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APPROXIMATION BY RATIONAL MODULES
IN Lip o NORMS

BY
JaMmes LI-MING WANG!

1. Introduction

Let X be a compact subset of the complex plane €. We denote by #(X)p,,
the rational module

{ro+rz+ - +r,z",

where each r; denotes a rational function with poles off X. Not long ago, a
joint work by Trent and the author [8] proved that #£(X)p, is always
uniformly dense in C(X) if X has empty interior. On the other hand, it is easy
to see that #(X)p, is not always dense in D!(X), the Lip 1 closure of smooth
functions on X, even if X has empty interior. Actually every Swiss cheese X
will do the job. Thus it is interesting to ask where the cutoff point is. To be
precisely, one may ask whether #(X)p, is always dense in lip («, X) for each o,
0<a< 1, if X has no interior. In this paper, we answer this question
negatively. Furthermore, we prove that there is a close relation between the I?
density of #(X) and the Lip o density of #(X)p,.

THEOREM 1. (i) Let 2 < p <2/(1 — «). If A(X) is not dense in I¥(X) then
A(X)p, is not dense in lip (a, X).

(i) Let 2/(1 —a) <p < 0. Then there exists a compact set X such that
R(X) is not dense in I!(X) but R(X)p, is dense in lip (o, X).

The fact that the compact set X in (ii) of this theorem must have empty
interior is clear, since #(X)p; would not be dense in lip («, X) otherwise.
Similarly, in part (i) only the case X having empty interior is interesting,
although the statement is true for general compact set.

For each fixed p, 2 < p < oo, there are necessary and sufficient condition in
terms of capacity for Z(X) to be dense in I?(X) [2], [3]. Therefore there is a
way, though generally hard, to verify the hypothesis in Theorem 1. Many
examples of nowhere dense sets X so that #(X) is not dense in I*(X) are
known (e.g., see [2]). Thus for any of such X, #(X)p, is not dense in lip (&, X)
forany0<a < 1.

The case p = 2/(1 — &), however, remains open.
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THEOREM 2. (i) Let 2 < p <2/(1 — a). Then there exists a compact set X
such that #(X) is dense in I¥(X) but #(X)p, is not dense in lip (x, X).

(ii) Let2/(1 —a) < p < oo. If A(X) is dense in [¥(X) then R(X)p, is dense in
lip (o, X).

Again the compact set X in part (i) of this theorem must have no interior.
Part (ii) of Theorem 2 is proved by O’Farrell in [4]. The reason is simple:
lél,<Kl¢ I, for all compactly supported smooth function ¢, where ¢
denotes the Cauchy transform of ¢.

In Section 2, we will prove part (i) of Theorem 1. In Section 3 we will discuss
the construction of a certain type nowhere dense sets and prove part (ii) of
Theorem 1 and part (i) of Theorem 2. In Section 4 we extend these results to a
more general type of rational modules.

The author wish to thank T. Trent for many valuable conversations.

2. Proof of (i) of Theorem 1

Let 2 < p < 2/(1 — «) and suppose Z(X) is not dense in I#(X). Then there
exists a function g € IZ(X), p~* + ¢~ = 1, such that g # 0, { gf dm = 0 for all
f € R(X), where dm denotes the two-dimensional Lebesgue measure. Let dg be
the partial derivative of g with respect to Z in the distribution sense. Then
09 # 0 and dg L #(X)p,. On the other hand, given any smooth function ¢
with a directional derivative D, ¢, we have

Jg-D qum):’Jg-lim——¢(z+hu)_¢(z)dm

h—0 h

Slimflgl o+ h) — 9@

|k

h—0
s||¢llasupj—ﬂr_;dm
& & —z|

<K' ¢l

since the last integral gives a bounded continuous function. Therefore

10g(D) <Kl ¢l

for all smooth function ¢ and dg is a continuous linear functional on lip (x, X),
hence #(X)p, cannot be dense in lip («, X).

3. Examples

Sinanjan [7] has constructed a nowhere dense compact set X such that
A(X) is not dense in C(X) but is dense in every I(X), p = 1. The following
Lemma which extends this result should surprise nobody. We are grateful to
J. Brennan for a discussion of the Lemma.
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LEMMA. Let 2 < py < o be fixed. Then (i) there exists a compact X, such
that #(X,) is not dense in I?°(X ) but is dense in every I!(X,), p < p, (ii) there
exists a compact X , such that #(X ,) is dense in [?°(X,) but is not dense in any
IX(X ), p > Po.

Proof. We consider only the case 2<p,< . When p,=2 the
construction is similar. We will use Hedberg’s capacity theorems [3], [4]. Let
C, be the g-capacity, 1 <q <2, p™' + g ' =1. Then by Lemma 1, 3 in [3]
there exists constants F,; and F, so that

F16*" 1< C(BJd) < F,5*71
for any ball with radius 9.

(A) The construction of X,. Choose n, such that

S Fan~? < Cpi(Bod).

Let X, be the closed unit square with center at the origin. Cover X, with 4"
squares with side 27". Call the squares AD. In every 4{ put an open disk BY,
such that By’ and A have the same center and such that the radius of B® is

5, = 2722 =00y =22~ 40),

Let Xy = Xo — Unsno (Ui BY). Since

CooBod)\X 1) < 3, 4"C,(BY)

@
<F,Y n?

no

< qu(B 0(%)),

(X ,) is not dense in I?°(X,). Within any disk centered at x and having radius
27" there is a disk in ¢\X . having radius at least 4716, . Hence

lim 22"Cq(Bx(2_")\X1) > lim 4—1};'122r12—2n(2—¢1)/(2-qo)n—2(2~q)/(2-qo)_> 0
n—w n=o

when g > q,. Thus #(X,) is dense in I?(X) for every p < p,.
(B) Construction of X,. Let p;\ po. For each j, choose n; such that

o)
Z F222"2 —2n(2 —q;)/(2 ~q0)
nj

is sufficiently small. It is possible by the above construction to remove open
disks B of radius 6, = 272"~ for all n > n;, from

A0 = {279V <|z|<279},j=1,2,...,
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to obtain a nowhere dense set Y; such that Z(Y)) is not dense in IZ{(Y)) but is
dense in IF(Y)) since

i 4mC (Bf,”) < F2 i 2219 = 2n(2 —¢)/(2 —q0)
” 4 <
but

22"Co(BL2"™\Y) = ¢ >0 for all x in ¥,

Let X, = {JP Y; U {0}. It is easy to verify that this X, is the desired set.
With this lemma, we are now in a position to prove the remaining part of
each theorem.

Proof of (ii) Theorem 1. Let 2/(1 —a) < p < co. Take X, in the lemma,
with p, = p. Then #(X,) is not dense in I?(X,) but is dense in I?(X,) for all
2/(1 — a) < p’ < p. Part (ii) of Theorem 2 thus implies that £(X,)p, is dense in
lip (o, X ).

Proof of (i) of Theorem 2. Let 2 <p <2/(1 —a). Take X, in the lemma,
with p, =p. Then #(X,) is dense in I’(X,) but is not dense in any
p <p <2/(1 — a). Part (i) of Theorem 1 thus implies that (X ,)p, is not dense
in lip (o, X ,).

4. Rational modules of other type

Let g be a smooth function. We denote by Z(X) + #(X)g the rational
modules {r, + rig}. In [9], Trent and the author have investigated the
rational modules of this type. When X has no interior, it is proved that
R(X) + R(X)g is uniformly dense in C(X) if and only if %(Z) is uniformly
dense in C(Z), where Z = {x € X, 0g(X) =0}. A necessary condition for
R(X) + A(X)g to be dense in lip («, X) is that #(Z) is dense in lip (o, Z) (cf.
[6]). Thus one may wonder whether Z(X) + #(X)g is dense in lip (o, X) if X
has no interior and if #(Z) is dense in lip (a, Z). Again this is proved
negatively. It turns out that Theorem 1 and 2 are both valid when Z(X)p, is
replaced by #(X) + #(X)g with this restriction on g: that #(Z) is dense in
lip («, Z). The last condition can be verified in terms of Hausdorff content [5].

To see part (ii) of Theorem 2 for the module #(X) + #(X)g, we make the
following observation. A distribution T with compact support annihilates
R(X) + R(X)g if and only if (9g)T annihilates #(X). When T € Lip (¢, X)*, T'is
a measure, and T annihilates #(Z) if and only if support T'< Z [4].

To see part (i) of Theorem 1 for the module Z(X) + #(X)g, we may assume
that the set X is essential as defined in [1] without loss of generality. Then a
“localization” procedure will allow us a measure (or a L? function) u 1 #(X)
with support u disjoint from Z, and hence the distribution & (1/(8g)) will be the
desired nonzero continuous linear functional on lip (¢, X) that annihilates
AX) + R(X)g.
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The rest of Theorem 1 and 2 for the module #(X) + #(X)g just follows
easily from the lemma.
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