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WEIGHTED SHIFTS WITH PERIODIC WEIGHT SEQUENCES

BY

JIM HARTMAN

Let {fl(n) n Z} be a sequence of positive numbers with/3(0) 1 and
sup{fl(n + 1)/fl(n) n Z} < . We then define the Hilbert space L2(fl)
by L2(fl) L2(Z, f12). We denote f L2(fl) by f E= f(n)z with the
summand f(n)z indicatin that f(n) is the n-th term of the sequence. Thus
we have Ilfll :=- [f(n)12(fl(n))2. We also use z 1. The set {Z n

Z} can be thought of as an othogonal basis for L2(/3).
For f, g L2(/3) we define the formal product h fg by

h . l(n)z where’(n)= E (k)g(n- k)
k=

if all the latter sums converge. Now let L(fl) {o L2(fl) of L2(/3)
for all f LE(fl)}. Then for o L(fl) we can define the linear map Mr
LE(fl) -- LE(fl) by Mr(f) of. If we let wn fl(n / 1)/fl(n), we have the
following theorem.

THEOREM (Shields, [3]). For o L(fl), Mr is a bounded linear operator
on LE(fl) and Mz is unitarily equivalent to the bilateral weighted shift T
with weight sequence {Wn n Z}. Furthermore, under this unitary equiv-
alence, {Mr o L(fl)} corresponds to the commutant of T.

One could also start with a bilateral weighted shift with a weight sequence
of positive terms and then define {fl(n) n Z} by:

(i) fl(n) I-Is_ Wk if n > 0;
(ii) /3(0) 1;

l-I-! -1(iii) /3(n) (k=nWk) ifn < 0.

In this paper when we say weighted shift, we are referring to a bilateral
weighted shift with all terms of the weight sequence being positive. For
the most part, we will be studying weighted shifts with periodic weight
sequences. Theorem 2 provides some information about the adjoints of
operators in a certain subalgebra of L(/3), and Theorem 3 is a spectral
inclusion theorem for shifts with periodic weight sequences.
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WEIGHTED SHIFTS 437

Let

HZ() {f LZ() f(n) 0 for all n < 0}

and

B(fl) (o L=(fl) M* M. for some xI L=(fl)}.

For T B(H) (the set of bounded linear operators on the Hilbert space
H), we let o-(T) denote the spectrum of T in B(H) and r(T) sup{Izl z

tr(T)}. For o L=(fl), we let I111 IIMII, When L=(fl) is endowed with
this norm, it is a commutative Banach algebra (see Shields, [3]).

DEFINITION 1. For f L2(fl) we define f L2(fl) by

?(n) f (- n)(- n)/(n).
The following facts are easy to verify.

1: HZ(fl) is a closed subspace of LZ(fl).
2. C C B(fl) C L(fl).
3. For f L2(fl), Ilfll= (f, f)l/2 f[12.

Also, we will let P L2() H2(fl) be the orthogonal projection of L2(fl)
onto its closed subspace H2(). This projection is described by the formula

P f(n)z f(n)z.
n=O

We now examine the problem of determining when equality holds at
either end of the chain of inequalities C C B() C L=(fl). The solution of
this problem is given in the following two lemmas and theorem.

LEMMA 1. /f B(fl) and N is an integer such that (N) --/: O, then
(N + k)= fl(N)(k) for every integer k.

Proof.

Thus

(N) (gz*, zN+k)/fl2(N "f- k)

(Zk, M, zN+k)/2(N "4- k)

$(-N)BZ(k)/Z(N + k)

fl2(N + k)/flZ(k) $(-N)/@(N)
Letting k 0, we get

(-N)/(N) fl2(N).

where M* M,

for each k.

for all k.
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Hence fl(N + k) (N)(k) for every integer k since fl(i) > 0 for all i.
Q.E.D.

We also note at this point that/3(N + k) (N)(k) for all k implies
(-mN) 1/(mN) for every integer m.

LEMMA 2. Assume there exists an integer N such that fl(N + k)
(N)[3(k) for all k. Then Wn/k wkfor all k (i.e., the weight sequence for
the weighted shift is periodic).

Proof. We have the following string of equalities"

WN+k fl(N + k + 1)/fl(N + k)

B(N)fl(k + 1)/[(N)(k)]

(k + )/(k) w.
Q.E.D.

THEOREM 2. Let T be a weighted shift with periodic weight sequence of
least period N. Then B(fl) {p L=(fl) (n) 0 for all n which are
not integer multiples of N}.

Proof. Suppose o B(/3) and (n) -7t: 0. Then Lemma and Lemma 2
imply w,+, w, for every k. This implies n mN for some integer m
since the least period of the weight sequence is N. Thus B(fl) C E =-
{ L=(fl) (n) 0 for n not an integer multiple of N}.
Now let q E. We will show that MS M. This will be true if and

only if M$(zk) zk Mz(-) for all k. The reason for writing this in such
an awkward fashion is that it is unknown whether q L=(/3) implies q
L=(fl). Now we have

and
(Mzk, zn)/2(n) (Zk, lltZn)/2(n) l(k- n)2(k)/2(n)

(Mzk-, zn)/fl2(n) (Zk, zn)/fl2(n)

q(n k)

(k- n)(k- n)/(n k).

If (k n) #- 0 then k n mN for some integer m. Hence

2(k)/Z(n) flZ(n + mN)/Z(n)
flZ(mN)
(mN)/(- mN)

(k- n)/(n k).
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So we have (Mzk, Zn) (zk’, Zn) for all integers n. This shows that for
q E, M(z) -z for every integer k. Q.E.D.

COROLLARY 1. Under the involution tk , B(fl) is a commutative C*-
subalgebra of L=(fl).

Proof. This is an easy consequence of Theorem 2.

COROLLARY 2. For a weighted shift with a periodic weight sequence of
least period N, Mz. is normal if and only if n is an integer multiple of N.

Proof. For n kN, z B(fl). Thus Mz*n M which implies Mzn is
normal.
For the converse we assume M*z Mz Mz M*z.. This implies that

(Zn+k, Zn+m) (Mzz, Mzzm)

(M*z z, M*zzm)
(Zk-n, zm-n)fl2(k)fl2(m)/[fl2(k- n)fl2(m n)]

_{flo4(m)/fl2(m-n)ifm=kifmCk

by a direct computation for M*zn(zm). Also,

fl2(m + n) if m k
(z+, Zn+m)

0 ifm k

Thus we have fl(m + n)fl(m n) fl2(m) for all m. By using rn +
instead of m we also get fl(m + n + 1)fl(m n + 1) fl2(m d- 1). Now
dividing the latter equality by the former one gets

[fl(m + n + 1)/fl(m + n)][fl(m n + 1)/fl(m- n)] [fl(m + 1)/fl(m)] 2

2 /W It can now be shown by inductionor, equivalently, Wm+ W

that

Wkn + (Wn +m/Wm)kwm for all k > 0.

Since a periodic weight sequence for a weighted shift whose weight sequence
has all positive terms must be bounded above and bounded away from
zero, we must have W/m Wm for every integer m. Hence {win} is periodic
with period Inl. This implies n kN for some integer k. Q.E.D.

COROLLARY 3. For B(fl) and f L2(fl) we have f .
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Proof.

(f)"(n)

(- k)f (n k)fl(- k)/fl(k)

[fl(- n)/fl(n)] (- k)f (n k)fl(n)fl(- k)/fl(k)fl(- n)

[fl(- n)/fl(n)] , (-k)f (n k)fl(n k)/fl(k- n)

[fl(- n)/fl(n)] ., (- k) f (k n)

[(,f)l"(n).

This is true for all n, hence f f. Q.E.D.

COROLLARY 4. The equality B(fl) L=(fl) holds if and only if all of the
weights are equal.

Proof. If B(fl) L=(fl), then z B(fl). This implies the weight sequence
is periodic with period one.
The converse is immediate from the characterization of B(/3) given in

Theorem 2. Q.E.D.

The following corollary follows immediately from Theorem 2.

COROLLARY 5. The equality B(fl) C holds if and only if the weight
sequence for T is not periodic.

An important weighted shift is called the unweighted shift. The unweighted
shift has Wn 1, or equivalently fl(n) 1, for all n. This shift is known
to be unitarily equivalent to Mz on L2(O D) where 0 D {z C Izl
1}. The measure is normalized arclength measure. We now discuss some
properties of weighted shifts which have periodic weight sequences.

PROPOSITION 1. Let T be a weighted shift with periodic weight sequence

of least period N. Then fl(n) r"a(n) where r fl(N)/N and t (n) is
periodic.
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Proof. Suppose n > and n tN + s where 0 < s < N. Then

n-I

/3(n) 1-I w
k=0

Wk Wk
\k=0 \k=O

Wk

Since 0 < s < N, the right half of the product above is a bounded sequence
a(n) which is periodic and has a(kN) for all k > 0.
Now suppose n tN + s where < 0 and -N < s < 0. Then

-1/3(n) w, w,
k N

(1Wk)t( Wk) -1

kk=0 k=s

Again since -N < s < 0, the right half of the product is a periodic sequence
a(n) with a(-kN) for all k > 0.
Thus for all n, /3(n) r"a(n) where a(n) is bounded. To see that a(n)

is periodic overall, we note that for every integer k,

a(N + k)/a(k)= (N + k)r/((k)rN+)
[(N)[J(k)/([(k)r N)

[3(N)r-u

1. Q.E.D.

PROPOSITION 2. For a weighted shift T having a periodic weight sequence
of least period N and r [(N) I/N we have the following:

(i)
(ii)

(iii)

r(T-I)- r(T) r;
IlZll max{w0 WN-} and IIT-’ll - min{w0 WN-};
if N 1, then IIZ-’ll-’ < r(T-)-’ r(T) < ItZll;
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(iv) there exists a constant w > 0 such that

w sup{fl(k n)/fl(n) k > 0} < inf{fl(k n)/fl(k) k > 0}

(v) f LZ(fl) if and only if E= f(n)rnz" L2(O D).

for all n;

Proof. Parts (i) and (ii) follow from the corollary to Proposition 7 in
Shields [3] and the theorem that IITnll /n - r(T) as n -- . Part (iii) then
follows immediately from (i) and (ii). For part (iv) we consider

sup{fl(k- n)/fl(k)" k > 0} sup{r-na(k- n)/t(k)" k > 0}

r-" sup{a(k n)/a(k) k > 0}

r max{a(k n)/a(k) 0 < k < N}.

Similarly,

inf{fl(k- n)/(k)" k > 0} r min{a(k- n)/a(k)" 0 < k < N}.

If we let w min{ct(k n)/a(k) 0 < k < N}/max{a(k n)/a(k) 0 <
k < N} then w will satisfy the desired inequality. We note that w > 0 since
a (n) is bounded away from zero.
To prove (v), note that f L2() if and only if

E If(n)12r2nt2(n) < .
Using the boundedness of {et(n) n Z}, we see that f L2() if and only
if E=_=lf(n)rnl2 < o. This is true if and only if E=_= f(n)rnz L
(0 D). Q.E.D.

COROLLARY 6. Let R L2(fl) ---) L2(O D) be given by

R(f) f(n)rnz".

Then R is a similarity between Mz on L2(fl) and a scalar multiple of the
unweighted shift. (The number r is as in Proposition 2.)

Proof. The fact that R is bounded and invertible follows easily from
the boundedness of {a(n) n Z}. For f L2(O D) we have

RMzR-(f) RMz f(n)r-nz"

R f(n)r-"z"+
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E f(n)r-n’rn+zn+l

r n)zn/ Q E D

PROPOSITION 3. If ,
_
L(B) and f

_
L2(B), then R(of) R(o)R(f).

Proof.
(R(of))"(n) r"(pf)^(n)

rn E (k)f(n- k)

., (k)r*f(n k)r.-
k_.

[R()Rff)]"(n).

This is true for all n. Hence R(of) R(o)R(f). Q.E.D.

COROLLARY 7.
L=() and

The map R is a Banach algebra isomorphism between

Proof. By definition, 0 L=(fl) if and only if of L2(/3) for all f
L2(/3). Thus, by Corollary 6 and Proposition 3, 0 L=(B) if and only if
R(o) g

_
L2(O D) for all g L2(O D). Hence o L=(B) if and only if

L=(O D). We also have

< IIRII IIfl12

< IIRII IIR-11 I111
Hence IIR(o)ll,=0o) < IIRII IIR-11 I111. Thus R L(B) --* L(O D)is continuous
and by the open mapping theorem so is R -. The one thing left to verify
is that R(oq) R()R(tk) for o, q L=(B), but this follows from Propo-
sition 3. Q.E.D.

COROLLARY 8. Suppose T is a weighted shift with periodic weight sequence.
If o L=(fl) and 0 (: f H2(fl), then of 0 implies p O.
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Proof. If Cf 0 then R(pf) R(p)R(f) 0 where R is as in Corollary
6. But 0 4- f H2(/3) implies 0 4 R(f) H2(O D). However, R()
L(O D) and R()R(f) 0 implies R() 0 by the F. and M. Riesz
Theorem (Douglas, [1]). Finally R() 0 implies 0. Q.E.D.

From the work above several questions may be asked. First of all, we
know that B(/3) implies B(/3), and hence L=(/3). Does o
L(/3) imply L(/3)? One can answer affirmatively in special cases. For
example if the weighted shift is rationally strictly cyclic the answer is yes.
An affirmative answer is also obtained if/3(k) rk for all k or if/3(k)
/3(-k) for all k. For shifts with periodic weight sequences the answer is
determined by whether a(-n)/a(n) is a multiplier on L=(O D).
The other question involves Corollary 8. Can one say that this corollary

holds for all weighted shifts, not just for those with periodic weight sequences?
We now make the following definition.

DEFINITION 2.
P(pf).

For 9 L=(/3), let T B(H2(/3)) be given by T(f)

The operator T is called the Toeplitz operator with symbol o. Toeplitz
operators for the unweighted shift have been studied quite extensively. We
may now ask which properties of Toeplitz operators for the unweighted
shift carry over to Toeplitz operators for shifts with periodic weight sequences.
Many of the same properties do hold, some with minor modifications. For
example, it is known that T T for all L=(d D) for the unweighted
shift. For shifts with periodic weight sequences, we can only say that T*
T for B(/3). This is an easy consequence of Theorem 2. We now
examine further properties of Toeplitz operators for shifts with periodic
weight sequences.

THEOREM 3. Let T, a weighted shift with periodic weight sequence, be
represented as Mz on L2(B). If p L=(B) and T, is invertible then M, is
invertible.

Proof. Since T, is invertible there is a constant c > 0 such that IIfll2
IlZ(f)ll2 > Clllfllz for all f H2(/3). Also, there is a constant c2 > 0 such
that IlZ*(f)ll2 > cz]lfllz for all f L2(/3). Now let n > 0 and consider

IIz-flh (=olf(k)lZl3Z(k n)) 1/2

1/2

sup{fl(k n)/fl(k) k > 0).
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By Proposition 2 there exists w > 0 such that

sup{fl(k n)/fl(k) k > 0} < w-l inf{fl(k n)/fl(k) k > 0}.

Thus

IIz-"fll2 < Ilfll2 w-’ inf{/3(k n)/(k) k 0}

< IITfll2 w-’cU’ inf{/3(k n)/fl(k) k > 0}

< IIz-nT(f)ll2 (WCl)-’

< Ilz-nM,(f)ll2 (WCl) -1

< IIMAz- nf)ll2 (WCl)- since M,,,Mz-, Mz-,,M,,,.
Now since {z-nf’f H2(fl), n > 0} is dense in L2(fl), we have Mr is
bounded below on L2(fl). If we can show M* is bounded below on L2(fl),
we will have the desired result (Douglas, [1], p. 84).
We attempt to imitate the proof that M, is bounded below. However, a

new difficulty is encountered here since Mz- does not necessarily commute
with M*. We get around this difficulty by noting that it is sufficient to use
n kN where N is the period of the weight sequence and k is a nonnegative
integer because

{z-kf:f H2(fl), k > 0}

is also dense in L2(). Now we have

IIz-flh < (c2w)-’llz-"Tfll2
< (cw) ’llz -’N *MCfl[2
< (cw) IIM(z-nNf)IIz.

-kN B(fl), the last inequality is a result of the following

M--=M M* M Mz-Mz-kNM * *

Noting that z
equation:

Thus both Mr and M* are bounded below. Q.E.D.

We have just shown that o-(M) C tr(T) for shifts with periodic weight
sequences. This is called a spectral inclusion theorem and was already
known for the unweighted shift. However, a spectral inclusion theorem
does not necessarily hold if the weight sequence is not periodic. The following
example illustrates this point.

Example 1.
below:

Let T be the weighted shift with weight sequence given as
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(i) w 1 if n > 1;
1

(ii) w if n < -1.

Then for k > 0, IIMz-,ll 2k. It is also not difficult to verify that
IIM-,IHII 1. Hence r(Mz-,) 2 from the first equality and

r(Tz-t) < IlM-,Inll <- 1.

Thus it is not possible that r(Mz-,)C r(Tz-,).

We now examine other conditions on T, which imply something about
the invertibility of M,. The first result has been proven for the unweighted
shift. Its proof can be found in Douglas [1].

PROPOSITION 4. If T is a weighted shift with periodic weight sequence,
then either Ker T, {0} or Ker T* {0} for all L(fl), p # O.

Proof. Suppose both Ker T, # {0} and Ker T* = {0}. Then there exist
nonzero elements f, g Hz() such that T,g 0 T*f. Since T,g 0
we have -- H(fl) where H(fl) {h H2(fl) /(0) 0}.

Also Tof 0 implies (T*f, zS) (Mf, zn) (f t9Zn) 0 for all n > 0.
This last equation says E=0 f(k)(k h)2(k) 0 for all n > 0.
Now let h H2() be given by h(k) f(k)(-k)(k). (We note that

since the shift is periodic (k)B(-k) is bounded.) Now

(,-)^(n) ., (-k)(n + k)

=E (k)(fl(k)/fl(-k))(n + k)

f (k)(n + k)fl(k)

0 foralln<0

from the last line of the previous paragraph. Thus H(fl).
So R(o) R(o)R(-) H(O D) and R(og) R(o) R(g) H20(O D). This

says

R(o)R(-)R(g) H(O D) and R(p)R(-)R(g) H(O D)

since R(h) H2(O D) and R(g) H2(O D). Now, by Douglas [1, Corollary
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6.7], we have R(p)R(-)R(g) 0 which .implies R(og)R(-) 0. By the F.
and M. Riesz Theorem if R(h) O, then R(og) 0. Corollary 8 of this
paper then implies that o 0. This is a contradiction, and so we are done.

Q.E.D.

The next two corollaries have also been proven in the unweighted case.
Their proofs are also found in Douglas [1].

COROLLARY 9.
invertible.

If O p B(fl) and Tr has closed range, then Mr is

Proof. We may assume without loss of generality that the weighted shift
has periodic weight sequence. If not, B(/3) C in which case the result
is trivial.
Now if o B(fl) then T* T. Also by Proposition 4, we may assume

Ker T {0}. Then, since T has closed range and Ker T {0}, we have

T is bounded below on H2(/3). One can then show, as before, that Me is
bounded below on L2(fl). That is, there exists a constant c > 0 such that
IIoflh > cllflh for all f L2(fl). Then, for f L2(fl), we have

IIfl12 110-112- IIof-112 > cllfll2-- cllfll2.
The second equality holds by Corollary 3. The above chain shows that

M* M7 is bounded below on L2(fl). As before, we conclude that Mr is
invertible. Q.E.D.

We recall now that S B(H) is said to be Fredholm if the range of S
is closed and if both the kernel of S and S* are finite dimensional. If S
is Fredholm, we define the index i(S) of S by i(S) dim(Ker S)
dim(Ker S*).

COROLLARY 10. If T is a weighted shift with periodic weight sequence
and q9 L(fl), then Tr is invertible if and only if T is Fredholm and
i(Tr) O.

Proof. It is easy to verify that if T is invertible then T, is Fredholm
and i(T,) 0. So if T, is Fredholm and i(T,) 0, then Ker T, {0} and
Ker T {0} by Proposition 4. This implies both T, and T* are bounded
below on H2(fl) since they both have closed range. Thus T, is invertible.

Q.E.D.

We now present the last result concerning B(fl).

PROPOSITION 5.
isometric.

The map o T from B(fl) to B(H2(fl)) is *-linear and

Proof. The proof that the map is *-linear follows easily from Theorem
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2 which .says that M* M for B(fl). We also have

[IT,(f)[[2 [[e(Pf)[12 < IIPfll2 < [[qgllool[f[12 for all f H2(fl).
Hence [IT, < IIl[o. However, since B(fl) is a commutative C*-algebra we
have r(M,) [IM,[[ for all B(fl). Thus

The first inequality holds from the spectral inclusion theorem. The result
is achieved since equality must hold throughout. Q.E.D.
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