2^k n - 2^k, \dots, 2n - 2, n - 1)$  and note that  $i_n^*(\beta_{(2)}y) = Sq^1 i_n$ . Then

$$Sq^{Q_k}i_n^*(\beta_{(2)}y) = Sq^{Q_k}Sq^1i_n = Sq^{2^{k+1}}Sq^{V_k}i_n$$

Hence  $Sq^{V_k}\iota_n = i_n^*(u) + v$  where  $Sq^{2^{k+1}}v = 0$ .

But  $i_n^*(u)$  and  $Sq^{V_k}i_n$  transgress and moreover,  $Sq^{V_k}i_n$  transgresses to the non-zero class  $Sq^{V_k}Sq^1i$ . Hence v transgresses and  $v = i_n^*(u)$  in  $E_{\infty}$ . But this implies that

$$0 \neq Sq^{Q_k}Sq^1\iota_n = i_n^*(Sq^{Q_k}\beta_{(2)}y) = i_n^*(Sq^{2^{k+1}}u) = Sq^{2^{k+1}}v = 0.$$

Hence

$$Sq^{Q_k}\beta_{(2)}y \notin (\operatorname{im} Sq^{2^{k+1}} + \operatorname{im} Sq^{Q_k}Sq^1)$$

COROLLARY 1.  $\pi_n$  is incompressible.

*Proof.* Let  $Q_k$  and  $V_k$  be as in Lemma 4. Let  $\Phi$  be the secondary operation  $\beta_{(2)}$ . That is,  $\Phi$  is defined by the relation  $Sq^1Sq^1 = 0$ . Then we have the diagram

$$K(Z_{2}, n) \xrightarrow{Sq^{1}} K(Z_{2}, n+1)$$

$$\downarrow^{i} \qquad \downarrow^{inc_{2}}$$

$$E = K(Z_{4}, n) \xrightarrow{j} K(Z_{2}, n) \times K(Z_{2}, n+1) \xrightarrow{P^{2}} K(Z_{2}, n+1)$$

$$\stackrel{\tilde{\pi}_{n}}{\longrightarrow} K(Z_{2}, n) \xrightarrow{q^{1}} K(Z_{2}, n)$$

$$\downarrow^{g_{1}} \qquad \downarrow^{g_{1}} \qquad \downarrow^{g_{1}}$$

$$K(Z_{2}, n+1) \xrightarrow{Sq^{1}} K(Z_{2}, n+2)$$

It suffices to show that hypotheses (a), (b), (c), and (d) of the theorem are satisfied. To check (a) we identify w as  $\beta_{(2)}(i)$  and  $i^*(w)$  as  $Sq^1i_n$  and use the Adem relations to deduce

$$Sq^{Q_k}Sq^1\iota_n = Sq^{2^{k+1}}Sq^{V_k}\iota_n$$

Then there is one summand with  $p_{1,k} = 2^{k+1}$ ,  $v_{1,k} = Sq^{V_k} \iota_n$ .

Condition (b) follows since  $Sq^{V_k}\iota_n$  transgresses to  $Sq^{V_k}Sq^1\iota \neq 0$ .

Condition (c) follows by observing that

$$M_k = n + 1 + \sum_{j=0}^{k-1} 2^j n = 2^k n + 1.$$

Condition (d) is Lemma 4.

COROLLARY 2. Let  $Q_k = (2^k n, ..., n)$ . Let  $f: X \to K(Z_2, n)$  classify  $x \in H^n(X; Z_2)$ . If x is annihilated by  $A_2$  and for every  $k \ge 1$ ,

 $Sq^{Q_k}\beta_{(2)}(x) \neq 0 \mod (\text{im } Sq^{2^{k+1}} + \text{im } Sq^{Q_k}Sq^1),$ 

then f is incompressible.

*Proof.* Conditions (a), (b), and (c) of the theorem are exactly as in Corollary 1.

#### REFERENCES

- 1. J. GOLDFEATHER, Incompressibility and fibrations, Illinois J. Math., vol. 21 (1977), pp. 688-702.
- 2. L. KRISTENSON, On the cohomology of two stage Postnikov systems, Acta Math., vol. 107 (1962), pp. 73–123.
- 3. J. P. SERRE, Homologie singuliere des espaces fibres, Ann. of Math., vol. 54 (1951), pp. 425-505.

CARLETON COLLEGE NORTHFIELD, MINNESOTA