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LOCALLY LIPSCHITZ CONTINUOUS FUNCTIONAL
DIFFERENTIAL EQUATIONS AND NONLINEAR

SEMIGROUPS

BY

DENNIS W. BREWER1

1. Introduction

We will consider the nonlinear functional differential equation

u’(t) + u(t) + Bu(t)= F(u,), >_ O,
u(t)- qb(t), _< 0, (1)

where u,(x)= u(t + x), >_ 0, x <_ 0, a > 0, and B is a single-valued, densely-
defined, m-accretive operator in a Banach space E with norm I1" II. initial
data function b is a mapping from (- oo, 0] into E and is taken from a Banach
space X of such functions with norm denoted by I1" IIx.

In [1] and [2] the author developed nonlinear semigroup representations for
solutions of equations of the form (1) and used these representations to obtain
approximation, continuous dependence, stability, and asymptotic stability re-
sults. Several other authors have used the theory of nonlinear semigroups or
evolution systems to obtain information about the solutions of nonlinear func-
tional differential equations and related Volterra equations in various initial
data spaces [4], [8], [9], [10], [11], [12]. An hypothesis of many of the results in
this area is global Lipschitz continuity ofthe nonlinear functional involved. An
exception to this condition is given in [10]. In [6], the global Lipschitzian
condition is weakened to local by the use of averaging approximations. The
purpose of this paper is to develop a simple technique for weakening from
global to local the Lipschitz continuity condition of [1] for a nonlinear semi-
group representation of solutions of (1).

2. Preliminaries

Rather than establish immediately a specific space of initial functions, only
the basic properties which we require for the semigroup representation will be
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assumed. Let X be a Banach space of functions h: (-o, 0] E which has the
following properties:

(HX) (i) for every h X, h(0)is defined and IIh(0)ll-< Ilhllx.
(ii) if h X, 2 > 0, 0 E, and b is the solution of

_< 0,
0,

then X and II ll -< max  ll011, IIhll  ,

It will be shown in Section 4 that a modification of the fading memory space
employed in [1] and [2] satisfies (HX).
An operator A on D(A) in X associated with (1) is now defined in a standard

way. Let

AO -b’,

D(A) {dp X: dp’ X, dp(O) D(B), (if(0)= F(b)- a(k(0)- Bb(0)}.
In [1] it is shown that -A generates a nonlinear semigroup on X under
conditions which include the hypothesis that F is uniformly Lipschitz contin-
uous on X. In this paper we weaken this assumption to Lipschitz continuity on
a bounded subset of X at the expense of similarly restricting the domain ofthe
semigroup. Fix > 0 and let X { X: I1 11 < ). We assume F: X --} E,
F(0) 0, and there is a number M > 0 (depending on )such that

(HE) liE(hi)- F(h2)[I < M[lhl h2 IIx
whenever h, h2 X#.
The main result of this paper will be an application of the following special

case of the basic result in [3].

THEOREM 1 (M. Crandall and T. Liggett). Let A be an accretive operator in a
Banach space and let 2o > 0. If g(I + 2A) contains D(A) for 0 < 2 < 20, then
-A generates a nonlinear contraction semigroup on D(A ).

An operator A is accretive if (I + 2A)- is a contraction on its domain for
every 2 > 0, and is m-accretive if, in addition, R(I + AA) is the entire space for
every > 0.

3. The main result

THEOREM 2. Let A be as defined above with B an m-accretive, single-valued
operator on D(B) in E with B(O) 0 and D(B) E. Suppose (HX) and (HF) hold
and > M. Let A be the restriction ofA to X. Then Aa generates a nonlinear
contraction semigroup S(t) on D(A).
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Proof. According to Theorem 1, we need to show that for every 2 > 0,
(I + 2A)- is defined and is a contraction on Xa. Given h Xa, we wish to find

D(Aa) with the property that (I + 2Aa)b h. By definition of A, b must
satisfy

b(x)- 2b’(x)= h(x), x < O, (3)

’(0) F(b)- ab(0)- Bb(0), (4)

(0) 6 D(B), b Xt.
Let Ea {0 E: II01l -< }. For 0 Ea, let qb(x; 0) be the unique solution of (2).
Note that tk is given by the variation of constants formula (7). Since h Xa,
(HX) implies that qb(.; O)Xa for every OEa. Clearly qb’(0; 0)=
(1/2)(0- h(0)), so according to (4) we wish to find 0 D(B)c Ea satisfying

0 h(0)= 2F((" 0))- 20- 2BO,

or, equivalently,

0= I+ l+2B 1+2 + 1+2F($(’;0)) (5)

Let a mapping T: Ea E be defined by the right-hand side of (5). By (HF),
since B(0)= 0, B is m-accretive, and 4) Xa we have

2MI[h()[I
/ 114’(’; O)llxTOII-< 1 + 2 1 q- 2

fl 2Mfl<
1 +2 1

<
1 +a2 1

Therefore T" E - E. For 0,, 02 E, by (HF),
2M

TO,- TO2 II-< 1 + a2
IIq’llx

where q/(x)= qb(x; 0,)- qb(x; 0z)satisfies
0

q,(o) 0,

So by (HX), X and Ilffllx < max {ll0, 02 II, o} II0, 02 II. Therefore,
TO, TO2 <- 1 + 2 IlO, 02 I["
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Hence T is a strict contraction from E into Ea for every 2 > 0. Let 0 be the#
unique fixed point of T in Ea. Then b(. ;0)= (I + 2Aa)-Xh as desired. This
shows that (I + 2Aa)-x is defined on Xa.
Choose hx, h2 e Xa and let (I + 2Aa)-Xh, i= 1, 2. Note that
2 e Xa. Let ff bx b2. Then satisfies

By (HX),

O(x)- 2O’(x)= h,(x)- h2(x)
O(0) 4,(0)- 4(0).

If I11(0)- (0)11 Ilha h2 [Ix, then 111 b2 IIx Ilhx- h2 IIx and we are
done. So suppose Ilhl h2 I1-< I11(0)- d0)ll. Then II 2 IIx-<
I11(0)- ,(0)11-< I11 Ilx. From (5)we have

d?,(O)= I + l + 2
B 1-2 t-

l + 2
F(dp,) i= 1,2.

Therefore by (HF)since 1, b2 6 Xa,

1 2M
<

1 + 2 IIh(0)- h2(0)ll + 1 +2 I1 ,
1 2

-< 1 + , IIh h2 Ilx + 1 + z2 I1 b2 I1,

which yields I1, = IIx Ilh, hz IIx. Therefore (I + 2Aa)-’ is a contrac-
tion on Xa for every 2 > 0. Theorem 1 now implies that -Aa generates a
nonlinear semigroup of contractions on D(Aa).

COROLLARY 3.
set

Suppose in addition to the hypotheses of Theorem 2 that the

Y {h Xa: h’e X}
is dense in Xa. Then Aa #enerates a nonlinear semi#roup ofcontractions on Xa.

Proof. It only remains to show that D(Aa) Xa. Clearly D(Aa)is contained
in Xa. We wish to approximate every element h of Xa by an element of D(Aa).
By hypothesis we may assume h e Y. Let tka (I + 2Aa)- h. Then by the proof
of Theorem 2, exists in D(Aa) for every 2 > 0 and satisfies

a(x)- 2i(x)= h(x), x <_ O,

(0) ; + 1 + x 1 - x + + ()"
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Let @x x h. Then @x satisfies

z(x)- 2(x)= 2h’(x), x <_ O,
z(O) bz(O)- h(O).

Since h’ X, we have, by (HX),

hllx max h(O)ll, AIIh’llx}

for every 2 > 0. Therefore Ilthx hllx o as , o if Ilthx(o)- h(O)l o as
2 0. By (6) and the fact that B is m-accretive,

I+l+g2B 1+2 +l+g2F(bx)

I+l+2B (h(O))

I +1 + o----- B (h(O))- h(O)

a2 Mfl<
1 + 2 IIh(0)ll 1 +

I + 1 + a,,q, B (h(O))- h(O)

Since D(B)= E, the last term goes to zero as 2 0. Therefore this inequality
yields the desired result.

Remark 4. There remains the question of whether Sa(t)dp ut where u is a
"classical" solution of (1). As this question seems best approached on a case by
case basis depending on the initial data space, we will here indicate only some
approaches to its solution. If a solution of (1) is known to exist by classical
methods (e.g., Picard iterates) then the theory of nonlinear semigroups may be
invoked as in [1] and [2] to conclude that S(t)rk ut. A more direct approach
using the semigroup and its generator is given in [5] and generalized to infinite
intervals in [7].

4. The initial data space

We conclude this paper by considering some examples of function spaces
which satisfy (HX). Note that if (2) holds then by the variation of constants
formula

o
ok(x) Oe’x + f e(X-’)h(rl) drl, x <0, (7)
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where /= 1/2. Therefore

Hence

II(x)ll-< II011eX + (1 -eTM) sup IIh(q)ll
x<q<0

x<q<_O

SUPx_<o Ilth(x)ll -< max {11011, SUPx_<o IIh(x)ll}"
This shows that the space C of continuous functions on (-oe, 0] with
supremum norm satisfies (HX) and so also does any closed subspace of C.
Note however that C does not satisfy the additional hypothesis of Corollary 3.
This is to be expected since translation is not a continuous operator on C. The
subspaces

{heC’hhasalimitat -oe} and {heC’h(x)=Oforx<-r}

satisfy the hypotheses of Corollary 3.
Another example is provided by a modification of the "fading memory

space" used in [1] and [2]. Fix r > 0 and let X be the space of all functions b"
oo, 0] --. E which are continuous on [- r, 0] and for which eXdp(x) is Bochner

integrable on (-oo, -r). Then X is a Banach space under the norm IIll x-
max {ll bll 11}, where

sup exll(x)ll and I11 II(x)lldx,
--r<_xNO

Clearly X satisfies (HX) (i). The following technical lemma’implies that the
results of Section 3 may be applied to this space.

LEMMA 5. Let X be as defined above. Suppose h X, 2 > O, and c satisfies
(2). Then dp X and d? x <- max {110 [I, h x}.

Proof. Clearly b e X if IIllx < o, From (7)it follows that

(1 e’r+’’x) supexll(x)ll _< II011e’+’x / 4-1 x_<._<o

for -r < x < 0. Therefore

11 max II01, (8)
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Furthermore, by (7),

Let K max

0

1

+1
Olle-(+ 1)r +

+y+l
1 l)r +

max IlOll,

7 -(y + )r) 7
(7 + 1)2 (1 e )lhll +

7+1
Ilhll,

4/+ i Ilhlloo

Then (8)and (9)imply that

(9)

K Ilhll,}. (10)4{x_<max K,
7+1 +7+1

If K o11, then (10)yields

14 [Ix -< max o II, , / 1

_< max {llO l, h Ix},
which is the desired inequality. On the other hand if

K= Ilhll7+1
then (10) yields

I11 x -< max , + 1 7 + 1 7 + 1 + 1 Ilhllx

Ilhllx, ’(/2)_< max .b + ( + / hllx

<-Ihllx <-max Ill011, lib Ixl.
This completes the proof of Lemma 5.

It may be shown by similar arguments that the weight function e may be
replaced by any nonnegative functio p(x) with the property that p(0) 1 and
p(x)e is nondecreasing on (-oo, 0]. It is interesting to note that unlike the
situation in [1], the weight function is independent ofthe Lipschitz constant M.
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