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1. Introduction

Fermat considered the problem of characterizing the set Ea of primes p
for which

Q(x, y) axE + bxy + cyE= +_p (1.1)

for some integers x, y. In a letter to Mersenne dated December 26, 1640,
he asserted that the form xE + yE represented all primes p -= 1 (mod 4)
and no primes p -= 3 (mod 4). In a letter to Pascal written in 1654, he
asserted that for the forms xE + 2yE, xE + 3yE the sets E consisted of all
primes in certain arithmetic progressions. He conjectured the same for
xE + 5yE (see [7, p. 3]). It is plausible that Fermat had proofs of his
assertions, although he never revealed them [17, p. 104]. Some of Fermat’s
assertions were subsequently proved by Euler in 1761. Euler had already
observed that for other forms, e.g., xE + 1 lyE, there was no obvious char-
acterization of the set E in terms of primes in arithmetic progressions [7,
p. 3].
The problem of characterizing the sets e motivated many subsequent

investigations. Gauss considered two binary quadratic forms Q1 and Q2 to
be equivalent if one can be obtained from the other by a unimodular integer
transformation of variables. Equivalent forms represent the same sets of
primes. A form can represent infinitely many primes only if it is primitive,
i.e., (a, b, c) 1. The set of all primitive forms having the same discriminant
D bE 4ac fall into a finite set of equivalence classes, which we denote
Cl(D). Gauss developed a theory of genera which restricted the values that
could be represented by a given binary quadratic form to be those for which
certain auxiliary quadratic congruences were solvable or unsolvable in spec-
ified ways. For example, for D -164 -4.41, there are eight classes
in CI(D). There are two auxiliary quadratic congruences:

(A) x--41 (modp), (1.2)

(B) x-- 1 (mod p). (1.3)
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The eight classes fall into two genera as follows:

fX2 / 41y2 1
p 2x2 / 2xy / 21y2

Sx2_+ 4xy / 9y2

I3xE +- 2xy + 14y21P
6x2_+ 2xy + 7y2 J

:> (A), (B) both solvable,

:> (A) solvable, (B) not solvable.

(1.4)

Those p for which (A) is unsolvable are not represented by any form of
discriminant -164. Thus, (1.4) shows that Ee for Q x2 + 41y satisfies

where A, B are the sets of primes for which (1.2) and (1.3), respectively,
are solvable. The sets a and En consist of primes in certain arithmetic
progressions (mod 41) and (mod 4) respectively; this is a consequence of
the quadratic reciprocity law. The assertion (1.4) says that a prime p for
which (A) and (B) are solvable is represented by at least one of the forms
on the left side of (1.4), but does not specify which one(s).
A further separation of the sets of primes represented by classes of

quadratic forms can be obtained using class field theory. For the example
D -164, using an explicit construction of the Hilbert class field of
Q(/-41), H. Cohn and G. Cooke [6] showed that the additional polynomial
congruences

(C) x 32 + 5X1X2 (mod p),

(D) x42 (3 + x)(1 + XE)X3 (mod p),

can be used to refine (1.4) as follows:

p = x2 + 41y2 :> (A), (B), (C), (D) solvable

p 2x2 + 2xy + 21y2 :> (A), (B), (C) solvable and (D) not solvable,

p 5x2

___
4xy + 9y2 :> (A), (B) solvable and (C) not solvable.

However, these congruences do not separate the forms in (1.5). Cohn and
Cooke raised the question of whether there is any way to "congruentially"
distinguish the primes represented by the forms 3x2 +__ 2xy + 14y2 from
those represented by the forms 6x2

___
2xy + 7y2.

This paper considers Cohn and Cooke’s question in the context of char-
acterizing those sets of primes determined by systems of polynomial con-
gruences. Let P denote the set of all primes. Let S denote a (simultaneous)
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system of polynomial congruences given by

fl(xl, x,) =- 0 (mod p), fro(x1, x,) =- 0 (mod p). (1.6)

Let Es denote the set of primes for which (1.6) is solvable, and
P Es those for which it is not. We call a set Es for S given by (1.6) an
elementary SPC-set. (Here SPC is an abbreviation for Systems of Polynomial
Congruences.) An SPC-set E is any set of primes in the Boolean algebra
of subsets of P generated by all the sets Es, i.e., E is a finite union of sets
of the form

n n n n n

In characterizing sets of primes, we define sets 1 and 2 of primes to
be equivalent, written E1 E2, if they differ by only a finite set of primes.
We shall relate SPC-sets to the sets of primes having a given Artin symbol

over a finite algebraic number field; these are exactly the sets of primes to
which the Chebotarev density theorem applies [4]. Let K be a finite Galois
extension of Q and let Dr be the discriminant of K. Let p be a prime with
p Dr. To any prime ideal P lying over (p), we associate the Frobenius
automorphism tr o’e Gal(K/Q) over Q which is the unique cr for which

ct-=ct (modP)

for all algebraic integers a in K. For p Dr the Artin symbol is given by

K/Q] =(tre" P lies over (p) in
(p) J

It is a conjugacy class of Gal(K/Q). To each conjugacy class C of Gal(K/Q),
we associate the elementary Chebotarev set

F(C,K) P" l
C (1.7)

A Chebotarev set is any set in the Boolean algebra of subsets of P generated
by the elementary Chebotarev sets. The set of primes Ee represented by
a binary quadratic form Q is equivalent to a Chebotarev set (see Theorem
4.1).

SPC-sets are related to a subclass of the Chebotarev sets which we call
Frobenius sets. To define these, we say elements z, "/’2 of a group G are
in the same division if there exists an element o- G and an integer j with
(j, ord(z)) 1 such that

o"ho-- z2. (1.8)

This is an equivalence relation, and divides G up into cosets under this

These sets are exactly the sets of primes described in the Frobenius density theorem (cf.
[11, II, p. 129]), hence the choice of name.
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equivalence which we call divisions. (This is a translation of the term
Abteilung used by Frobenius [8], [11].) A division C of G is a disjoint union
of conjugacy classes. An elementary Frobenius set associated to a division
C of Gal(K/Q) is given by

(1.9)

where C runs over the conjugacy classes of Gal(K/Q). A Frobenius set is
any set in the Boolean algebra of subsets of P generated by the elementary
Frobenius sets.
We characterize SPC-sets as follows.

THEOREM 1.1. Any SPC-set is equivalent to a Frobenius set. Conversely,
any Frobenius set is an SPC-set.

We also show that elementary Frobenius sets can also be characterized
as the minimal sets of primes determined by splitting conditions on the
ideal (p) in an algebraic number field. This characterization has been known
in principle since Frobenius’ time, but I do not know of any explicit statement
of it in the literature. To state this characterization precisely, let k be a
finite extension of Q, not necessarily Galois, and let p be a prime, p Dk.
Then in the ring of integers of k one has the ideal factorization

g

(P) [-I qi
i=1

where the q are distinct prime ideals whose norms are given by

Nqi P.
We call the partition of n [k:Q] given by

Spl(p k) {f < g}

the splitting type of p in k.

THEOREM 1.2. Let K be a normal extension of Q. Let Cl, C2 be distinct
divisions of GaI(K/Q).

(i) If pl, P2 are primes in F(C, K) then

Spl(pl k) Spl(p2; k)

for all subfields k of K.
(ii) If pl F("I, K) and P2 F((2, K) then there is a subfield k of K

for which

Spl(p k) Spl(p2 k).
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Theorem 1.1 cannot be used to decide if a given set of primes E is an
SPC-set until we have criteria to recognize whether E is equivalent to a
Frobenius set. Our next result is a finite criterion to decide whether or not
certain Chebotarev sets are Frobenius sets. We say a Chebotarev set is
defined over K if it is a union of elementary Chebotarev sets F(C, K). It
is a fact that every Chebotarev set is equivalent to a Chebotarev set defined
over some field K (Lemma 3.1). We say analogously that a Frobenius set
is defined over K if it is a union of elementary Frobenius sets F(C, K).
Every Frobenius set is equivalent to a Frobenius set defined over some
field K (Lemma 3.2).

THEOREM 1.3. A Chebotarev set defined over K is equivalent to a Frobenius
set if and only if it is a Frobenius set defined over K.

We apply Theorems 1.1 and 1.3 to decide whether or not certain specific
sets of primes are equivalent to SPC-sets. The elementary Chebotarev sets
for Q(exp(2rri/d)) are just sets of primes in arithmetic progressions (mod
d). We obtain the following result.

THEOREM 1.4. The set {PIP =- a (mod d)} is equivalent to an SPC-set
if and only if either a is of order 1 or 2 in (Z/dZ)* or (a, d) > 1.

This theorem shows, for example, that {PIP 2 (mod 5)} is not equivalent
to an SPC-set.
The primes represented by a given primitive form Q(x, y) of discriminant

D are an elementary Chebotarev set for a certain class field over
Q("k/). We obtain the following result.

THEOREM 1.5.
D. The set

Let Q be a primitive binary quadraticform ofdiscriminant

i,a {p Q(x, y) +_ p for some x, y Z}

is equivalent to an SPC-set if and only if [Q] is of order 1, 2, 3, 4 or 6 in
the form class group CI(D).

In particular the sets

1 {P :P 3x2 +-- 2xy + 14y2}, 2 {P:P 6x2 --- 2xy + 7y2},

in Cohn and Cooke’s example arise from classes of order 8 in Cl(D).
Theorem 1.5 asserts these are not equivalent to SPC-sets. Thus Cohn and
Cooke’s question is answered in the negative.
Theorem 1.4 shows that the set of primes Q representable by a given

binary quadratic form Q cannot always be described in terms of polynomial
congruences. Such sets Q can be characterized in other ways. Recently
S. Gurak [9] has given criteria to recognize the set of primes Ee represented
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by an arbitrary binary quadratic form Q in terms of the values of certain
auxiliary linear recurrences (mod p).
Theorem 1.1 and 1.2 are proved in Section 2. The proof of Theorem 1.1

reduces the problem to considering SPC-sets determined by congruences
in one variable by a result of Ax [1] (see also Odoni [12]). Factorization
of polynomials in one variable (mod p) is related to splitting of primes in
number fields, and the theorem follows using elementary group-theoretic
arguments.
Theorem 1.3 is proved in Section 3 by simple group-theoretic arguments.

The applications follow in Section 4.

2. SPC-sets and Frobenius sets

We observe first that if E is an SPC-set and E 2, then 2 is an SPC-
set. Indeed, if q is a prime, the set of primes for which

qx + 1-=0 (modp) (2.1)

is solvable is just P {q}. Consequently, using unions, intersections and
complements of such sets, we can add or delete any finite set of primes
to E1 and still have an SPC-set.

Proof of Theorem 1.1. Let Ak denote the Boolean algebra generated by
the elementary SPC-sets s where S is given by a set of polynomials

fi(x, Xk) 0 (mod p),

for 1 < < m all lying in Z[x, x]. Clearly, A1 C_ A2 C_ A3 C_ and
A t_J=l Ak is the collection of all SPC-sets. Ax [1] (see also Odoni [12,
Theorem 1A]) proves the following result.

PROPOSITION 2.1. A A.

Let F denote the Boolean algebra of all Frobenius sets, and define

F* {Z EFforsomeFF}.

F* is a Boolean algebra of sets. The assertion of Theorem 1.1 is that
F* A.
To show A C_ F* it suffices by Proposition 2.1 to show A C F*. To do

this it suffices to show that s F* for a set of s that generate A as a
Boolean algebra.

LEMMA 2.2. A is generated as a Boolean algebra by the sets Es where
S {f(x)} and f(x) is a single polynomial irreducible over Z[x].

Proof. We know A is generated by sets Es where

s {fi(x)}?-,. (2.2)
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Suppose Fl(X) g(X)gz(X) over Z[x]. Then

s s, U s where Sj {gj(x)} tO {f,.(x)}’=lforj 1, 2.

This shows that any s of the form (2.2) decomposes as a finite union of
sets of the form (2.2) where all the f,.(x) are distinct irreducible polynomials
over Z[x], so that A is generated by s of this special form.
We claim that if Es involves two or more distinct irreducible polynomials,

then s is a finite set. Indeed distinct irreducible polynomials are relatively
prime over Q[x], so we can find h(x), h2(x) Z[x] such that

f(x)hl(x) + fE(X)hE(X) N,

where N is a nonzero integer. Hence,

fi(x) =- 0 (mod p)

for 1, 2 implies N 0 (mod p) so s is finite. But all sets E can be
obtained as unions of complements of sets s where S {qx + 1} as in
(2.1). The lemma follows.
We next show that sets s where S {f(x)} and f(x) is irreducible are

described in terms of Artin symbols in the normal closure of a field Q(0)
generated by a root 0 of f(x).

LEMMA 2.3. Let f(x) be an irreducible polynomial over Z[x]. Let 0 be
a root off(x), set k Q(0), and let K be the Galois closure of k. Let

D disc(K)’disc(f(x))Nc/e(O).
When (p, D) 1, the following are equivalent:

(i)
(ii)

(iii)

The congruence f(x) 0 (rood p) is solvable.
There is a prime ideal of degree one lying over (p) in Q(0).
The conjugacy class

(p) J
of Gal(K/Q) contains an element Gal(K/k).

Proof. (i) :> (ii) This is a result of Kummer; cf. Lang [13, p. 27].

(ii) (iii) Let Or denote the ring of integers of K. Let ,5 be a prime
ideal of degree 1 in k lying over (p), and P a prime ideal of K lying over,. Note (p) is unramified in K since p disc (K). Now there is a

such that

X XN X
p (mod P)
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for all x Or. For the same P, there is some

I_ (p) J
such that x" -= x" (mod P) for all x O/c. Hence,

x’--x=0 (modP).

Hence rz- is in the inertia group, which is trivial since (p) is unramified,
so o- . But cr Gal(K/k).

(iii) ::> (i) By hypothesis there exists a prime ideal P in K lying over
(p) with o" o-e and o- Gal(K/k) such that

x xp (mod P) (2.3)

for all x Oc. Let P lie over , where is in k. Since o- leaves k fixed
(2.3) yields

x=xp (modP),

for all x O. Applying Gal(K/k) we obtain x xp (mod P’), for all
x O. This implies that

xp - x (mod ), (2.4)

by the Chinese remainder theorem, since/Oc 1-I, P" where z runs over
all elements of Gal(K/k). In particular (2.4) gives 0p 0 (mod ). Since 0
is prime to p, we obtain

0- (mod ).

However, the elements 1, 2, p 1 are the complete set of roots to
x- 1 (mod if), so 0 a (mod ) for some a Z. Hence f(a) =- 0 (mod
) so that f(a) 0 (mod p).

We continue the proof of Theorem 1.1. It is now easy to show A C_ F*.
Given s with S {f(x)} an irreducible polynomial, then by Lemma 2.3,

Es U’F(C, K) (2.5)

where the prime indicates the union is over all conjugacy classes C containing
an element of Gal(K/k). Now the right side of (2.5) is actually a union of
divisions. To see this, suppose C, C2 are two conjugacy classes in the
same division, so that there exist z C with z] z2 for some integer j.
If o- Gal(K/k) is in C1 then o- txztz- for some/x. Then

/.6"/"2/.6 /1.67" /d, (/I,’/" 1/L6 1) j o.j

is in Gal(K/k) q C2. Hence, the right side of (2.5) is a Frobenius set. By
Lemma 2.2 we conclude A C F*.
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To show F* C_ A, it suffices to show F C_ A, by the remarks preceding
the proof. To show F C_ A we need only show that each elementary Frobenius
set is equivalent to a set in A. Let C’ be a division of G Gal(K/Q).
Take tr t’, let H (tr) be the cyclic subgroup generated by tr, and let
k be the fixed field of H. By the theorem of the primitive element, we can
write k Q(0), where 0 is an algebraic integer, and letf(x) be the irreducible
polynomial over Q of which 0 is a root. If S {f}, then by Lemma 2.3,
Es U’F(t, K) where the prime indicates the union is over all divisions
t with o- ’ for some i. Let n ord(tr) and let p, Pm be the primes
dividing n. Repeat the construction above for the cyclic groups H
(trp’) with associated fixed fields Q(0i) and polynomials f(x). If Si {f(x)},
then

2,s, U’F(, K)

where the prime indicates the union is over all divisions with o-Jp’ ’for some j. Consequently,

X,sf3 (i__(P-Y-’s’)] e1"3 F(’,K). (2.6)
(j, n)

But if o- t2’ then all O"i with (i, n) are in ’. Thus the right side of
(2.6) is just F(’, K) while the left side is an SPC-set.

Proof of Theorem 1.2. To prove (i), we show how to recover Spl(p; k)
for any given subfield k of K from the Artin symbol

K/Q]

and then show that Spl(p; k) depends only on the division t of Gal(K/Q)
which

is in.

K/Q]

Let (p) be unramified over K, let fi be a prime of k lying over (p), and
P a prime of K lying over . Set N, Nk/e PY.
The following proposition (Hasse [10], Bd. III, pp. 123-4) describes how

Spl(p; k) may be recovered from

(p) j.

PROPOSITION 2.4. Consider a prime p Dk and a prime ideal P ofK lying
over (p). Let G Gal(K/Q), H Gal(K/k) and let Z Z(P) (trl,) be
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the cyclic subgroup of G generated by the Frobenius automorphism trp.

Choose double coset representatives {’i" 1 < , < r} for H G\Z so that G
is the disjoint union

G G HziZ.
i=1

Then the ideal factorization of (p) over k has the form

(P) (-I qi.
i=1

The prime ideals qi are given by

qi 1-I ’(P),

where the product is over all distinct prime ideals of K of the form ’(P)
for some " H’iZ. In addition

Nk/Qqi pS

where f is the smallest positive integer such that (o’i) H where tri
-1

,l" O’PT"

Note that for any the integer f depends only on Z and not on the
particular choice of generator tri of Z. Now let

and let

[K/Q]C, [(Pl’)J

K/Q]

be another conjugacy class in t, so that C C1k for some k with (k, ord
C1) 1. Then we observe that there are prime ideals P, P2 in K lying
over (Pl), (P2) respectively whose Frobenius automorphisms trl,,, O-v satisfy
rv (o’Vl)k. Since Z(P1) Z(P2) in this case, Proposition 2.4 immediately
implies that

Spl(p k) Spl(p2 k).

This proves (i).
To prove (ii), let

(p)j
and [(p2) j

lie in different divisions C1 and C2 of Gal(K/Q). In particular, by interchanging
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p and P2 if necessary, we can find an element

K/Q]
(Pl) J

such that 0-J I--’2 for all j > 1. To see this, suppose 0-J -for some z
2. Then necessarily (j, ord(0-)) > since tl and -’2 are distinct divisions.

Hence oral0") < oral(o-). Since ord0-) < ord0") for all j, and since all elements
of a division have the same order, - ( 1 for all j.
Now let k be the field fixed under the group H {0-k < k < ord 0-}.

Then Lemma 2.3 shows there is a prime ideal of degree 1 lying over (Pl)
in k, i.e., 1 Spl(p; k). On the other hand, Lemma 2.3 also shows (
Spl(P2; k) because C2 contains no element of Gal(K/k) H. Hence Spl(p;
k) Spl(p2 k).

3. Frobenius sets and Chebotarev sets

Our first step in relating Chebotarev and Frobenius sets is to show that
any Chebotarev (resp. Frobenius) set is equivalent to a finite union of
elementary Chebotarev (resp. Frobenius) sets defined over a single field K.

LEMMA 3.1. Let F be a Chebotarev set. There is afinite normal extension
K of Q and a set of conjugacy classes Ci of Gal(K/Q) such that F
Ji F(Ci, K).

Proof. We are given a finite Boolean expression for F in terms of el-
ementary Chebotarev sets over different fields. Using the fact that

r(c, K) P F(C, K) I,.J r(c’, K), (3.1)
C’#C

we may eliminate complements from the expression. By distributing unions
over intersections, we may suppose that

r p, F(Cij, Kij) (3.2)

Next suppose that a normal extension K over Q contains two normal
extensions K, K2 over Q. The restriction map

i, Gal(K/Q) --> Gal(K,/Q)

sending o- ---> o’lr, is a homomorphism, as is

0"2 GaI(K/Q) --, Gal(K2/Q).

Hence, if 0"1 z0"2’- in Gal(K/Q) then

(3.3)
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and similarly for K2. From the property of Artin symbols

K1/Q]
(p) J L (p)3

we see that F(C, K) is equivalent to a finite union of elementary Chebotarev
sets in K. The same is true for F(C, K), hence,

F(C, K) fq F(C, K) U; F(C, K), (3.4)

where the prime indicates C runs over a certain subset of the conjugacy
classes of Gal(K/Q).
Take K to be the compositum of the fields K:. By repeatedly applying

(3.4) in (3.2), we obtain

r U F(C, g).

LEMMA 3.2. Let F be a Frobenius set. There is a finite normal extension
K of Q and a set of divisions i of GaI(K/Q) such that F LJi F(ti, K).

Proof. Similar to that of Lemma 3.1. We note that (3.3) generalizes to

tr,lr, rlr,(o’2)lr:’-ll, (3.5)

which shows that if K C K and both K, K2 are normal over Q, then
F(C, KI) I..J F(Ci, K) for some set C of divisions of Gal(K/Q).

Theorem 1.3 is a consequence of the following easy group-theoretic lemma.

LEMMA 3.3. Let f" H ---> G be a surjective homomorphism. Let C be
a division of G composed of conjugacy classes {Ci} and let C’ be a division
of H. The following are equivalent.

(i) f(C’) C O.
(ii) f(C’) Ci C for all i.

(iii) f(C’) C C.

Proof. (ii) => (iii) =), (i) is obvious.

(i) ==), (ii) Since f(C) C , pick C and O" C such that O"

f(tr’), try’ C’. Now let % be an arbitrary element of C. There exists an
element/x and an integer my such that

O’j ,,j(O’i)mj 1/,; 1, (3.6)

where (m, ord(tri)) 1. Since ord(tri) ord(o-’), by adding a suitable
multiple of ord(o-) to m we may suppose (my, ord(tr’)) 1. Pick/x) H
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with f(/z) /x. Then set

0"7 1.1 0")mj(b, --1 (3.7)

so 0" C’. Applying f to (3.7) and applying (3.6) gives f(0"’) 0-j so
o-j f(c’) cj.

Proofof Theorem 1.3. We apply Lemma 3.3. Suppose F is a Chebotarev
set defined over K which is not a Frobenius set defined over K. Hence,
there exist conjugacy classes C, C2 in a division such that

r(c, K) C F, r(c2, K) f) r 0. (3.8)

Now we suppose F is equivalent to a Frobenius set and obtain a contradiction.
By Lemma 3.2 we may suppose F Ui 1-’(Ci, L), and without loss of
generality we may suppose K C_ L. Let f" Gal(L/Q) Gal(K/Q) be the
restriction map and observe that

F(Ci, K) F(C, L), for 1, 2.
f(C) Ci

Consequently, there is some division Ci of Gal(L/Q) and C c_ Ci with
f(C) C. By Lemma 3.3 there exists another conjugacy class C’
such that f(C’) C2. Then

F(C’, L) C F(Ci, L) N F(C2, K) C F N F(C2, K)

is an infinite set of primes, contradicting (3.8).

4. Applications

Proof of Theorem 1.4. In the case that(a, d) > the set{p p a
(mod d)} is finite, hence is an SPC-set.
The classes a {P P a (mod d)} are equivalent to the elementary

Chebotarev sets defined over the cyclotomic field K Q(d) where

e exp

To be precise, let tr, Gal(K/Q) be defined by ()a (d)a, and note
the mapping a o- gives an isomorphism (Z/dZ)* Gal(K/Q). Since
(Z/dZ)* is abelian, the conjugacy classes C are single elements a and

F(0-a, K) {p p a (mod d)}

(cf. Birch [2, p. 86]). Next note that the division C containing an element
a of an abelian group A is obviously ---’a {ak (k, ord(a)) 1}. If
ord(a) n then Ca contains b(n) elements. The only values of n for which
b(n) 1 are n 1, 2. Finally 0"a has order 1 or 2 if and only if a has
order 1 or 2 in (Z/dZ)*.
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Proof of Theorem 1.5. We recall the following facts. Given a discriminant
D, we can uniquely write D df2 where d is a field discriminant, i.e.
d -4, +__8 or d 1 (mod 4) and d is squarefree or d/4 1 (mod 4)
and d/4 is squarefree. There is an isomorphism q between the group of
form classes CI(D) and the ring class group (mod f) over Q(/-d), which
we denote by Cly(Q(-d)). Here

Cl(Q()) I/P,

where I is the (multiplicative) group of integral ideals of Q(’k/-d) with norm
relatively prime tofand Pr is the subgroup ofI consisting of those principal
ideals (t) which have a generator a such that

a k (mod (f)), k Z, (4. l)

and if D > 0 then a is also required to be totally positive. Furthermore,
for any prime with (p, D) 1, a form Q in the class [Q] integrally represents
p if and only if the corresponding ring class (mod f) contains a prime ideal
of norm p. (For these facts see Bruckner [3], Cohn, Chapters 14B, 14C
[5], or Stark [15]).
By the fundamental theorem of class field theory, there exists a field Ko

called the ring class field (mod f) over Q(’v/) having the following two
properties.

(1) Ko is Galois over Q(’x/-d-).
(2) The Artin map If Gal(K/Q(k/-)) induces an isomorphism

Cly(Q()) Gal(K/Q(/)).

We note that the Artin map sends a prime ideal P of Q(d) to the Artin
symbol

We next show that

(3) K is normal over Q.

Indeed let o- K o-K be an isomorphism of K onto one of its conjugate
fields. The set of prime ideals that split completely in K are those in P,
so the ones that split completely in trK are those in tr(Pr). But cr(Pr) Py
since (4.1) is invariant under r and total positivity is also preserved. By
the uniqueness of the class-field correspondence, trK= K.
We next have the folloWing fact [3, Satz 8].

(4) Gal(K/Q) is a generalized dihedral group over A GaI(K/Q(V/-d)).
It has the presentation: o-2 e, o-ao- -1 a -1 for all a A.
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In this case

Gal(K/Q) {a a A} LI {o-a a A} (4.2)

is the semi-direct product of Gal (k/Q(x/-)) by Z/2Z with the specified
dihedral action.

The next two lemmas supply the information needed to apply Theorem
1.2.

LEMMA 4.1. (i) The conjugacy classes of Gal(K/Q) are {e}, {tr}, together
with {a}, {tra} for elements a of order two in a and {a, a-l}, {tra, o’a -1}
for elements a of order greater than two in A.

(ii) The divisions of Gal(K/Q) are {e}, {tr}, together with {a}, {o’a} for
elements a of order 2 in A and the sets

{aJ (j, ord a) 1}, {tra J’ (j, ord a) 1},

for elements a of order greater than two in A.

Proof. The assertions of the lemma are easily verified by calculations
using the representation (4.2), the presentation (4) and the fact that A is
abelian.

LEMMA 4.2. The primes p represented by the quadratic form Q of dis-
criminant D with (p, D) are exactly those for which

K/Q] {a a-’}
(p) J

where a is that element of Gal(K/Q("x/-)) corresponding to [Q] under the
isomorphism

lf(Q(’)) /Q(d))q. CI(D) C Gal(K

Proof. Let p be a prime represented by the form Q with (p, D) 1.
As remarked earlier, the class +([Q]) in Cly(Q()) contains a prime ideal
P of norm p. Set

a

and note by property (2) above that a tk([Q]). By the definition of
the Artin symbol, for each prime P of K lying over P,

X X
NP (mod ) (4.3)

for all x Or, where NP NQx//e P P. But (4.3) shows that a
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K/Q]
(pi 1’

By Lemma 4.1 (i),

K/Q] {a, -1). a
(p) J

We now complete the proof of Theorem 1.5. By Lemma 4.1, for each
a GaI(K/Q(N/-d)) we have

{the division containing a} {a, a-1)
if and only if 6(ord a) 1 or 2, where (.) is Euler’s totient function.
This holds only if ord a 1, 2, 3, 4, or 6. Since is an isomorphism,
this is true if and only if [Q] has order l, 2, 3, 4 or 6 in the form class
group Cl(D).
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