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APPROXIMATION BY RATIONAL MODULES
IN Lip o NORMS

BY

JAMES LI-MING WANG

1. Introduction

Let X be a compact subset of the complex plane . We denote by (X)
the rational module

{to + r +... + r},
where each rj denotes a rational function with poles off X. Not long ago, a
joint work by Trent and the author [8] proved that (X)I is always
uniformly dense in C(X) if X has empty interior. On the other hand, it is easy
to see that (X)I is not always dense in D(X), the Lip 1 closure of smooth
functions on X, even if X has empty interior..Actually every Swiss cheese X
will do the job. Thus it is interesting to ask where the cutoff point is. To be
precisely, one may ask whether (X) is always dense in lip (g, X) for each g,
0 < g < 1, if X has no interior. In this paper, we answer this question
negatively. Furthermore, we prove that there is a close relation between the Lp

density of (X)and the Lip density of (X).

THEOREM 1. (i) Let 2 < p < 2/(1- g). If t(X) is not dense in IY(X) then
(X) is not dense in lip (, X).

(ii) Let 2/(1- g)< p < c. Then there exists a compact set X such that
I(X) is not dense in I2(X) but (X)I is dense in lip (0, X).

The fact that the compact set X in (ii) of this theorem must have empty
interior is clear, since (X)I would not be dense in lip (g, X) otherwise.
Similarly, in part (i) only the case X having empty interior is interesting,
although the statement is true for general compact set.
For each fixed p, 2 < p < v, there are necessary and sufficient condition in

terms of capacity for (X) to be dense in/_e(X) I-2], [3]. Therefore there is a
way, though generally hard, to verify the hypothesis in Theorem 1. Many
examples of nowhere dense sets X so that (X) is not dense in L2(X) are
known (e.g., see [2]). Thus for any of such X, (X)I is not dense in lip (, X)
for any 0 < < 1.
The case p 2/(1 ), however, remains open.
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THEOREM 2. (i) Let 2 < p <_ 2/(1- ). Then there exists a compact set X
such that I(X) is dense in Lv(X) but I(X) is not dense in lip (, X).

(ii) Let 2/(1 ) _< p < . IfI(X) is dense in (X) then I(X) is dense in
lip (, X).

Again the compact set X in part (i) of this theorem must have no interior.
Part (ii) of Theorem 2 is proved by O’Farrell in [4]. The reason is simple:
$1[ -< K $ [In for all compactly supported smooth function $, where $

denotes the Cauchy transform of $.
In Section 2, we will prove part (i) of Theorem 1. In Section 3 we will discuss

the construction of a certain type nowhere dense sets and prove part (ii) of
Theorem 1 and part (i) of Theorem 2. In Section 4 we extend these results to a
more general type of rational modules.
The author wish to thank T. Trent for many valuable conversations.

2. Proof of (i) of Theorem 1

Let 2 _< p < 2/(1 ) and suppose (X) is not dense in L’(X). Then there
exists a function g /Y(X), p-x + q- 1, such that 0, fff dm 0 for all
f (X), where dm denotes the two-dimensional Lebesgue measure. Let ff be
the partial derivative of 0 with respect to in the distribution sense. Then
g : 0 and g _k (X)?x. On the other hand, given any smooth function
with a directional derivative D, we have

g D"dp dm f g lim
rk(z + hu)-dp(z)

h

lim gl
Ib(z + hu) b(z)

dm

I1 sup

_< K’ I1,

dm

since the last integral gives a bounded continuous function. Therefore

(401 -< K I1
for all smooth function and 0 is a continuous linear functional on lip (0t, X),
hence (X)I cannot be dense in lip (0, X).

3. Examples

Sinanjan [7] has constructed a nowhere dense compact set X such that
(X) is not dense in C(X) but is dense in every L’(X), p > 1. The following
Lemma which extends this result should surprise nobody. We are grateful to
J. Brennan for a discussion of the Lemma.
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LEMMA. Let 2 < Po < be fixed. Then (i) there exists a compact X such
that I(X) is not dense in I(X) but is dense in every I,(Xt), P < Po, (ii) there
exists a compact X2 such that (X2) is dense in (X2) but is not dense in any
Lt’(X2), P > Po"

Proof. We consider only the case 2<po<. When po=2 the
construction is similar. We will use Hedberg’s capacity theorems [3-1, [4]. Let
Cq be the q-capacity, 1 < q < 2, p-1 + q-1 1. Then by Lemma 1, 3 in [3]
there exists constants F1 and F2 so that

F162- < C(B,(6)) < F2 62-

for any ball with radius

(A) The construction of X1. Choose no such that

E F2 n -2 < Co(Bo(1/2)).
no

Let Xo be the closed unit square with center at the origin. Cover Xo with 4
squares with side 2 -n. Call the squares A. In every A{ put an open disk nn"t,
such that B and A have the same center and such that the radius of B is

di 2- 2n/(2 -q0)/l- 2/(2 -qo).

Let X1 Xo n>no (i B0) Since

Co(Bo(1/2)\Xl) <- E 4nCqo(Bt,,)
no

<_FEEn-2

< Co(o1/2),
#(X1) is not dense in (X1). Within any disk centered at x and having radius
2- n, there is a disk in \X having radius at least 4-1din. Hence

lim 22nC(Bx(2-n)\X1) > lim 4-1F122n2-2nt2-)/2-)n-22-q)/2-)-- c

when q > qo. Thus #(X1) is dense in L’(X) for every p < Po.
(B) Construction of X2. Let p Po. For each j, choose n such that

E F222n2- 2n(2-qj)/(2-qo)

nj

is sufficiently small. It is possible by the above construction to remove open
disks B of radius 6 2-2/2-o) for all n n, from

A(0) (2-</) <_ II <- 2-, j I, 2,,,,,
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to obtain a nowhere dense set Y such that (Y) is not dense in L(Y) but is
dense in L’(Y) since

but

Z 4"Cq,(B,0) < F2 Z 22"2-2"t2-q’)/t2-)
n n

22"Co(Bx(2-")\Y) > c > 0 for all x in Y.
Let X2 ]o y w {0}. It is easy to verify that this X2 is the desired set.
With this lemma, we are now in a position to prove the remaining part of

each theorem.

Proof of (ii) Theorem 1. Let 2/(1- )< p < . Take X1 in the lemma,
with Po P. Then #(X1) is not dense in E’(X1) but is dense in/Y’(X1) for all
2/(1 ) < p’ < p. Part (ii) of Theorem 2 thus implies that 0(X1)1 is dense in
lip (, X1).

Proof of (i) of Theorem 2. Let 2 < p < 2/(1 ). Take X2 in the lemma,
with Po =P. Then #(X2) is dense in /Y(X2) but is not dense in any
p < p’ < 2/(1 cz). Part (i) of Theorem 1 thus implies that 0(X2)1 is not dense
in lip (0, X2).

4. Rational modules of other type

Let 0 be a smooth function. We denote by #(X)+ t(X)o the rational
modules {to + r19}. In [9], Trent and the author have investigated the
rational modules of this type. When X has no interior, it is proved that
(X) + (X)o is uniformly dense in C(X) if and only if #(Z) is uniformly
dense in C(Z), where Z (x X, O9(X)= 0}. A necessary condition for
I(X) + t(X)o to be dense in lip (, X) is that #(Z) is dense in lip (, Z) (cf.
[6]). Thus one may wonder whether (X) + I(X)o is dense i;n lip (, X) if X
has no interior and if #(Z) is dense in lip (, Z). Again this is proved
negatively. It turns out that Theorem 1 and 2 are both valid when #(X)I is
replaced by #(X)+ I(X)o with this restriction on 0" that #(Z) is dense in
lip (, Z). The last condition can be verified in terms of Hausdorff content [5].
To see part (ii) of Theorem 2 for the module (X)+ (X)o, we make the

following observation. A distribution T with compact support annihilates
I(X) + I(X)9 if and only if (9)’annihilates #(X). When T Lip (, X)*, is
a measure, and T annihilates Or(Z) if and only if support "c Z [4].
To see part (i) of Theorem 1 for the module #(X) + I(X)o, we may assume

that the set X is essential as defined in [1] without loss of generality. Then a
"localization" procedure will allow us a measure (or a L function) # .1_ (X)
with support # disjoint from Z, and hence the distribution O (#/(O0)) will be the
desired nonzero continuous linear functional on lip (, X) that annihilates
(x) + (x)o.
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The rest of Theorem 1 and 2 for the module (X)+ (X)ff just follows
easily from the lemma.
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