A CLOSED ORIENTABLE 3-MANIFOLD BOUNDS SO THAT ITS FUNDAMENTAL GROUP INJECTS

BY
Tom Knoblauch

1. Introduction

If M^{3} is a closed orientable 3 -manifold, M^{3} bounds a simply connected compact 4-manifold [1, p. 540]. We herein prove that M^{3} bounds a compact (but not in general orientable) 4-manifold M^{4} with the inclusion induced

$$
i_{\#}: \Pi_{1}\left(M^{3}\right) \rightarrow \Pi_{1}\left(M^{4}\right)
$$

injective. The theorem we will actually prove is slightly stronger than the statement above.

Theorem 1.1. If M^{3} is a closed orientable 3-manifold, M^{3} bounds M^{4} such that if $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(M^{4}, \operatorname{Bd} M^{4}\right)$ is a singular disk with holds, then there is a map $g: M^{2} \rightarrow M^{3}$ with $\left.g\right|_{\mathrm{Bd} M^{2}}=\left.f\right|_{\mathrm{Bd} M^{2}}$.

2. Some Lens Space Analogs

Let D_{r}^{2} be a disk with r handles. Let $A_{r}, B_{r} \subseteq\left(\mathrm{Bd} D_{r}^{2}\right) \times S^{1}$ be the oriented simple closed curves $\left(\operatorname{Bd} D_{r}^{2}\right) \times\{p\}$ and $\{q\} \times S^{1}$ respectively, where $p \varepsilon S^{1}$ and $q \varepsilon \operatorname{Bd} D_{r}^{2}$. If

$$
h:\left(\operatorname{Bd} D_{s}^{2}\right) \times S^{1} \rightarrow\left(\operatorname{Bd} D_{r}^{2}\right) \times S^{1}
$$

is a homeomorphism with

$$
h\left(A_{s}\right)=a A_{r}+b B_{r} \text { and } h\left(B_{s}\right)=c A_{r}+d B_{r},
$$

we let $M_{r, s, a, b, c, d}^{3}$, denote $D_{r}^{2} \times S^{1} \cup_{h} D_{s}^{2} \times S^{1}$. Notice that if $s=0$, there is no need to specify c and d, and we can use the shorter notation $M_{r, 0, a, b}^{3}$.

Lemma 2.1. The pair ($D_{1}^{2}, \operatorname{Bd} D_{1}^{2}$) satisfies the conclusion of (1.1).
Proof. Suppose $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(D_{1}^{2}, \operatorname{Bd} D_{1}^{2}\right)$ is a singular disk with holes. Let $J \subseteq$ Int D_{1}^{2} be a nonseparating simple closed curve. General position

[^0]$f\left(M^{2}\right)$ and J. If K is a component of $f^{-1}(J), f(K)$ is trivial in J, since $f(K)$ bounds a singular disk with holes each of whose other boundary components lies in $\operatorname{Bd} D_{1}^{2}$ (use the closure of either half of $M^{2}-K$). Then f can be redefined in a neighborhood of $f^{-1}(J)$ to make $f\left(M^{2}\right)$ miss J. Now $f\left(M^{2}\right) \subseteq$ $D_{1}^{2}-J$, which retracts onto $\operatorname{Bd} D_{1}^{2}$.

Lemma 2.2. For any topological space X, the pair $\left(X \times D_{1}^{2}, X \times\right.$ $\left.\operatorname{Bd} D_{1}^{2}\right)$ satisfies the conclusion of (1.1).

Proof. Let $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \rightarrow\left(X \times D_{1}^{2}, X \times \operatorname{Bd} D_{1}^{2}\right)$ be a singular disk with holes. Suppose

$$
p_{1}: X \times D_{1}^{2} \rightarrow X \text { and } p_{2}: X \times D_{1}^{2} \rightarrow D_{1}^{2}
$$

are projection maps. Then by (2.1) there is a map $g: M^{2} \rightarrow \operatorname{Bd} D_{1}^{2}$ with

$$
\left.g\right|_{\mathrm{Bd} M^{2}}=\left.p_{2} f\right|_{\mathrm{Bd} M^{2}} .
$$

We define $h: M^{2} \rightarrow X \times D_{1}^{2}$ by $h(m)=\left(p_{1} f(m), g(m)\right)$. If $m \in \operatorname{Bd} M^{2}$,

$$
h(m)=\left(p_{1} f(m), p_{2} f(m)\right)=f(m) .
$$

Corollary 2.3. $M_{r, s, 1,0,0,1}^{3}$ has property 1.1 (By this we mean $M_{r, s, 1,0,0,1}^{3}$ bounds M^{4} such that ($M^{4}, M_{r, s, 1,0,0,1}^{3}$) satisfies the conclusion of (1.1).)

Lemma 2.4. $M_{r, 1,0,1,1,0}^{3}$ has property 1.1 .
Proof. Let $\left(\mathrm{Bd} D_{r}^{2}\right) \times[0,1]$ be a collar for $\mathrm{Bd} D_{r}^{2}$ in D_{r}^{2}. To construct M^{4}, we attach $S_{2}^{2} \times D_{1}^{2}$ (where S_{2}^{2} is a 2 -sphere with two handles) to

$$
D_{r}^{2} \times D_{1}^{2}-\left(\left(\mathrm{Bd} D_{r}^{2}\right) \times(0,1) \times \operatorname{Int} D_{1}^{2}\right)
$$

by a homeomorphism

$$
h: S_{2}^{2} \times S^{1} \rightarrow\left(\operatorname{Bd} D_{r}^{2}\right) \times[0,1] \times S^{1} \cup\left(\operatorname{Bd} D_{r}^{2}\right) \times\{0,1\} \times D_{1}^{2} .
$$

Suppose $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(M^{4}, \operatorname{Bd} M^{4}\right)$ is a singular disk with holes. Then we can use (2.3) to move $f\left(M^{2}\right)$ out of $\operatorname{Int}\left(S_{2}^{2} \times D_{1}^{2}\right)$ so that

$$
f\left(M^{2}\right) \subseteq D_{r}^{2} \times D_{1}^{2}-\left(\left(\operatorname{Bd} D_{r}^{2}\right) \times(0,1) \times \operatorname{Int} D_{1}^{2}\right)
$$

Then we can use (2.2) to move $f\left(M^{2}\right)$ out of

$$
\left(D_{r}^{2}-\left(\operatorname{Bd} D_{r}^{2}\right) \times[0,1)\right) \times \operatorname{Int} D_{1}^{2} .
$$

We will need the following extension of (2.1). Let K be an oriented simple closed curve, $J \subseteq$ Int D_{1}^{2} an oriented nonseparating simple closed curve, and $J \times\left[-\frac{1}{2}, \frac{1}{2}\right]$ a regular neighborhood of J in Int D_{1}^{2}. Suppose $K \times$ $[0,1]$ is attached to D_{1}^{2} by a homeomorphism

$$
k: K \times\{0,1\} \rightarrow J \times\left\{-\frac{1}{2}, \frac{1}{2}\right\}
$$

with $k(K \times\{0\})=J \times\left\{-\frac{1}{2}\right\}$ and $k(K \times\{1\})=-J \times\left\{\frac{1}{2}\right\}$.
Lemma 2.5. The pair $\left(D_{1}^{2} \cup_{k} K \times[0,1], \mathrm{Bd} D_{1}^{2}\right)$ satisfies the conclusion of (1.1).

Proof. Suppose $f\left(M^{2}, \mathrm{Bd} M^{2}\right) \subseteq\left(D_{1}^{2} \cup_{k} K \times[0,1], \mathrm{Bd} D_{1}^{2}\right)$ is a singular disk with holes. If we general position $f\left(M^{2}\right)$ and $K \times\left\{\frac{1}{2}\right\}$ and let $H \subseteq M^{2}$ be an oriented component of $f^{-1}\left(K \times\left\{\frac{1}{2}\right\}\right)$, then $f(H)$ is trivial in $K \times\left\{\frac{1}{2}\right\}$. To see this, notice that $f(H)$ bounds a singular disk with holes in $D_{1}^{2} \cup$ $K \times[0,1]$ each of whose other boundary components lies in $\operatorname{Bd} D_{1}^{2}$. If we attach a disk E^{2} to $\mathrm{Bd} D_{1}^{2}, f(H)$ bounds a singular disk in $D_{1}^{2} \cup K \times[0,1]$ $\cup E^{2}$ and in its retract

$$
K \times[0,1] \cup J \times\left[-\frac{1}{2}, \frac{1}{2}\right]
$$

a Klein bottle; so $f(H)$ is trivial in $K \times\left\{\frac{1}{2}\right\}$. Next f can be redefined in a neighborhood of $f^{-1}\left(K \times\left\{\frac{1}{2}\right\}\right)$ to miss $K \times\left\{\frac{1}{2}\right\}$ We can homotop $f\left(M^{2}\right)$ out of $K \times\{0,1\}$ and apply (2.1) to move $f\left(M^{2}\right)$ out of Int D_{1}^{2}.

Corollary 2.6. The pair $\left(\left(D_{1}^{2} \cup K \times[0,1]\right) \times S^{1},\left(\mathrm{Bd} D_{1}^{2}\right) \times S^{1}\right)$ satisfies the conclusion of (1.1).

Proof. The proof is like that of (2.2).
Lemma 2.7. $M_{1,0,1,1}^{3}$ has property 1.1.
Proof. We begin the construction of M^{4} by forming a product $M_{1,0,1,1}^{3}$ $\times[0,1]$. We start working in $M_{1,0,1,1}^{3} \times\{1\}$.
Let $J \subseteq D_{1}^{2}$ be an oriented, nonseparating simple closed curve. Let $J \times$ [$-1,1$] be a regular neighborhood of J in D_{1}^{2} chosen so that the orientation of $J \times\{-1\} \times\{p\}$ agrees with that of A_{1} in $D_{1}^{2}-J \times(-1,1) \times\{p\}$. Similarly, we choose the orientation of $\{j\} \times S^{1}$ to agree with that of B_{1}, where $j \in J$.

We attach $E_{1}^{2} \times S^{1}, G_{1}^{2} \times S^{1}$, and $K \times[0,1] \times S^{1}$ (where E_{1}^{2} and G_{1}^{2} are disks with one handle, for which we have curves A_{E}, B_{E} and A_{G}, B_{G}, and K is an oriented simple closed curve) to $M_{1,0,1,1}^{3}$ by homeomorphisms

$$
\begin{aligned}
& e:\left(\operatorname{Bd} E_{1}^{2}\right) \times S^{1} \rightarrow J \times\{-1\} \times S^{1} \\
& g:\left(\operatorname{Bd} G_{1}^{2}\right) \times S^{1} \rightarrow J \times\{1\} \times S^{1} \\
& k: K \times\{0,1\} \times S^{1} \rightarrow J \times\left\{-\frac{1}{2}, \frac{1}{2}\right\} \times S^{1}
\end{aligned}
$$

satisfying

$$
\begin{gathered}
e\left(A_{E}\right)=J \times\{-1\} \times\{p\}, e\left(B_{E}\right)=\{j\} \times\{-1\} \times S^{1}+J \times\{-1\} \times\{p\} \\
g\left(A_{G}\right)=\{j\} \times\{1\} \times S^{1}-J \times\{1\} \times\{p\}, g\left(B_{G}\right)=J \times\{1\} \times\{p\} \\
\begin{array}{c}
k(K \times\{0\} \times\{p\})=J \times\left\{-\frac{1}{2}\right\} \times\{p\}, k(K \times\{1\} \times\{p\}) \\
=-J \times\left\{\frac{1}{2}\right\} \times\{p\}
\end{array}
\end{gathered}
$$

By (2.3),

$$
\left(M_{1,0,1,1}^{3}-J \times(-1,1) \times S^{1}\right) \bigcup_{e} E_{1}^{2} \times S^{1} \cup_{g} G_{1}^{2} \times S^{1}
$$

which is homeomorphic to $M_{1,1,1,0,0,1}^{3}$, bounds P^{4} satisfying the conclusion of (1.1).

Next, $J \times\left[-\frac{1}{2}, \frac{1}{2}\right] \times S^{1} \cup_{k} K \times[0,1] \times S^{1}$ is homeomorphic to $K^{2} \times$ S^{1}, where K^{2} is a Klein bottle. By (2.2), $K^{2} \times S^{1}$ bounds Q^{4} satisfying the conclusion of (1.1).

Third,
$J \times\left(\left[-1,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]\right) \times S^{1} \bigcup_{k}\left(K \times[0,1] \times S^{1}\right)$

$$
\bigcup_{e} E_{1}^{2} \times S^{1} \bigcup_{g} G_{1}^{2} \times S^{1}
$$

is homeomorphic to $M_{1,1,0,1,1,0}^{3}$ and so bounds T^{4} satisfying the conclusion of (1.1).

We let

$$
M^{4}=\left(M_{1,0,1,1}^{3} \times[0,1]-D_{1}^{2} \times S^{1} \times\left[\frac{1}{3}, \frac{2}{3}\right]\right) \cup S_{2}^{2} \times H_{1}^{2} \cup P^{4} \cup Q^{4} \cup T^{4}
$$

where H_{1}^{2} is a disk with one handle.
Suppose $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(M^{4}, M_{1,0,1,1}^{3}\right)$ is a singular disk with holes. We move $f\left(M^{2}\right)$ out of

$$
S_{2}^{2} \times\left(\operatorname{Int} H_{1}^{2}\right) \cup\left(\operatorname{Int} P^{4}\right) \cup\left(\operatorname{Int} Q^{4}\right) \cup\left(\operatorname{Int} T^{4}\right)
$$

and then out of

$$
\left(\operatorname{Int} E_{1}^{2}\right) \times S^{1} \cup\left(\operatorname{Int} G_{1}^{2}\right) \times S^{1}
$$

We general position $f\left(M^{2}\right)$ and $\left(\operatorname{Bd} D_{1}^{2}\right) \times S^{1} \times\left[\frac{2}{3}, 1\right]$ and let N^{2} be a component of

$$
f^{-1}\left(D_{1}^{2} \times S^{1} \times\left[\frac{2}{3}, 1\right] \cup_{k} K \times[0,1] \times S^{1}\right)
$$

We can homotop $f\left(M^{2}\right)$ so that

$$
f\left(N^{2}\right) \subseteq D_{1}^{2} \times S^{1} \times\{1\} \cup K_{k} \times[0,1] \times S^{1}
$$

By (2.6) we can move $f\left(N^{2}\right)$ out of

$$
D_{1}^{2} \times S^{1} \times\{1\} \cup K \times[0,1] \times S^{1}
$$

so that $f\left(M^{2}\right) \subseteq M_{1,0,1,1}^{3} \times[0,1]$, which retracts onto $M_{1,0,1,1}^{3} \times\{0\}$.

3. (1.1) for closed orientable 2-manifolds

Lemma 3.1. S_{n}^{2} has property 1.1.
Proof. We imbed $2 n+1$ simple closed curves in C_{n}^{3} (a cube with n handles) as in Figure 1. We replace a regular neighborhood of each curve with a copy of $D_{1}^{2} \times S^{1}$ to form K_{n}^{3}.

Let $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(K_{n}^{3}, S_{n}^{2}\right)$ be a singular disk with holes. By (2.2) we can make $f\left(M^{2}\right)$ miss each of the copies of $D_{1}^{2} \times S^{1}$, and we may assume

$$
f\left(M^{2}\right) \subseteq C_{n}^{3}-\bigcup_{i=1}^{2 n+1} C_{i}
$$

Letting

$$
K^{2} \subseteq\left(\operatorname{Int} C_{n}^{3}\right)-\bigcup_{i=n+2}^{2 n+1} C_{i}
$$

be a disk with n holes bounded by $\cup_{i=1}^{n+1} C_{i}$, we general position $f\left(M^{2}\right)$ and K^{2}. If J is a component of $f^{-1}\left(K^{2}\right), f(J)$ bounds a singular disk in K^{2}, since $f(J)$ bounds a singular disk with holes (use the closure of either component of $M^{2}-J$) in $C_{n}^{3}-\cup_{i=1}^{2 n+1} C_{i}$ each of whose other boundary components lies in $\operatorname{Bd} C_{n}^{3}$. Then $f(J)$ is homotopically trivial in $S^{3}-\cup_{i=n+2}^{2 n+1} C_{i}$ and hence in K^{2}.

We can change f on a neighborhood $N(J)$ of each such J to make $f(N(J))$ miss K^{2} so that $f\left(M^{2}\right) \subseteq C_{n}^{3}-K^{2}$, which retracts onto $\operatorname{Bd} C_{n}^{3}$.

Fig. 1

4. Proof of the theorem

In the 4-tuple $\left(M^{3}, J, R^{3}, k\right), M^{3}$ is a closed orientable 3-manifold, $J \subseteq$ M^{3} is a simple closed curve, R^{3} is a regular neighborhood of J in M^{3}, and k is an unknotted imbedding of R^{3} in S^{3}. We perform m, an $\left(M^{3}, J, R^{3}, k\right)$ modification, on M^{3} as follows: Suppose $A, B \subseteq \mathrm{Bd} R^{3}$ are transverse simple closed curves intersecting in a single point, and suppose A and $k(B)$ bound disks in R^{3} and $S^{3}-k\left(\operatorname{Int} R^{3}\right)$ respectively. We attach a copy of $D_{1}^{2} \times$ S^{1} to M^{3} with a homeomorphism

$$
h:\left(\mathrm{Bd} D_{1}^{2}\right) \times S^{1} \rightarrow \mathrm{Bd} R^{3}
$$

satisfying $h\left(\left(\operatorname{Bd} D_{1}^{2}\right) \times\{p\}\right)=A$ and $h\left(\{q\} \times S^{1}\right)=B$ where $p \varepsilon S^{1}$ and $q \varepsilon \mathrm{Bd} D_{1}^{2}$. Let

$$
m\left(M^{3}\right)=\left(M^{3}-\operatorname{Int} R^{3}\right) \bigcup_{h} D_{1}^{2} \times S^{1}
$$

Next suppose (M^{3}, J_{1}, R^{3}, k) is a 4-tuple as above, and $J_{2} \subseteq \operatorname{Int} R^{3}$ bounds a disk in R^{3} intersecting J_{1} transversely in a single point. Let $R^{3}(1), R^{3}(2)$ \subseteq Int R^{3} be disjoint regular neighborhoods of J_{1} and J_{2} respectively, which inherit their imbeddings in S^{3}, k_{1} and k_{2}, from k. Let m_{i} be the (M^{3}, J_{i}, $R^{3}(i), k_{i}$) modification for $i=1,2$.

Lemma 4.1. $\quad m_{2}\left(m_{1}\left(M^{3}\right)\right)$ has property 1.1 if $m_{1}\left(M^{3}\right)$ does.
Proof. Attach $E_{1}^{2} \times S^{1}$ and $G_{1}^{2} \times S^{1}$ to $m_{2}\left(m_{1}\left(M^{3}\right)\right)$ by homeomorphisms

$$
e:\left(\mathrm{Bd} E_{1}^{2}\right) \times S^{1} \rightarrow \mathrm{Bd} R^{3} \quad \text { and } g:\left(\mathrm{Bd} G_{1}^{2}\right) \times S^{1} \rightarrow \mathrm{Bd} R^{3}
$$

so that

$$
\begin{aligned}
e\left(\left(\operatorname{Bd} E_{1}^{2}\right) \times\{p\}\right)=g\left(\{q\} \times S^{1}\right)=A \quad \text { and } \quad e(\{t\} \times & \left.S^{1}\right) \\
& =g\left(\left(\operatorname{Bd} G_{1}^{2}\right) \times\{p\}\right)=B
\end{aligned}
$$

where $q \varepsilon \mathrm{Bd} G_{1}^{2}, t \varepsilon \mathrm{Bd} E_{1}^{2}$, and $p \varepsilon S^{1}$.

Let N^{3} be the closure of the component of $m_{2}\left(m_{1}\left(M^{3}\right)\right)-\mathrm{Bd} R^{3}$ that contains $D_{1}^{2}(1) \times S^{1} \cup D_{1}^{2}(2) \times S^{1}$. Then

$$
\begin{aligned}
& E_{1}^{2} \times S^{1} \cup\left(m_{2}\left(m_{1}\left(M^{3}\right)\right)-\operatorname{Int} N^{3}\right), \quad E_{1}^{2} \times S^{1} \\
& \cup G_{1}^{2} \times S^{1} \quad \text { and } \quad G_{1}^{2} \times S^{1} \cup N^{3}
\end{aligned}
$$

which are homeomorphic to $m_{1}\left(M^{3}\right), M_{1,1,0,1,1,0}^{3}$, and $M_{2,1,0,1,1,0}^{3}$ respectively, bound P^{4}, Q^{4}, and R^{4} satisfying the conclusion of Theorem 1.1 by hypothesis and (2.4).

Set $M^{4}=P^{4} \cup Q^{4} \cup R^{4}$ and suppose $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(M^{4}, m_{2}\left(m_{1}\left(M^{3}\right)\right)\right)$ is a singular disk with holes. Then $f\left(M^{2}\right)$ can be moved out of

$$
\left(\operatorname{Int} P^{4}\right) \cup\left(\operatorname{Int} Q^{4}\right) \cup\left(\operatorname{Int} R^{4}\right)
$$

into

$$
m_{2}\left(m_{1}\left(M^{3}\right)\right) \bigcup_{e} E_{1}^{2} \times S^{1} \bigcup_{g} G_{1}^{2} \times S^{1}
$$

and then out of (Int $\left.E_{1}^{2}\right) \times S^{1} \cup\left(\right.$ Int $\left.G_{1}^{2}\right) \times S^{1}$ by (2.2).
If we call the preceding lemma an addition lemma, the following is a subtraction lemma. Suppose M^{3} is a closed orientable 3-manifold and m is an (M^{3}, J, $\left.R^{3}, k\right)$ modification.

Lemma 4.2. M^{3} has property 1.1 if $m\left(M^{3}\right)$ does.
Proof. We omit the proof since it is similar to that of (4.1), but requires attaching only one copy of $D_{1}^{2} \times S^{1}$ to M^{3}.

Suppose (M^{3}, J_{3}, R^{3}, k) is a 4-tuple as above; $J_{4} \subseteq$ Int R^{3} is parallel to $J_{3} ; R^{3}(3), R^{3}(4) \subseteq$ Int R^{3} are disjoint regular neighborhoods of J_{3} and J_{4} which inherit their imbeddings k_{3} and k_{4} from k; and $k\left(J_{3}\right)$ and $k\left(J_{4}\right)$ are unlinked in S^{3}. We have another addition lemma.

Lemma 4.3. $\quad m_{4}\left(m_{3}\left(M^{3}\right)\right)$ has property 1.1 if $m_{3}\left(M^{3}\right)$ does.
Proof. Again the proof is similar to that of (4.1) but involves attaching only one copy of $D_{1}^{2} \times S^{1}$ to $m_{4}\left(m_{3}\left(M^{3}\right)\right)$.

Suppose m_{5} is an (M^{3}, J, R^{3}, k_{5}) modification, so that we may consider A and B as fixed. We attach a copy of $D_{1}^{2} \times S^{1}$ to M^{3} by a homeomorphism

$$
g:\left(\mathrm{Bd} D_{1}^{2}\right) \times S^{1} \rightarrow \mathrm{Bd} R^{3}
$$

satisfying $g\left(\left(\operatorname{Bd} D_{1}^{2}\right) \times\{p\}\right)=B$ and $g\left(\left(\{q\} \times S^{1}\right)=A\right.$, where $p \varepsilon S^{1}$ and $q \varepsilon \mathrm{Bd} D_{1}^{2}$. Let

$$
N^{3}=\left(M^{3}-\operatorname{Int} R^{3}\right) \bigcup_{g}\left(D_{1}^{2} \times S^{1}\right)
$$

Lemma 4.4. $\quad N^{3}$ has property 1.1 if $m_{5}\left(M^{3}\right)$ does.
Proof. Same comment as in the previous proof.
We are ready to use these tools to prove (1.1) for a key example.
Suppose X^{3} is constructed using the diagram of Figure 2 as follows. We imbed two double solid tori $C_{2}^{3}(1)$ and $C_{2}^{3}(2)$ in S^{3} using h_{1} and h_{2} as pictured in Figure 2. We than attach $C_{2}^{3}(2)$ to $C_{2}^{3}(1)$ by the homeomorphism

$$
h=h_{1}^{-1} l h_{2}: \operatorname{Bd} C_{2}^{3}(2) \rightarrow \operatorname{Bd} C_{2}^{3}(1)
$$

where $l: h_{2}\left(\mathrm{Bd}_{2}^{3}(2)\right) \rightarrow h_{1}\left(\mathrm{Bd}_{2}^{3}(1)\right)$ is the homeomorphism obtained by isotoping $h_{2}\left(\operatorname{Bd} C_{2}^{3}(2)\right)$ in Figure 2 rigidly straight down into $h_{1}\left(\operatorname{Bd} C_{2}^{3}(1)\right)$. We

Fig. 2
use imbeddings

$$
\begin{array}{ll}
k_{i}=\left.h_{1}\right|_{R^{3}(i)} & \text { for } 1 \leqslant i \leqslant 10 \\
k_{i}=\left.h_{2}\right|_{R^{3}(i)} & \text { for } 11 \leqslant i \leqslant 13
\end{array}
$$

to define m_{1}, a $\left(C_{2}^{3}(1) \cup_{h} C_{2}^{3}(2), J_{i}, R^{3}(i), k_{i}\right)$ modification. Let

$$
X^{3}=m_{13} m_{12} \ldots m_{2} m_{1}\left(C_{2}^{3}(1) \bigcup_{h} C_{2}^{3}(2)\right)
$$

Lemma 4.5. $\quad X^{3}$ has property 1.1.
Proof. Construction of X^{4}. (1) To $X^{3} \times[0,1]$ we attach solid tori $Q^{3}(1)$, $Q^{3}(2), Q^{3}(3), Q^{3}(4)$, and $Q^{3}(5)$ by homeomorphisms

$$
q_{i}: \operatorname{Bd} Q^{3}(i) \rightarrow\left(\mathrm{Bd} D_{1}^{2}(i)\right) \times S^{1} \times\{1\}
$$

where q_{i} satisfies

$$
q_{i}(A(i))=\left(\operatorname{Bd} D_{1}^{2}(i)\right) \times\{p\} \times\{1\} \text { for } 1 \leqslant i \leqslant 5
$$

By (2.3), $D_{1}^{2}(i) \times S^{1} \times\{1\} \cup_{q_{i}} Q^{3}(i)$ bounds $Q^{4}(i)$ satisfying the conclusion of (1.1).
(2) The 3-manifold $\left[X^{3} \times\{1\}-\cup_{i=1}^{5} D_{1}^{2}(i) \times S^{1} \times\{1\}\right] \cup\left(\cup_{i=1}^{5} Q^{3}(i)\right)$ bounds a 4 -manifold Z^{4} satisfying the conclusion of (1.1), since its diagram is like that of X^{3}, but without $J_{1}, J_{2}, J_{3}, J_{4}$, and J_{5}. We can use (4.3) to amalgamate J_{6}, J_{7}, and $J_{11} ; J_{8}, J_{9}$, and J_{12}; and J_{10} and J_{13}. We have the

diagram of Figure 3a. The two sets $D_{1}^{2}(6) \times S^{1}$ and $D_{1}^{2}(8) \times S^{1}$ can be flipflopped using (4.4) to obtain the diagram of Figure 3b. We can remove J_{6} and J_{8} using (4.1), leaving $M_{0,1,0,1,1,0}^{3}$. We set

$$
Y^{4}=x^{3} \times[0,1] \cup\left(\bigcup_{i=1}^{5} Q^{4}(i)\right) \cup Z^{4}
$$

(3) Let $K^{3}, L^{3} \subseteq X^{3}$ be the compact orientable 3-manifolds pictured in Figures 4 a and 4 b . In Figure $4 \mathrm{~b}, L^{3}$ is seen to be a subset of X^{3} (see Figure 2) with five components. Each simple closed curve of Figure 2 represents a homeomorphic copy of $D_{1}^{2} \times S^{1}$, as does each simple closed curve of Figure 4 b . Each arc in Figure 4 b represents a copy of $D_{1}^{2} \times[0,1]$. Similarly, in Figure $4 \mathrm{a}, K^{3}$ is seen to be a subset of X^{3} (see Figure 2). The top half of Figure 4 a is identical to the top half of Figure 2, and the three simple closed curves represent copies of $D_{1}^{2} \times S^{1}$. The bottom half of Figure 4a, a subset of the bottom half of figure 2 , is made up of three disjoint solid tori. We describe the solid torus containing J_{6} and J_{7} : This solid torus intersects $\mathrm{Bd}_{2}^{3}(2)$ along the shaded annulus, and is therefore attached to the top half of figure $4 a$ by attaching the shaded annulus to the corresponding shaded annulus in the top half of Figure 4 a . The simple closed curves J_{6} and J_{7} represent copies of $D_{1}^{2} \times S^{1}$. The three arcs are subarcs of J_{1}, J_{2}, and J_{5}. They represent copies of $D_{1}^{2} \times[0,1]$. We set

$$
\begin{aligned}
X^{4}=\left[Y^{4}-\left(N\left(K^{3} \times\left\{\frac{1}{2}\right\}\right)\right.\right. & \cup N\left(L^{3} \times\left\{\frac{3}{4}\right\}\right) \\
& \left.\left.\cup N\left(\bigcup_{i=11}^{13} D_{1}^{2}(i) \times S^{1} \times\left\{\frac{1}{4}\right\}\right)\right)\right] \cup K^{4} \cup L^{4} \cup A^{4}
\end{aligned}
$$

Fig. $4 \mathrm{a} \quad K^{3} \subseteq X^{3}$
where each N is a regular neighborhood in $Y^{4} ; K^{4}, L^{4}$, and A^{4} have boundaries homeomorphic to $\operatorname{Bd} N\left(K \times\left\{\frac{1}{2}\right\}\right), \operatorname{Bd} N\left(L^{3} \times\left\{\frac{3}{4}\right\}\right)$, and $\mathrm{Bd} N\left(\cup_{i=11}^{13} D_{1}^{2}(i) \times\right.$ $\left.S^{1} \times\left\{\frac{1}{4}\right\}\right)$ respectively; and each of the pairs $\left(\operatorname{Bd} K^{4}, K^{4}\right),\left(\operatorname{Bd} L^{4}, L^{4}\right)$, and $\left(\mathrm{Bd} A^{4}, A^{4}\right)$ satisfies the conclusion of (1.1). Such an A^{4} exists by (2.3) since

$$
\operatorname{Bd} N\left(\bigcup_{i=11}^{13} D_{1}^{2}(i) \times S^{1} \times\left\{\frac{1}{4}\right\}\right)
$$

is homeomorphic to the disjoint union $\cup_{i=11}^{13}\left(S_{2}^{2}(i) \times S^{1}\right)$. To verify that such a manifold L^{4} exists, notice that each component of $\mathrm{Bd} N\left(L^{3} \times\left\{\frac{3}{4}\right\}\right)$ can be constructed by doubling one of the five components of L^{3} along its boundary.

FIG. $4 \mathrm{~b} \quad L^{3} \subseteq X^{3}$

Then two of the components of $\operatorname{Bd} N\left(L^{3} \times\left\{\frac{3}{4}\right\}\right)$ can each be constructed from the diagram of Figure 2 using only $J_{6}, J_{7}, J_{8}, J_{9}, J_{10}, J_{11}, J_{12}$, and J_{13}, which has been dealt with previously. The other three components of $\operatorname{Bd} N\left(L^{3} \times\left\{\frac{3}{4}\right\}\right)$ can each be reduced, using (4.3) and (4.1), to $M_{1,0,1,0}^{3}$. Finally, we have $\operatorname{Bd} N\left(K^{3} \times\left\{\frac{1}{4}\right\}\right)$, which can be constructed by doubling K^{3} along its boundary. The representation of K^{3} in Figure 4b was useful for seeing K^{3} as a subset of X^{3}. The representation of K^{3} in Figure 5, which results from identifying the corresponding annuli of Figure 4 a , helps us visualize half of $\operatorname{Bd} N\left(K^{3} \times\left\{\frac{1}{4}\right\}\right)$. The simple closed curves of Figure 5 represent copies of $D_{1}^{2} \times S^{1}$. Each arc in Figure 4a appears in Figure 5 and again represents a copy of $D_{1}^{2} \times[0,1]$, which will be matched up, when K^{3} is

Fig. 5
doubled, with another copy of $D_{1}^{2} \times[0,1]$, to form a copy of $D_{1}^{2} \times S^{1}$. The diagram for $\operatorname{Bd} N\left(K^{3} \times\left\{\frac{1}{4}\right\}\right)$ can again be reduced, using (4.3) and (4.1), to the diagram of Figure 3a.

Suppose $f\left(M^{2}, \mathrm{Bd} M^{2}\right) \subseteq\left(X^{4}, \mathrm{Bd} X^{4}\right)$ is a singular disk with holes. We can make $f\left(M^{2}\right)$ miss

$$
K^{4} \cup L^{4} \cup A^{4} \cup\left(\operatorname{Int} Z^{4}\right) \cup\left(\bigcup_{i=1}^{5} \operatorname{Int} Q^{4}(i)\right)
$$

so that we may assume

$$
\begin{array}{r}
f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(X^{3} \times[0,1] \cup\left(\bigcup_{i=1}^{5} Q^{3}(i)\right)\right)-\left[\left(\bigcup_{i=11}^{13} D_{1}^{2}(i) \times S^{1} \times\left\{\frac{1}{4}\right\}\right)\right. \\
\left.\left.\cup K^{3} \times\left\{\frac{1}{2}\right\} \cup L^{3} \times\left\{\frac{3}{4}\right\}\right], X^{3} \times\{0\}\right) \subseteq\left(Y^{4}, \mathrm{Bd} Y^{4}\right)
\end{array}
$$

We can make $f\left(M^{2}\right)$ miss $\cup_{i=11}^{13} D_{1}^{2}(i) \times S^{1} \times\left[\frac{1}{4}, 1\right]$ by using (2.2) on the set

$$
\left(\bigcup_{i=11}^{13} D_{1}^{2}(i) \times S^{1} \times\left[\frac{1}{4}, 1\right]\right)-\left(K^{3} \times\left\{\frac{1}{2}\right\} \cup L^{3} \times\left\{\frac{3}{4}\right\}\right)
$$

We general position $f\left(M^{2}\right)$ and $X^{3} \times\left\{\frac{1}{2}, \frac{3}{4}\right\}$. Let N^{2} be a component of

$$
f^{-1}\left(X^{3} \times\left[\frac{1}{2}, 1\right] \cup\left(\bigcup_{i=1}^{5} Q^{3}(i)\right)\right)
$$

Notice that $f\left(\mathrm{Bd} N^{2}\right) \subseteq X^{3} \times\left\{\frac{1}{2}\right\}$. Let J be a component of $f^{-1}\left(X^{3} \times\left\{\frac{3}{4}\right\}\right)$ and let K^{2} be the closure of one of the two components of $N^{2}-J$. Then $f(J) \subseteq P^{3} \times\left\{\frac{3}{4}\right\}$ where P^{3} is the closure of one of the six components of $X^{3}-L^{3}$.

We now wish to construct a map

$$
H:\left(X^{3}-\bigcup_{i=11}^{13} D_{1}^{2}(i) \times S^{1}\right) \times\left[\frac{1}{2}, 1\right] \cup\left(\bigcup_{i=1}^{5} Q^{3}(i)\right) \rightarrow P^{3}
$$

satisfying
(1) $H(\{p\} \times\{t\})=p$ for $p \varepsilon P^{3}-\left(\cup_{i=11}^{13} D_{11}^{2}(i) \times S^{1}\right), t \varepsilon\left[\frac{1}{2}, 1\right]$
(2) $\quad H\left(\left(X^{3}-K^{3}\right) \times\left[\frac{1}{2}, 1\right]\right) \subseteq P^{3}-K^{3}$.

Construction of H. We assume, without loss of generality, that P^{3} is the closure of the component of $X^{3}-L^{3}$ indicated in Figure 4 b . Consider the diagram of Figure 6 for $X^{3}-D_{1}^{2}(12) \times S^{1}$. The tunnel formed by removing $D_{1}^{2}(12) \times S^{1}$ from X^{3} has been enlarged until it runs over into the bottom half of Figure 6 . Now we map $D_{1}^{2}(i) \times S^{1}$ onto $D^{2}(i) \times S^{1}$ for $i=1,2,3,4,5,8,9$, and replace $D_{1}^{2}(12) \times S^{1}$ with $\left(\mathrm{Bd} D_{1}^{2}(12)\right) \times D^{2}$ so that we have a map

$$
F: X^{3}-D_{1}^{2}(12) \times S^{1} \rightarrow Y^{3}-\left(\operatorname{Bd} D_{1}^{2}(12)\right) \times D^{2}
$$

where Y^{3} is represented in Figure 7. Let

$$
G: Y^{3} \cong S_{5}^{2} \times S^{1} \rightarrow P^{3} \cong S_{5}^{2} \times I
$$

Fig. $6 X^{3}-D_{1}^{2}(12) \times S^{1}$

Fig. $7 \quad Y^{3}$
be a retraction such that $P_{1} G(s, j)=s$ where P_{1} is projection onto the first factor, $s \varepsilon S_{5}^{2}$, and $j \varepsilon S^{1}$. Then

$$
H=G F: X^{3}-D_{1}^{2}(12) \times S^{1} \rightarrow P^{3}
$$

(the domain may be $X^{3}-D_{1}^{2}(11) \times S^{1}$ or $X^{3}-D_{1}^{2}(13) \times S^{1}$ if P^{3} is one of the other components of $X^{3}-L^{3}$) can be taken to be defined on

$$
\left(X^{3}-\bigcup_{i=11}^{13} D_{1}^{2}(i) \times S^{1}\right) \times\left[\frac{1}{2}, 1\right] \cup\left(\bigcup_{i=1}^{5} Q^{3}(i)\right)
$$

The reader can check that H satisfies conditions (1) and (2) above. The reader may also wish to trace through the construction of H when P^{3} is one of the two components of $X^{3}-L^{3}$ pictured in the center of Figure 4 b . This construction uses J_{13} in place of J_{12}.

The curve $H(f(J)) \subseteq P^{3}$ is a boundary component of the singular disk with holes $H f\left(K^{2}\right)$, each of whose other boundary components is a subset of

$$
H\left(\left(X^{3}-K^{3}\right) \times\left\{\frac{1}{2}\right\}\right) \subseteq P^{3}-K^{3}
$$

and therefore trivial in P^{3}. Thus $f(J)$ is trivial in $P^{3} \times\left\{\frac{3}{4}\right\}$. Since $f(J)$ is trivial in $\left(X^{3}-L^{3}\right) \times\left\{\frac{3}{4}\right\}$ for each component J of $f^{-1}\left(X^{3} \times\left\{\frac{3}{4}\right\}\right)$, we can remap $f^{-1}\left(X^{3} \times\left[\frac{3}{4}, 1\right] \cup\left(\cup_{i=1}^{5} Q^{3}(i)\right.\right.$ into $X^{3} \times\left\{\frac{3}{4}\right\}$. Then $f\left(M^{2}\right) \subseteq X^{3} \times$ [$0, \frac{3}{4}$], which retracts onto $X^{3} \times\{0\}$.

Fig. $8 \quad X^{3}(n)$

Suppose $X^{3}(n)$ is the 3 -manifold constructed using the diagram of Figure 8.

Lemma 4.6. $\quad X^{3}(n)$ has property 1.1.
Proof. The proof is like that of (4.5).
Now suppose M^{3} is any closed, orientable 3 -manifold. M^{3} can be constructed from S^{3} as follows [2, p. 770]. Let $C_{1}, \ldots, C_{n}, D_{1}, \ldots, D_{n}, E_{1}, \ldots, E_{n-1} \subseteq$ BdC_{n}^{3} be the curves pictured in Figure 9, which shows an imbedding h of C_{n}^{3} in S^{3}. Let $\left(\operatorname{BdC}_{n}^{3}\right) \times[0, \infty)$ be a collar for $\operatorname{Bd} C_{n}^{3}$ in $S^{3}-\operatorname{Int} h\left(C_{n}^{3}\right)$. There is a sequence J_{1}, \ldots, J_{m} of simple closed curves in S^{3} such that

$$
J_{i}=C_{j} \times\{i\} \text { or } D_{j} \times\{i\} \text { or } E_{j} \times\{i\}
$$

and

$$
M^{3}=\left[S^{3}-\left(\bigcup_{i=1}^{m} R^{3}(i)\right)\right] \bigcup_{h^{\prime}}\left(\bigcup_{i=1}^{m} R^{3}(i)\right)
$$

where $R^{3}(i)$ is a regular neighborhood of J_{i} in S^{3} and $h^{\prime}\left(\operatorname{Bd} R^{3}(i)\right)=\operatorname{Bd} R^{3}(i)$ satisfies $h^{\prime}\left(A_{i}^{\prime}\right)=A_{i} \pm B_{i}$.

Fig. $9 \quad h\left(B d C_{n}^{3}\right)$

We also need an auxiliary 3-manifold T^{3}. Let m_{i} be an $\left(S^{3}, J_{i}, R^{3}(i), k_{i}\right)$ modification, with $k_{i}=\left.h\right|_{\mathrm{Bd} R^{3}(i)}$. We set

$$
T^{3}=m_{m} m_{m-1} \ldots m_{2} m_{1}\left(S^{3}\right)
$$

Lemma 4.7. M^{3} has property 1.1 if T^{3} does.
Proof. We think of T^{3} and M^{3} as being attached along $S^{3}-\cup_{i=1}^{m}$ Int $R^{3}(i)$. The 3-manifolds $R^{3 \prime}(i) \cup D_{1}^{2}(i) \times S^{1}$ for $1 \leqslant i \leqslant m$, and T^{3} bound 4-manifolds $M^{4}(i)$ and T^{4} satisfying the conclusion of (1.1) by (2.7) and hypothesis, respectively. Let $M^{4}=\left(\cup_{i=1}^{m} M^{4}(i)\right) \cup T^{4}$.

Suppose $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(M^{4}, M^{3}\right)$ is a singular disk with holes. We can move $f\left(M^{2}\right)$ out of $\left(\cup_{i=1}^{m}\right.$ Int $M^{4}(i) \cup$ Int T^{4} so that

$$
f\left(M^{2}\right) \subseteq M^{3} \cup\left(\bigcup_{i=1}^{m} D_{1}^{2}(i) \times S^{1}\right)
$$

Then by (2.2) we can move $f\left(M^{2}\right)$ out of $\cup_{i=1}^{m}\left(\right.$ Int $\left.D_{1}^{2}(i)\right) \times S^{1}$.
Lemma 4.8. T^{3} has property 1.1 .
Proof. We attach $K_{n}^{3}(1), K_{n}^{3}(2), \ldots, K_{n}^{3}(m)$, where each $K_{n}^{3}(i)$ is homeomorphic to K_{n}^{3} of Figure 1 , to T^{3} by homeomorphisms

$$
l_{i}: \operatorname{Bd} K_{n}^{3}(i) \rightarrow\left(\operatorname{Bd} C_{n}^{3}\right) \times\left\{i-\frac{1}{2}\right\} \text { for } 1 \leqslant i \leqslant m
$$

where l_{i} is constructed using Figures 1 and 9 . More precisely, one should imagine the collar $\mathrm{Bd}_{n}^{3} \times[0, \infty]$ included in Figure 9. Then Figure 1 should be superimposed on Figure 9 to see the map l_{i}. The 3-manifolds

$$
\begin{aligned}
& C_{n}^{3} \cup\left(\mathrm{Bd} C_{n}^{3}\right) \times\left[0, \frac{1}{2}\right] \cup K_{n}^{3}(1) \\
& K_{n}^{3}(1) \cup\left[\left(B d C_{n}^{3}\right) \times\left[\frac{1}{2}, \frac{3}{2}\right]-R^{3}(i)\right] \cup D_{1}^{2}(1) \times S^{1} \cup K_{n}^{3}(2) \\
& \vdots \\
& K_{n}^{3}(m-1) \cup\left[\left(\mathrm{Bd} C_{n}^{3}\right) \times\left[m-\frac{3}{2}, m-\frac{1}{2}\right]-R^{3}(m-1)\right] \\
& \cup D_{1}^{2}(m-1) \times S^{1} \cup K_{n}^{3}(m)
\end{aligned}
$$

can each be constructed from a subdiagram of Figure 8 and so by (4.6) and (4.2) bound $T^{4}(1), \ldots, T^{4}(m)$ respectively, satisfying the conclusion of (1.1). And

$$
K_{n}^{3}(m) \cup\left[S^{3}-\left(C_{n}^{3} \cup\left(\mathrm{Bd} C_{n}^{3}\right) \times\left[0, m-\frac{1}{2}\right] \cup R^{3}(m)\right)\right] \cup D_{1}^{2}(m) \times S^{1}
$$

can be altered by replacing $C_{j} \times\{m+1\}$ by $D_{1}^{2}(m+j) \times S^{1}$ for $1 \leqslant j \leqslant$ n, then flip-flopping $D_{1}^{2}(m+j) \times S^{1}$ to form a 3-manifold constructed from a subdiagram of Figure 8. So

$$
K_{n}^{3}(m) \cup\left[S^{3}-\left(C_{n}^{3} \cup\left(\mathrm{Bd} C_{n}^{3}\right) \times\left[0, m-\frac{1}{2}\right] \cup R^{3}(m)\right)\right] \cup D_{1}^{2}(m) \times S^{1}
$$

bounds $T^{4}(m+1)$ satisfying the conclusion of (1.1).
Let $T^{4}=\cup_{i=1}^{m+1} T^{4}(i)$. If $f\left(M^{2}, \operatorname{Bd} M^{2}\right) \subseteq\left(T^{4}, \mathrm{Bd} T^{4}\right)$ is a singular disk with holes, we can move $f\left(M^{2}\right)$ out of $\cup_{i=1}^{m+1}$ Int $T^{4}(i)$ into $T^{3} \cup\left(\cup_{i=1}^{m}\right.$ $K_{n}^{3}(i)$), and by (3.1) out of $\cup_{i=1}^{m}$ Int $K_{n}^{3}(i)$ into T^{3}.

Theorem 1.1 follows from (4.7) and (4.8).

References

1. W. B. R. Lickorish, A representation of orientable combinatorial three-manifolds, Ann. of Math. (2), vol. 76 (1962), pp. 531-540.
2.

——, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge. Philos. Soc., vol. 60 (1964), pp. 769-778.

University of Wisconsin at Marathon
Wausau, Wisconsin

[^0]: Received June 30, 1981.

