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AN INEQUALITY BETWEEN THE VOLUME
AND THE CONVEXITY RADIUS OF A

RIEMANNIAN MANIFOLD

BY

JAMES J. HEBDA

1. In [2], Marcel Berger is interested in finding lower bounds on the
volume v(g) of a compact n-dimensional Riemannian manifold (M, g) in terms
of the injectivity radius i(#) and convexity radius c(#). Recently, Berger [3!
proved that

v(g) > ((n)/n")i"(g)

and consequently that

v(g) > (cz(n)/(rc/2)")c"(g)

with equality holding if and only if (M, #) is a sphere of constant curvature.
(Here (n) is the volume of the unit n-sphere.) It is reasonable to expect that
stronger inequalities hold when M is not homeomorphic to a sphere.

In this paper we exhibit a constant if(3)> (3)/(7/2)a such that for any
non-simply-connected 3-dimensional manifold (M, ), v(g)> #’(3)c3(g). Along
the way we refine Loewner’s theorem [8], [1] thereby giving a lower bound on
the area of a torus or Klein bottle in terms of the two shortest
nonhomotopically trivial closed curves.
Throughout this paper, let p be the distance function associated to the

Riemannian manifold (M, ). The open geodesic ball of radius r > 0 centered
at the point p M is defined by

B(p; r) {q M" p(p, q) < r}.
Thus, if 0 < r < i(g), then the exponential map is a diffeomorphism of the open
ball of radius r centered at the origin in the tangent space at p onto B(p; r).
Also, if 0 < r < c(g), then B(p; r) is strongly convex, meaning that any two
points of B(p; r) are connected by a unique minimizing geodesic and this
geodesic lies in B(p; r). We will frequently use the relation 2c(g) < i(g) (Remark
1.6 of [2]).

2. Let (M, O) be a compact non-simply-connected Riemannian manifold.
Let l(g) denote the length of the shortest nonhomotopically-trivial closed
curve. Clearly, 1(9) > 2i(9) > 4c(g). Let , be a shortest non-
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homotopically-trivial closed curve. Then is a closed geodesic having no
self-intersections because otherwise we could express as the product of two
loops both of length less than l(#) and hence homotopically-trivial. Now
admits a normal tubular neighborhood of radius at least c(g). For if it didn’t,
the exponential map of the normal bundle of into M would fail to be
injective on the vectors of length less than c(g), thus implying there is a point p
and two geodesic segments z, z* of length less than c(#), emitted from p and
meeting , perpendicularly at points q, q* respectively. Since the lengths of z
and z* are less than c(#)< i(#), neither q nor q* is a cut point of p. Thus
q q*, and thus q, q* divide ), into two geodesic segments 1, 2, one of which
is the minimizing geodesic joining q to q*. For if neither is the minimizing
geodesic, letting tr denote this geodesic shows that -),1. tr. tr- ),2 is
homotopically-trivial because the two closed curves tr and tr- "2 have
length less than l(#). Finally we have the contradiction to convexity (see [6],
p. 246) by having both geodesic segments , z* meeting the minimizing
geodesic joining q to q* perpendicularly in B(p; c(g)). Denote this normal
tubular neighborhood by B(; c(#)).

Remark. If (M, 0) is non-orientable, letting be the shortest orientation
reversing curve, then is a closed geodesic having no self-intersections and
having a normal tubular neighborhood B(; c(#)) of radius c(#). The proof is
the same as above, with "non-homotopically-trivial" replaced by "orientation
reversing", and "homotopically trivial" by "orientation preserving".

Certainly,

v(g) _> Vol (BO’; c(g))= fgVol (S(?; r)) dr

where S(; r), the shell of radius r about , is the set of points whose distance
from is precisely r. Thus, in order to obtain a lower bound on v(ff) it suffices
to find one on the volume of the shell of radius r.

Example. Let (M, if) be an orientable non-simply-connected compact
surface. S(; r) consists of two closed curves that are in the same homotopy
class as . Thus Vol (S(),; r)) > 2/(g) for 0 < r < c(g). Hence v(g) > 2c(g)l(g) >
8C2(g).

Remark. This improves a result in [2], [4]. There one finds the relation
v(0) > (6/z0i2(g) for any non-simply-connected compact surface (M, ) which
only gives v(0) > (24/r)c2() when i(0) > 2c(g) is taken into account.

If M is 3-dimensional, the shells are homeomorphic to tori or Klein bottles.
In the next section we will find lower bounds for the surface areas of these
spaces.
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3. Let W be either the torus or the Klein bottle. It makes sense to talk
about integral multiples of free homotopy classes of closed curves in W. A
class is called basic if it is not the multiple of another class. In particular, the
class of homotopically trivial curves is not basic. Now let W be endowed with
a Riemannian metric so that one can define the length (o) of the free
homotopy class o as the infimum of the lengths of representative curves in o.
Denote the surface area of W by a(W).

LEMMA 3.1. Suppose that there exists a basic class Oo and positive numbers
11 <_ 12 such that (i) .e(Ogo) >_ 11, and (ii) Aa(o) >_ 12for all basic classes o +_090

Then, (1) if W is a torus,

a(W) > 1/211v/412 -12
with equality characterizino aflat "isosceles" torus with base Ii and sides/2, and
(2) if W is a Klein bottle,

a(W) >_ lxl2
with equality characterizin# aflat rectan#ular Klein bottle with sides l and 12.

Proof The given Riemannlan metric on W is conformal to a flat metric.
The identity component G of the group of isometrics for this flat metric
operates transitively on W. Thus, averaging the given metric over G in the
manner of Loewner’s proof creates a new flat metric such that the area of the
new metric is less than or equal to the area of the given metric and such that
the length of each free homotopy class in the new metric is greater than or
equal to the length of the same free homotopy class in the given metric. (See
pp. 303-308 of [1] as well as p. 37 of [2].) Thus, the problem is reduced to
considering fiat metrics on the torus and the Klein bottle which are classified
in [9]. For example, fiat Klein bottles are classified by rectangular lattices in
the Euclidean plane. The conditions on the lengths of basic homotopy classes
become conditions on the lengths of line segments in the plane which connect
two lattice points and contain no other lattice points. Thus the length of the
shortest such segment must exceed l and the length of any other, which is not
parallel to the shortest segment, exceeds 12. Therefore, the area of the
fundamental rectangle must exceed l12 with equality holding if and only if the
sides of the rectangle are 11 and 12. The torus case is similar, except in this case
the fundamental region is a parallelogram attaining the minimum area of

1/21x//41 -12
precisely when the parallelogram may be decomposed, by drawing a diagonal,
into two isosceles triangles with base and sides 12. Q.E.D.

Remark. On taking lx 12, (1) reduces to Loewner’s theorem and (2) to
Proposition 2.5 of [2].
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4. Consider 7 of Section 2 where (M, 0) is now a non-simply connected,
compact 3-dimensional Riemannian manifold. The shells S(7; r) for
0<r <c(#) are in a natural way Sl-bundles over 7; the projection

" S(7; r)---, 7 being the composition of the inverse of the exponential map
from the normal bundle of 7 into M with the projection of this normal bundle
onto 7. Thus the shells are either tori or Klein bottles depending upon whether
7 is orientation preserving or orientation reversing. For each basic homotopy
class 09 we define the winding number N(og) to be the integer such that r, o is
N(o) times the generator of the free homotopy classes of closed curves in
7 - $1. Let 090 be the class of closed curves which are freely homotopic to the
inclusion of a fiber of n. Then 090 is basic, N(ogo)= 0 and N(og) 0 for any
basic 09 ___Oo. Furthermore, a representative tr e o is in the same free
homotopy class in M as the N(o)-fold multiple of 7, since 7 is a deformation
retract of B(7; c(g)).

LEMMA 4.1. Ife9 is basic and 09 :/: +_ coo, then .q’(o) >_ l(g) >_ 4c(g).

Proof If N(o) _+ 1, then any tr co is in the same free homotopy class as

-+-7 in M. Thus, by definition of 7 and l(#), .’(to) >_ 1(0) >_ 4c().
Now suppose N(co) :/: _+ 1, thus by taking -o9 if necessary, we can suppose

N(og) > 2. Let a e 09. Since rr tr winds around 7 N(o) times, tr may be broken
up into N(og) pieces tr such that n tr is the generating class in 7. Now the
endpoints of tr lie over the same point of 7 and are both a distance r in M
from that point of 7. If z is the curve consisting of the two geodesic segments
connecting the point of 7 to the endpoints of try, then tr z is a closed curve
in the same free homotopy class in M as 7. Thus,

L(tr,) + 2r L(tr, z,) > 1().

Summing over i, we obtain

L(a) >_ N(o)(l(g)- 2r).

However, 2r _< 2c(g) _< 1/21(g). Thus

L(a) >_ 1/2N(co)l(a) l(a)

since N(o) > 2. Q.E.D.

Remark. The proof of Lemma 4.1 would be simpler if we knew that
didn’t have finite order in M. For in this case, every basic o 090 would not
be trivial in M. Thus giving .(a) > l(#).

LEMMA 4.2. L,e(Ogo) > min (4r, 4c(/) 2r)for 0 < r < c(#).

Proof. We must show that if .L’(Oo) < 4r, then .L’(Ogo) > 4c(#)- 2r.
Suppose tr Oo and L(tr) < 4r. Fix > 0 and choose a point p e M S(7; r)
such that p is not a focal point of S(7; r) and the distance between p and tr is
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less than 6. Then any point on tr is within 1/2L(a) + 6 < 2r + 6 of p. Thus if 6 is
small enough, say 2r + 6 < 2e(g) _< i(g), then a

_
B(p; i(g)).

Consider the function f: S(V; r)c B(p; i(g)) R defined by f(x)= p(x, p).
This is a Morse function having the property that critical points occur at
points of S(V; r) B(p; fig)) where the unique minimizing geodesic segment to
p is perpendicular to S(,: r) and the index of such a critical point is the number
of focal points, counted with multiplicity, on this geodesic segment. (This is
essentially the Morse index theorem in the one-fixed endpoint case. One
should note that by choosing p to be non-focal, the critical points of f are
non-degenerate.)
Now, f must have a critical value a between the minimum value off and

L(a) + , for otherwise, by using the deformation retraction defined from the
gradient flow off, we could show that a is contractible in S(y; r) c B(p; i(g)).
More precisely, let g be the family of closed curves

$: [0, 1] S(),; r) c B(p fig)), $(0) $(1),

that are not homotopically trivial in S(; r). ., is invariant under ambient
isotopies of S(,; r) B(p; fig)). Thus by the mini-max principle [7],

a inf sup {f(k(0)}
M’ re[O, 11

is a critical value off. Clearly, since 6 and

sup f(a(t)) < 1/2L(a) + 6,
t[O, 1]

we have 0 < a < 1/2L(a) + 3.
Hence there are critical points off on the a-level, and some of these critical

points must be of index one. (We can always slide a curve off an index two
critical point, and a curve caught in a neighborhood of an index zero critical
point would be contractible.)
Now we want to show that a > 2c(g) r. For once we show this, it follows

that L(a) + 26 > 2a > 4c(g) 2r. Thus, since 6 is arbitrary, L(a) > 4c,(g) 2r.
There are finitely many critical points, xl, Xk, of index one on the a-level

of f. Let z be the unique minimizing geodesic segment connecting x to p.
Observe, L(z3 =f(x3 a and z is perpendicular to S(y; r) at x for all i.
Furthermore, there is a focal point of S(y; r) on between x and p. Now, z is
either pointed "inward" or "outward" with respect to the manifold with
boundary B(,; r). If inward, the focal point on z occurs when it meets y at
distance r. will not meet S(y; r) again until distance 2r. Now since p is within
distance 6 of S(y; r), we see the length of z must be at least 2r- 6, i.e.,
2r 6 < a. Thus,

2r 6 <_ a < 1/2L(a) + 6,

which implies L(a) + 36 > 4r. However, since L(a) < 4r, this doesn’t occur if 6
is small enough. Therefore, we may assume that is outward pointing for all i.
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Extend z inward until it meets y to obtain a geodesic which connects
some point y 6 ), to p. Thus L(i) r + L(z3 r + a.

Recall that we are trying to prove a _> 2c(0) r. We argue by contradiction.
So suppose a + r < 2e(g). Since, 2e(g)_< fig), it follows thak is the unique
minimizing geodesic between y and p.

Let tr be the fiber of S(7; r) over the point y. Certainly x 6 tr and
p(x, Y3 r for any x 6 a. Thus, since is the unique minimizing geodesic
between y and p,

p(y, x) + p(x, p) r + a

for all x as, with equality holding if and only if x xs. Thus
(,) f(x) > a

for all x as B(p; i(0)) with equality holding if and only, if x
(Consequently, the as are distinct for two distinct critical points cannot be on
the same fiber.)
Now there exists a curve ff such that suptto, f((t))= a and

meets each as transversely. The construction is as follows. Sincef-l((a, a + el)
is free of critical points for small enough e, any ff with supt to, jf((t))
< a + e may be deformed into f-l([0, a-l) via the downward gradient
flow off. Thus we have k such that suptto. f(k(t))= a. Now, by (,), the
only possible points of intersection of , and tr are xi. We want to make
transverse to try. There exist disjoint neighborhoods U of x in S(y; r) and
Morse coordinates (u, v) in U such that

f(u, v)= a- uz + vz

Let

A+ ={(u,v)Us:u2-v2-<0 andu_>0}
and

A- ={(u,v)Us:u2-v2 _< 0 and u _< 0}
be the right and left descending cones in Us. Also let

Bs(e) {(u, v)_ Vi: u2 + v2 < }
and similarly for Bs(2e). We may choose e small enough so that Bs(2) c Us for
all i. Thus the sets Bs(2e) and

k
q s(; r) (p; i(g)) 0 n,()

i=1

form an open cover of

s(; r) (p; i()).

Thus the ff-(B(2e)) and ff-(S gives an open cover of [0, 11. Using the
Lebesgue number, we can find a partition 0 to < t <... < t. 1 of !-0, 1]
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such that for all j 1, m, ([tj_ 1, tj]) is contained in either S or Bi(2) for
some i. Furthermore, by deleting unnecessary points of the partition, we can
assume that if g,([t_ , t]) g then

for that such that ([t/_ , t]) B(28). This insures that (tl) is not one of
the critical points x. Now, we will change to make it transverse. We define a
new curve by

if (Et/-x, t]) . If $(Et-, t]) B,(2e), then

Case 1. If (t_ ) and (t) are both in A, these points may be connected
by a curve in A that misses x. Replace Its_ x, t] by this curve. Similarly, if
both (ti_ x) and (ti) are in A[.

Case 2. If (t_ ) e A and (tg) e A[, or vice versa, replace $l[t_ x, t]
by the curve made up of the u constant segment connecting (t_ ) to the
u-axis, the u-axis and the u constant segment connecting the u-axis to (t).
Thus is homotopic to , since we made changes only in coordinate

neighborhoods and thus e . Furthermore,

sup f(6(t)) a
ts[0, 1]

since the replacement curves had this property. Finally meets the a
transversely since the u-axis meets a transversely by (.). Thus there are only a
finite number of intersections between and all the a.
Now, take e meeting the a transversely in the least possible number of

points and satisfying sup,[o, x]f((t)) a. There must be at least one point of
intersection; otherwise we could deform below the a-level. Suppose ao. Now, B(p; i(g)) and hence is contractible in M. In particular, the
winding number of is not 1, for otherwise it would be freely homotopic to
in M which is not contractible. Thus must intersect ao at least two times.

Consider the Morse coordinate system about Xo. As we traverse the closed
curve we must pass through Xo in one of two directions, either first through
A and then A or first through A and then A. If both times passes
through Xo in the same direction, we can decompose into the product of two
closed curves. One of these must be noncontractible since is. Thus we obtain
a curve in with one less intersection with the a. If passes through Xo in
different directions, again we decompose into the product of two closed
curves, one of which is non-contractible. We can pull this curve off of Xo to
make all intersections transverse. Hence we obtain a curve in with two less
intersections with the a. Either case is a contradiction to our choice of .

Q.E.D.
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5. We are now in a position to prove the following result.

THEOREM 5.1. There exists a constant #’(3) > (3)/(n/2)3 such that for every
non-simply-connected compact 3-dimensional Riemannian manifold (M, g),
v(g) >_ ’(3)c().

Proof Using the estimates of Sections 2-4, we have either (1) if ? preserves
orientation

=3 64+ 15-- c3(g)

or (2) if , reverses orientation

v(g) > lt(r)12 dr 2 c3(g)

where ll(r)--min (4r, 4c(g)- 2r) and 12 --4c(g). One can easily check that
both constants are greater than (3)/(n/2) 16/n. Q.E.D.

Remark. If M is non-orientable, one can take the shortest orientation
reversing curve and insure the better constant 20/3 in Theorem 5.1.

It is likely that the bound in Theorem 5.1 is very weak. For one might
suspect that the ratio v(e)/c(e) would be least on manifolds with relatively
simple topology. For example, this ratio is 64/n when calculated for the
canonical metrics on RP3 and S x S2, which is over three times the value of
the constant determined in Theorem 5.1.
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