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1. Introduction

Let H be a subgroup of a finite group G and let F be any field. There
is a procedure called "tensor induction" which one can apply to an arbitrary
FH-module W to obtain an FG-module W(R)G of dimension equal to (dim
W)IG:nl. Roughly speaking, W(R) is the tensor product of IG’H copies of
W, and the action of G permutes the factors in much the same way that
it permutes the direct summands which make up the ordinary induced
module Wa.
The construction of the tensor-induced module was introduced by Dade

(Section 9 of [2]) and independently by Dress [3]. Tensor induction has
been used by Dade, T. R. Berger, R. Kn6rr and others to study certain
problems in representation theory. Expositions of tensor induction, including
the details of the construction, can be found in [1] and [5].

Let us now limit attention to the case where F C, the complex numbers.
If W affords the character 0 char(H), it is not hard to compute the
character afforded by W(R), which we denote by 0(R). The formula thus
obtained expresses the values of 0(R)G in terms of the values of 0, and this
formula can be used to define (R) for any class function of H. What
results is a class function of G which is not, of course, in general, a
character.

THEOREM A. Let H C_ G and let p be a class function of H.
(a)
(b)
(c)
(d)

If is a character, then so is (R).
If is a permutation character, then so is (R).
If is a generalized character, then so is (R).
If is a generalized permutation character, then so is 9

(R)G

(R)GPart (a), of course, is no surprise since if is afforded by W, then
is afforded by W(R)a. Part (b) also is fairly routine, since if W is a permutation
module, it is not hard to see that W(R) is also.
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By a "generalized character", we mean an element of Z[Irr(G)], a Z-
linear combination of irreducible characters, or equivalently, a difference
of characters. Since the tensor induction map is decidedly nonlinear, it is
perhaps a surprise that part (c) of Theorem A, which is due to Kn6rr [6],
should be true. Kn6rr’s proof uses Brauer’s characterization of characters
to reduce the problem to the case where G is nilpotent and H is a maximal
(hence normal) subgroup.
A "generalized permutation character" is a difference of permutation

characters. Again, because of the nonlinearity of tensor induction, part (d)
of the theorem might be somewhat unexpected. The authors are unaware
of a reference to this fact in the literature.
The purpose of this paper is to give short and easy proofs of (c) and (d),

assuming (a) and (b).

(R)G2. Definition of

Let H C_ G and choose a right transversal T for H in G. Since G acts
on the set of right cosets of H by right translation, this induces an action
on T. We therefore write t g T to be the representative of the coset
Htg, so that tg(t g)- H.

Fix g G and let n(t) denote the size of the (g)-orbit on T which contains
t. Thus, by the same calculation as is used when developing the transfer
map, we have

tgnt)t- H for T.

Furthermore, up to conjugacy in H, this element is independent of the
choice of in its (g)-orbit. Let To be a set of representatives for the
orbits on T.

DEFINITION 2.1. Let o be a class function of H. The function o(R) on
G is given by the formula

99 (R)G(g) H tp(tgn<t)t- 1).
tTo

It is clear from the fact that o is a class function of H, that the value of
,(R)(g) given in Definition 2.1 is independent of the choice of To. It is also
routine to check that it is independent of the choice of the transversal T,
so that o(R) is a well defined function on G. Using once again the fact that
so is a class function, it is easy to show that o(R) is a class function of G.

It is somewhat more difficult to show, though we will not give the proof
here, that if o is the character of H afforded by some CH-module W, then
o(R) is the character afforded by W(R). (This computation was first done
by Dade and can be found in his unpublished preprint [2] where it appears
as 9.20.)
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Now suppose o is the permutation character of the action of H on some
set ft. (We write ah to denote the image of a 1 under h H.) Let T
be a right transversal for H in G as before, and let be the set of all
functions T -, ft. We describe an action of G on as follows. If f
and g G, then f is defined by

(t)(fg) [(t" g-)f]h for r
where h (t g-)gt- H. It is routine to check that this does define
a permutation action of G on and that the associated permutation character
is p(R).

In view of the above discussion, we shall assume parts (a) and (b) of
Theorem A as known.

3. Generalized Characters

Let R denote the ring of all algebraic integers in C. Note that if is an
R-valued class function of H C_ G, then p(R) also has values in R. Suppose
I C R is an ideal and that 0 is another R-valued class function of H and
that o(h) O(h) mod I for all h H. It is then clear that o(R)(g) O(R)(g)
for all g G.

LEMMA 3.1. Let H C_ G and let o Z[Irr(H)]. Then (R) R[Irr(G)].

Proof. Write a /3 where a, /3 Char(H) and let 0 a +
([GI 1)/3 so that 0 Char(H). Then o(h) O(h) moO IGIR and so

p(R)G(g) =- O(R)6(g) mod IGIR.
It follows that

[,,o(R) O(R)a, X] R

for all X Irr(G), since X has values in R. Thus ,(R) 0(R) R[Irr(G)],
and since 0(R) Char(G), the result follows.

We remark, in connection with Lemma 3.1, that it is not sufficient to
assume that R[Irr(H)] in order to conclude that (R) R[Irr(G)]. In
fact, taking IG[ 2 and H the identity subgroup, already yields a counter-
example" If a R, one easily computes that

a+a
[(aln)(R), 1]

2

and this is not always integral.
To complete the proof of part (c) of Theorem A, it suffices to show that

p(R) Q[Irr(G)] when p Q[Irr(H)].

Since Q R Z, this will show that o(R) Z[Irr(G)] if Z[Irr(H)].
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To this end we give a necessary and sufficient condition for a class function
of G to lie in Q[Irr(G)].
Let e be a primitive [Gl-th root of unity. For each cr Aut(C), we have

that e em() for some uniquely determined integer m(tr), with <
m(o-) < Ial.
LEMMA 3.2. Let 0 be a class function of G. Then 0 Q[Irr(G)] iff

O(g) O(gm)) for all g G and cr Aut(C).

Proof. It is well known that x(g) x(gm(=)) for X Irr(G) and therefore
O(g) O(gm(cr)) if 0 is a rational linear combination of X Irr(G).

Conversely, let 0 be a class function which satisfies the condition and
write 0 Eaxx for some uniquely determined complex numbers ax. Then
for o- E Aut(C) and g G we have, ax(g) O(g) O(gm()) ax(gm()) a ax(g).
From the uniqueness of the a, we conclude that a a for all tr

Aut(C), and thus all of the a lie in Q.

Proof of Theorem A, part (c). As was remarked above, it suffices to
show that

o(R) Q[Irr(G)]. if o Q[Irr(H)],

and so we check the condition of Lemma 3.2. Let tr Aut(C) and write
m m(tr). Let g G. Then

(R)G(g) H (tgn(t)t- l) H qg(tgmn(t)t- )"
tTo tTo

However, (m, IGI) and so (g) (gin) and the orbit decomposition of
T corresponding to g is the same as that for gm. Therefore, we have the
same exponents n(t) for g as for gm, and the same set To works for both
elements. It follows that

(R)G(g) qg (R)G(gm)
and the proof is complete.

4. Generalized Permutation Characters

Let P(G) denote the ring of generalized permutation characters.

LEMMA 4.1. Let 0 be a generalized character with rational values divisible
by IGI2. Then 0 P(G).

Proof. We have IGII [0, X] for all X Irr(G) since X has values in R.
Thus (1/IGI)O is a generalized character and we can write it in the form



DAVID GLUCK AND I. M. ISAACS

a /3 with a,/3 Char(G) and [a,/3] 0. Since a and fl are uniquely
determined by the rational character 0, they are fixed by all field auto-
morphisms and so are themselves rational valued.
By a theorem of Artin (Theorem 5.21 of [4]), IG[a and IG[fl lie in P(G)

and hence 0 [G[(a fl)

Proof of Theorem A, part (d). We have o P(H) and so we can write
o a /3 where a and /3 are permutation characters of H. Let 0
c + (IG] 1)ft. Then 0 is a permutation character and O(h) o(h) modlGI.
Thus 0(R) is a permutation character of G and o(R) is at least a generalized
character of G which is rational valued.
We have O(R)(g) =- o(R)(g) modlGI: and thus Lemma 4.1 applies to

o(R) 0(R) which therefore lies in P(G). Since 0(R) P(G), the result
follows.
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