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PROJECTIVELY UNSTABLE ELLIPTIC SURFACES

BY
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I. Introduction

Let k be an algebraically closed field. Following Artin [I], we call a fiat
proper map of k-schemes

X--.p

a rational Weierstrass fibration if X is a reduced and irreducible rational
surface over k, every geometric fibre of p is an irreducible curve of arithmetic
genus 1, and a section s P ---> X of p is given, not passing through the
nodes or cusps of the fibres. Moreover, we will assume that X is normal,
and that the generic fibre of p is smooth; in this case, we may resolve the
singularities of X and obtain a rational elliptic surface

_pl

(with section) which we call the induced elliptic surface. In this situation
one may represent X in Weierstrass form by the equation

y2 x + A(t)x + B(t)

where A is a quartic and B a sextic polynomial in the parameter t of pl.
The polynomials A and B are unique only up to an action of SL(2) k*
on the space V of pairs of such polynomials. In [2] we studied the stability
(in the sense of geometric invariant theory) of this action and proved the
following.

THEOREM 1.1. (a) The pair (A, B) is properly stable if and only if the
induced elliptic surface X has only reduced fibres.

(b) The pair (A, B) is strictly semi-stable if and only if( has a fibre of
type Ifv.

(c) The pair (A, B) is unstable if and only if X has a fibre of type II*,
III* or IV*.

In this paper we wish to study a different parameter space for rational
Weierstrass fibrations, by embedding X into P" as a cycle of degree d. The
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PROJECTIVELY UNSTABLE ELLIPTIC SURFACES 405

cycle X will then be represented by a point of the corresponding Chow
variety on which SL(n + 1) will act via change of coordinates in pn, and
we conjecture that the stability of the Chow point ofX is given by the same
criteria as in Theorem 1.1. The main result of this work is the verification
of this for a particular class of embeddings.

I would like to thank Ian Morrison for several invaluable conversations
which led me to this calculation.

Finally, I would like to thank Rose Lester for typing the manuscript.

2. Chow Forms and Chow Stability

Let X be a cycle of pure dimension r with degree d in pn. Let [x0, Xn]
be coordinates in P. For every point c [Co, c,] of (pn),, write H
for the hyperplane defined by Ei--0 cixi O.

THEOREM 2.1. In the above situation, there is an irreducible polynomial
dPx, multihomogeneous of degree d in each of the r + sets of variables
c [c0, c], j 0 r, such that

Ox(C) 0 iffX n n H, n n H[, :/t .
Moreover, dPx is unique up to scalar and determines the variety X. dpx is
called the Chow form of X.

Proof. See [5].
The Chow form of X can be considered as a point of

identifying k"+. with F(Pn, tFpn (1)) by choosing the coordinates [x0, Xn]
of P. SL(n + 1) acts naturally on this space, the action is irreducible, and
the orbits are Chow forms Ox of projectively equivalent cycles X.

DEFINITION 2.2. In the above situation, a variety X C P" is called Chow-
stable if its Chow form is stable for the natural action of SL(n + 1). Chow-
semi-stability and Chow-instability are defined similarly.

Let X --> P* be a rational Weierstrass fibration, inducing the elliptic
surface " P*. Let D be an ample divisor on X. Embed X in projective
space via the linear system [MD[ for some suitably large M. The following
conjecture is motivated by Theorem 1.1"

CONJECTURE 2.3. (a) If X has only reduced fibres, then X is Chow-stable
for the given embedding.

(b) If X has a fibre of type Iv, then X is Chow-semi-stable.
(c) If X has a fibre of type II*, III*, or IV*, then X is Chow-unstable.
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The rest of this paper will be devoted to proving a special case of (c)"

THEOREM 2.4. Let X be a rational Weierstrass fibration inducing the
rational elliptic surface X with section S. Let Do be the divisor 3S + 6F
on X, where F denotes the fibre. Then for M sufficiently large, the image
of mapped to pn via the linear system IMDol is X, and X C Pn is Chow-
unstable ifX has a fibre of type IV*.

That D is ample on X is clear by Nakai’s criterion. Since D does not
meet any component of any fibre which does not meet S, the image of X
is indeed the Weierstrass fibration X. The important statement of the theorem
is the instability claim. We will prove that X c P is Chow-unstable by
using Mumford’s criterion (see [4, Theorem 2.9], or [3, Chapter I]), which
we briefly recall in the next section.

Remarks. (1) The use of Do- 3S + 6Finstead ofS + 2Fis merely
a convenience, enabling one to perform the calculations of Section 5 more
easily.

(2) Of the three singular fibres II*, III*, and IV* of X, the fibre IV*
induces in some sense the "mildest" singularity on the Weierstrass fibration
X (an E6 rational double point as opposed to E7 and E8). Hence Theorem
2.4 could be viewed as the strongest of three possible results in this direction.
The other two results are true:

THEOREM 2.5. With the notation of Theorem 2.4, for M sufficiently large
the image of ( via the linear system IMDol is Chow-unstable if ( has a

fibre of type II* or III*.

Here it is convenient to use Do 6S + 12F for the II* case and 4S +
8F for the III* case.
The calculations necessary in these two cases are completely analogous

to the case proved here for a fibre of type IV* and we chose to present
the calculation in only this one case. It would be preferable to give a uniform
proof for all three cases, but as yet the estimates required in each case are
sufficiently different to make this infeasible.

3. Multiplicities and Mumford’s Criterion for Chow Stability

In this section we will define the various quantities used ih the stability
criterion and state the relevant facts about them. For proofs and for more
detail, see [3] and [4].

PROPOSITION 3.1. Suppose X is a k-variety ofdimension r, L is an invertible
sheaf on X and I C x is an ideal sheaf such that Z Supp(x/l) is
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proper over k. Then there is a polynomial P(n, m) of total degree less than
or equal to r, such that

x(L"/ImL") P(n, m)

for large m. Moreover, the polynomial P(n, n) can be written in the form
P(n, n) end + (lower order terms in n)

for some nteger e.

For any polynomialf(n) of degree at most r, define the normalized leading
coefficient off to be the number e, such that

en
f(n) + (lower order terms);

denote it by nc(f). With this terminology, we have the

DEFINITION 3.2. In the situation of Proposition 3.1, we denote by eL(I)
(the multiplicity of I measured via L) the integer

nec X(Ln/InLn).
The criterion for instability is expressed in terms of such a multiplicity.

To calculate this number, one uses the following:

PROPOSITION 3.3. If (in the situation ofProposition 3.1), L and I. L are
generated by their sections, then

h(Ln/InLn) eL(I)n.] O(nr-l).

This fact enables one to compute e(I) in terms of the given h. This,
however, is often not powerful enough; to compute the h, we use the
following result:

PROPOSITION 3.4.
given a diagram

Assume X, I, L as above. Suppose in addition we are

X # Xo f-’(O)
f,

Spec A 0

where f is proper, and a finite-dimensional vector space W C F(X, L) which
(i) generates IL, and

(ii) defines a closed immersion X Xo P(W*).
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Then the dimensions of the kernel and cokernel of the map

r(x, V)_
A-submodule generated|

the image of W(R)n I "--> I’(Ln/InLn)
by

are both O(nr-1), enabling one to calculate e(I) by computing the dimension
of {F(X, Ln)/A-submodule generated by the image of W(R)n} for large n.

To see how these multiplicities are used in computing stability, consider
the following situation:

Let X C pn be a projective variety of dimension r. Fix coordinates
[X0, Xn] on pn. Denote by qx the Chow form of X. Let h Gm --SL(n + 1) be the 1-parameter subgroup of SL(n + 1) defined by

tro
tr

h(t) -xr’/n+
Oo

where r0 > r > > r > 0; we say that r is the weight of the coordinate
X

Define an ideal sheaf I C Tx, by letting I [tgx(1) @ A’] be the subsheaf
generated by {t%} for 0, 1, n.
Denote by e(I) the multiplicity of I measured via Ox(1) ( tga:

e(I) eex(l)(R)TAl(I).

We can now state Mumford’s criterion for stability:

THEOREM 3.5. Let X C pn as above. Then X is Chow-stable (respectively
Chow-semi-stable) iffor every choice of coordinates [Xo, x] in P and
for every 1-parameter subgroup h of SL(n + 1) given as above,

(r + 1)deg X
(3.6) e(I) < /_ r (respectively <)

n+l i=0

The Chow-stability of a variety X in pn is, even with the criterion above,
still no easy matter to verify. A priori one must check all the 1-parameter
subgroups of SL(n + 1), and compute the appropriate multiplicity in each
case. However, if one is intent on proving that a certain variety X is Chow-
unstable, then one need only find a single 1-parameter subgroup for which
the inequality (3.6) fails. The inexperienced stability reckoner may liken
this search to that of the needle in a haystack, but in fact this subgroup
has been seen empirically to be associated, when it exists, to a fairly
concrete geometric property of the variety; in the case of a rational elliptic
surface with a fibre of type IV*, the special singular fibre is the focal point
for the "destabilizing" subgroup. Let us now turn our attention to this
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case, and with the aid of the Propositions 3.3 and 3.4, make the appropriate
calculations exhibiting the surface as unstable.

4. The Destabilizing Subgroup

Let us fix the following notation:

" a minimal rational elliptic surface with section and a fibre of type IV*;
X the associated Weierstrass fibration;
S the given section of X;
F the class of a fibre of X;
K -F the canonical divisor on X;
F0 the singular IV* fibre;
F1, F2, G1, G2, H, H2, and E the seven rational components of F0, so

that

F0 F + 2F2 + G + 2G2 + H, + 2H2 + 3E, (F S) 1,

(F" F2) (F2" E) (G, "G2) (G2" E) (H" H2) (H2" E) 1,

and all other pairwise intersections are 0;
D 3MS + 6MF, the embedding divisor for X.
One may wish to picture the elliptic surface X by the following graph:

37.

I-I1

"-2H2

F1

F0>

2G
2

2F2

Note that

(s2)= -, (F) o, (S F) ,
and

(F2) (F) (G) (G) (H) (H22) (E2) -2.
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Thus the degree of X in P is given by

(4.1) degX (D2) 9M2(S2) + 36M(S. F) 27M2.
Since D is very ample on X, for large enough M the higher cohomology
groups HI(", (D)) and H2(", (D)) vanish; we can therefore calculate the
dimension n of the ambient projective space P" by computing the euler
characteristic of the sheaf (D):

n + I h(, (D))

(4.2) X(2(D))

(D D Kyc)
2

+ X() (by Riemann-Roch)

27M2 + 3M + 2
2

We can now describe the 1-parameter subgroup which will exhibit
X C P" as Chow-unstable. Consider the following filtration of F(X, (D)):

(4.3) (0) C F(D (18ME)) C F(D (18M 1)E)
C c F(D 2E) C F(D E) C F(D)

where F(D KE) is used to abbreviate F(X, 6(D KE)). Choose a basis
[Xo, Xn] of F(D), inducing coordinates in W, compatible with this filtration.
Let h be the 1-parameter subgroup of SL(n + 1) defined by

(4.4) X(t) x trixi

where the exponent ri is computed using the following recipe"

(4.5) Ifxi is non-zero in F(D KE)/F(D (K + 1)E) then ri 18M K.

Thus as a diagonal matrix h(t) has the form

t8M

(4.6) h(t)

tl8M
tSM-...

t8M-
tlSM-2

%.
t8M-r... tSM-K

tl8M- K
%

t
o

t- Xri/n +
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We say that ri is the weight of the basis element
I claim that this choice of coordinates and this 1-parameter subgroup

exhibits X C P as Chow-unstable. Using (3.6), we must compute the
multiplicity e(I) and the sum of the weights r, and show that

(3)(27M2)
(4.7) e(I) >

(27M2 + 3M + 2)/2 r.
i=0

For both of these calculations we must know the dimensions of the spaces
F(D KE)/F(D (K + 1)E); denote this dimension by dr:
(4.8) dr dim F(D KE)/F(D (K + 1)E).

Using this notation, we have

(4.9) r (18M K)dr
i=0 K=0

from the definition (4.5) of the r’s. As we will see in Section 6, knowledge
of the dr’s are also crucial in computing the multiplicity e(I).

Remarks. (1) The above filtration of F(D) is clearly given by the order
of zero along the curve E which is of multiplicity three in the fibre of type
IV*. It is for this reason that we use D 3MS + 6MF instead of MS +
2MF.

(2) The filtrations used in the proofs for the cases of the fibres of types
II* and III* are also given by the order of zero along the unique curve of
maximum multiplicity in the singular fibre in question. This curve is the
multiplicity four curve in the III* fibre and the multiplicity six curve in the
II* fibre.

5. The Computation of the d
We will use the following technique for computing the dimensions dr.

The exact sequence

0 --> ((D (K + 1)E) --> (D KE) --> e((D KE). E) --> 0

gives rise to the exact sequence of sections

0 ---> F(D (K + 1) E) --> F(D KE) - F(E, 6e(2K)),

identifying 6e((D KE). E)with (2K). Since dim F(E, e(2K)) 2K
+ 1, (E is a smooth rational curve), the dimension dr is bounded above
by2K + 1:

dr < 2K + 1.

This bound is not sharp; the main part of the ensuing argument is devoted
to its sharpening. We need:



412 RICK MIRANDA

LEMMA 5.1. Let A be a divisor on the surface X, and let C be a smooth
irreducible curve on X. Assume (A C) < O. Then C is a base curve of
the linear system IAI, or equivalently

F(X, Cyc(A)) ,- F(X, x(A C)).

Proof. From the short exact sequence

0 --> yc(A C) --> :(A) ---> c ( x(A) --> 0

we have the sequence of sections

0 --> F(X, (A C)) ---> F(X, (x.(A)) --> F(C, ((A)lc),

and, by assumption, the degree of x(A)lc on C is negative; hence F(C,
x(A)]c) (0), proving the required isomorphism, Q.E.D.
Using the above lemma we can show that the linear system ID KE[

has actual base locus Br of the form

(5.2) Br’= s(K)S + f(K)F + f2(K)F2 + gl(K)G + gE(K)G2

+ h(K)H + hz(K)H2 + e(K)E

instead of only the a priori base locus KE. Let us illustrate this by computing
the "extra" base locus for the system ]D EI, as follows.

(i) D E’Hz -1, so, by thelemma, ID E[ ID E

(ii) D E- H2. G2 -1, solD E ID E- H2 G21.
(iii) D E- H2- G2" F2 -1, solD E ID E- H2

(iv) D E- H2 G2- F2" E -1, so ID- E[ ID 2E
H:

(v) D 2E- H2 G2 F2’ Gt 1, so

]D E ]D 2E- H2 G2- F2
(vi) D 2E- H G2 F2 G" H -1, so

]D E] [D 2E- H2- G2- F2 G,-

(vii) D 2E- H2- G2 F2 Gt H" H2 1, so

]D El ]D 2E- 2H2 G2- F2 G,-

(viii) D 2E- 2H2 G2 Fz G H’G2 -1, so

ID El ID 2E- 2H2 2G2- F2 G,- H, I.
(ix) D 2E- 2H2 2G2 F2 G H" E -1, so

ID El ID 3E- 2H2 2G2- Fz- G- H, I.
(x) D 3E- 2H2 2G2 F2 G H’F -1, so

]D E ID 3E- 2H2 2G2- 2F2- G,- H,].
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The reader may check that the divisor

D 3E- 2H2 2G2 2F2 Gi H
meets all of the curves S, F1, F2, G1, G2 HI, H and E non-negatively,
and therefore no further inferences regarding the system ID El may
be made, using the lemma. Thus we set B 3E / 2H2 + 2G2 / 2F2 /

G1 / H, and we then have

(5.3)
Note that then

(5.4) [O B,[ [D 3El [O 2El [O El
since 3E < B. To sharpen the bound on do, d, etc., note that do < 1 in
any case, and by (5.4), we have d d2 0. We set B2 B3 B in
keeping with our notation. To use B3 to sharpen d3, consider the diagram

0 (D - 4E) :(O y 3e) -- e(D 3e. e) -- 0

0 (D B E) ---) .(D B3) ---) e(D B3" E) .--. O.

This induces a diagram of global sections

0 rO }- 4E--, rD 3E)-, F(E, D- 3E. E)

0 F(D B3 E) F(D B3) F(E, D B E),

where the middle vertical map is an isomorphism by the construction of
B3. Hence the image of F(D 3E) in F(E, D 3E. E) is contained in
the image of F(E, D B3 E) in F(E, D 3E E); thus its dimension is
bounded by the dimension of F(E, D B3 E). But the dimension of the
image of F(D 3E) is equal to d3 by definition of d3 ; we then have

(5.5) d3 < dim F(E, D B3 E) dim F(E, e)

since D B3 E 0 and E is a smooth rational curve. To bound d4 we
compute B4 with the same procedure used to compute B; we find that

B4 4E + 2F2 + 3G2 + 3H2 + 2GI + 2H.
A similar argument as that used above, applied to the diagram

o-, r(o 5E)-- r(o 4E)-- F(E, D 4E. E)

0 F(D B4 E) F(D n4) F(E, D B4" E),

shows that

(5.6) d < dim F(E, D B4’ E) dim F(E, (?e)

since D B4 E 0 again. One may compute

B5 6E + 3F2 + 4G2 + 4H2 + 2G + 2H;
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hence B5 B6 and d5 0; moreover,

d6 < dim F(E, D B6 E) dim F(E, 6e(1)) 2

by the same argument as above. In the general case we have the following
result:

PROPOSITION 5.7. Let Br be defined as in (5.2).

(i) If e(K) K, then dr < (D Br E) +
(ii) If e(K) > K, then dr O.

Proof. As above consider the diagram

0 ---> F(D (K + 1)E) --> F(D KE) --> F(E, ?e(D KE E))

0 -- F(D B E) -- F(D B) -- F(E, e(D Br E))

where the middle vertical map is an isomorphism by the construction of
B:. In case (i), we have

d < dim F(E, ffe(D Br" E)) (D Br" E) + 1,

as above. In case (ii), note that the middle vertical isomorphism factors
through F(D (K + 1)E); hence

F(D- (K+ 1)E)--(D- KE) and dr= 0, Q.E.D.

I will omit the tedious but elementary calculation of the Br, and just
present the results in Table 5.8.

Let ur be the upper bound for dr given by Proposition 5.7. From Table
5.8, in particular from the last column, we may read off these ur’s when
e(K) K.
The crucial observation to be made is given by the following result.

PROPOSITION 5.9. For every K between 0 and 18M, dr ur.

Proof. Using Table 5.8 and the standard formulas for sums of consecutive
integers, one can readily calculate EY0 ur; it turns out to be

+ 3M + 2).

Note here that this is the total dimension n + of F(D) by (4.2); since we
know that Z8tr=0 dr n + by definition, and dr < ur for all K, we must
in fact have equality for each K, Q.E.D.
We can therefore consider the last column of Table 5.8 (except for K

1, 2, 5, and 18M 1, when dr 0) as a table of values for the dimensions
dr. Using these values and the description (4.9) for the sum of the weights,
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one can compute this sum by appealing repeatedly to the standard formulas
for sums of consecutive integers and their squares. We find that

(5.10) r -- + 9M + M.
i=0

To complete the calculation, let us now compute the multiplicity e(I).

6. The Calculation of the Multiplicity

In this, the least transparent of the series of calculations, we will use the
Propositions 3.3 and 3.4. We consider the diagram

X x A -X

Spec k[t] A -0

where f is simply the projection onto the second factor. Let

L (Yx(D) ( CA
and let W be the subspace of F(X A, L) which is generated by the
elements {tnXi}, where the xi’s and r’s are chosen as in Section 4. Let I
be the ideal in XA defined by letting I. L be the subsheaf generated by
W. By Theorem 3.5, the multiplicity we are interested in is ez(I).
Note that Proposition 3.4 applies in this situation: f is proper (X is proper

over k), and by definition W generates I. L. We need only check that W
defines a closed immersion

X A X0 c.__> P(W*);

this follows from the definition of W and the fact that (Yx(D) is very ample
for X. We can therefore compute e(I) by computing the dimension of the
F(X A, Ln)/k[t]-submodule generated by the image of W(R) (as in Proposition
3.4), for large n.

Since the ring k[t] is graded by powers of t, we may view the module
F(X A, Ln) as graded in this manner; by the Kunneth formula,

F(X A, L) F(X, x(nD)) ( k[t]

F(X, 6x)(nD)) (, k[t]

( [F(.’, :(nD))( (k. tL)].
L=O

Since W is generated by homogeneous elements of F(X A, L) (with
respect to this grading), so is W(R)’; let (--0 V () (k. tz) denote the k[t]-
submodule generated by W(R)" where W[ is the L-th graded piece of this
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submodule. Using this notation, we have

(6.1) (X A1, Ln)/k[t]-submodule generated by W

@ F(’, 6(nD)) ( (k. tr)/W (k" tt).
L=O

The problem is now reduced to the calculation of the dimension of

F(X, :(nD)) ( (k tL)/w ( k"

for each L, or equivalently

(6.2) F(.’, (nD))/W.

PgOPOSTION 6.3. In the above situation,

W c image of F(X, :(nD (18Mn L)E))

under the natural inclusion

F(X, 6x(nD (18Mn L)E) C F(X, 6y(nD)),

for L < 18Mn.

Proof. The subspace W is generated by monomials
of degree n in the xg’s, such that ri, + ri + + ri. t. Recall that by
Definition 4.5 of the rg’s, each xi vanishes to order 18M rg on E; hence
the above monomial vanishes to order

(18M- ri) 18Mn L
i=1

on E, Q.E.D.
Using Proposition 6.3, we have

dim F(X’, (:(nD))/W > dim F(X’, y(nD))/F((, 6y(nD (18Mn L)E)

for L < 18Mn. Hence

(6.4)

e(I) nec dim @ (’, yc(nD)/Wz
L=O

nec dim @ F(2, (nl/r(2, (n (18Mn L)E))
L=0

nec h(2, e(nDl h(2, (n (18Mn L)E))]
L=0

nec [h(2, 0’,(nD)) h(2, eyc(nD LE))]
L=O
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Let d dim F(X’, G(nD KE))/F(f(, (nD (K + 1)E)). Note
that d: d. The values of dT may be read from the last column of Table
5.8 by replacing M by Mn wherever M occurs. Let us re-copy this table
below.

Table 6.5

d dimF(X, (Yx(nD KE))/F(X, Yx(nD (K + I)E))

K d K d

0 6Mn + < K < 15Mn
0 K (3) Mn

2 0 K 2 (3) Mn
3 K 0 (3) Mn +
4
5 0
6 2

7 < K < 6Mn 15Mn + < K< 18Mn 3
K---- (6) K 1/6 K--- (3) 6Mn (K 1)/3
K--- 2(6) K 2/6 K-= 2(3) 6Mn (K + 1)/3
K=- 3 (6) K + 3/6 K=0(3) 6mn (K 3)/3
K= 4(6) K + 2/6
K 5 (6) K 5/6 18Mn 2
K= 0(6) K + 6/6 18Mn 0

18Mn

Note that
L-I

h(f(, Y2(nD)) h(f(, 2(nD LE) d.
K=0

Hence the estimate (6.4) for e(I) can be written as

e(I) > nfc d.
\L= K=0

(6.6) nfc d
K=0 L=K+I

18-nc [18Mn K 1]d .
\ K=0

This sum is a cubic polynomial in n; to find its normalized leading coefficient,
we take the coefficient of rt and multiply by 6. Hence in computing the
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n?c, we may ignore any terms which are O(n2). Hence

18Mn

e(I) > nec [18Mn K]dn
K=0

6Mn

nec [18Mn K][K]
K=0

[18Mn- KI[Mn] + , [18Mn- K] 6Mn-
K 6Mn K 15Mn

Using Table 6.5. Again invoking the standard formulas we find

(6.7) e(I) > 675M3.

This is the estimate needed to prove Theorem 2.4.

7. The Proof of Instability

By Theorem 3.5, it will suffice to show that, in our above notation,

(r + 1) degX -,
(7.1) e(I) > r

n+l ;=0

Using the estimate (6.7) for e(I), and the values (4.1), (4.2), and (5.10)
for the terms degX, n + 1, and Er respectively, it suffices to show that

675M > (3)(27M2) (225 M3
(27M + 3M + 2)/2\ 2

or

675M >
(3)(27M2)(225M + 18M2 + 23M)

27M + 3M + 2

Clearing denominators, it suffices to show that

675M3(27M + 3M + 2)> (3)(27M)(225M + 18M + 23M),

or

(27)(675)M + 3(675)M4 + 2(675)M

> (27)(675)M + (3)(27)(18)M4 + (3)(27)(23)M3.

The coefficients of M in these two polynomials are equal; hence we need
only show that

3(675)M4 + 2(675)M > 3(27)(18)M4 + 3(27)(23)M
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or, dividing through by 27M3, that

75M + 50 > 54M + 69.

This is true for all M > 1, Q.E.D.
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