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THE MINIMAL PRIME SPECTRUM OF A REDUCED RING

BY
EBEN MATLIS

Introduction

Throughout this discussion R will be a commutative ring with 1. We say
R is a reduced ring if it has no nilpotent elements other than 0. Of course,
this is equivalent to saying that the intersection of the minimal prime ideals
of R is 0. The purpose of this paper is to study min R, the minimal prime
spectrum of R, in order to obtain information about Q(R), the classical ring
of quotients of R; and E(R), the injective envelope of R; as well as other
properties of R.

Some of this information is already known. Thus in order to present
more detailed results, a good deal of background information has to be
used, imposing a severe strain on the general reader unfamiliar with the
subject. Further compounding the problem is that much of the information
is scattered wholesale about the literature. An even deeper difficulty is that
this information, while relatively elementary in character, is usually thrown
off as pieces of debris from general construction in the theory of non-
commutative rings, or category and sheaf theory, so that no easy route to
the subject is available.

In order to overcome these problems we shall present statements and
proofs of most relevant facts about a reduced ring and its minimal prime
spectrum including folklore and elementary exercises, as well as the work
of other authors, giving attributions only for the deeper results.

In §1 we give some of the necessary background material. Because we
are interested only in commutative rings, and specifically reduced rings,
much of this material has been greatly simplified. We conclude §1 with an
interesting contrast between reduced rings and non-reduced Noetherian
rings.

The notion of a Von-Neumann regular ring, VNR, plays a key role in
the subject. The definition that we use (among the many possible equivalent
definitions) is that every principal ideal is a direct summand of the ring.
This definition (in contrast to the definition of a semi-simple ring as a ring
in which every ideal is a direct summand of the ring) shows that it is the
set of principal ideals that matters. This definition gives rise immediately
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to two successively weaker ones: a commutative ring is a PIP if every
principal ideal is projective; and it is a PIF if every principal ideal is flat.
All of these rings are reduced rings.

In §2 we review the list of known equivalent conditions for a PIF to be
a PIP, and add a few of our own. This problem dates back to the problem
of finding necessary and sufficient conditions for a ring of weak global
dimension 1 to be a semi-hereditary ring; and has been worked on by
Hattori, Endo, Vasconcelos, and Quentel. One of the surprising results we
prove is that a PIF ring R is a PIP if and only if C, is a divisible
R,,-module for all injective R-modules C and maximal ideals M of R. This
provides new examples of rings whose injective modules do not localize.

Looking at the problem one ideal at a time, we find necessary and sufficient
conditions for a principal ideal of a reduced ring (or a PIF) to be a projective
ideal. Since a principal ideal is projective if and only if its annihilator is a
direct summand of the ring, we analyze the conditions for an ideal to be
a direct summand of R in terms of properties of subsets of min R.

If R is a reduced ring, one of the known theorems about E(R) is that it
is a self-injective VNR. If P € min R, then R; is a field; and hence E(R)
is a direct summand of IIR, (P € min R). We prove in §3 that E(R) is a
subdirect product of the R,’s. There are examples where E(R) = IIR,
(P € min R); and others where E(R) = II1Pgz (P € I' C, min R). Thus it
is clear that the structure of E(R) can be quite complex.

If R is a reduced ring and min R = {P,, ..., P,} is finite, then

OR) =Ry, ® * ® Ry, = ER).

There are two interesting generalizations of this theorem. On the one hand
Quentel and others have shown (see Proposition 1.16) that min R is compact
if and only if E(R) is flat. On the other hand we show that min R is totally
disconnected if and only if E(R) = IIR, (P € min R) (see Proposition 3.5).

In §3 we prove that if {Pg}, B € B, is a subset of min R, then E(R) =
IIRp, (B € %) if and only if the Pg’s are distinct, every Py is a non-essential
ideal of R, and Ng Pz = 0. In this case {P;}, B € B, is the set of all non-
essential minimal prime ideals of R. Hence the decomposition (if it exists)
is unique.

In the general case, if {Pg}, B € %, is the set of all distinct non-essential
minimal prime ideals of R, and we let I = N P4, then E(R/I) = [IRp,;
E(R/I) is a ring direct summand of E(R); the complementary summand is
E(R/K), where K = anng I; and R/K is a reduced ring with no non-essential
minimal prime ideals. Furthermore, there is a 1-1 correspondence between
the non-essential minimal prime ideals of E(R) and those of R given by
contraction; and the corresponding localizations are isomorphic.

In §4 we give a number of examples to show that the general theorems
of this paper provide efficient methods of deciding whether or not a ring
is a PIF, or a PIP, and also of computing E(R). In particular, we produce
an example of a ring R = K[[x]] (where K is a hereditary VNR) that is
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not a PIF; a fortiori, not a ring of w.gl.dim 1. Nevertheless, Q(R) is a VNR,
E(R) is a direct product of copies of k((x)) where k is a field, and R is an
essential extension of a semi-hereditary ring.

1. Preliminaries

DeriniTION.  Let R be a commutative ring and A an R-module. We shall
let E(A) denote the injective envelope of A.

ProposITION 1.1. Let R be a reduced ring, and let {P.}, a C o, be the
set of minimal prime ideals of R.

1) Rp_is the quotient field of R/P,, and hence is an injective R-module.
(2) E(R) is a direct summand of 11, Rp .
(3) U,P,is the set of all zero divisors of R.

Proof. (1) Let O, = {r € Rlur = 0 for some u € R — P,}. Then O,
is an ideal of R and O, C P,. Since P,Rp, is the only prime ideal of
Ry, every element of P,Rp, is nilpotent. Thus if p € P, there exists u €
R — P, and n > 0 such that up" = 0. Hence (up)" = 0, and since R is
reduced, up = 0. Thus O, = P,, and hence P,Rp = 0. Therefore, R, is
the quotient field of R/P,; and since Rp_ is a flat R-module, Rp, is an
injective R-module.

(2) It follows from (1) that I1,R,_ is an injective R-module; and that the
canonical map R — II,R,, has kernel equal to NP, = 0, and hence is a
monomorphism. Thus the canonical map extends to a monomorphism: E(R)
— ILRp,.

(3) It follows from (1) that every element of U,P, is a zero divisor in
R. Conversely, let x € R, x # 0 be a zero divisor in R. Then there exists

y € R,y # 0 such that xy = 0. Since NP, = 0, there exists P,z such that
y & Pg; and hence x € Pg.

DerNITION. Let A be a subset of an R-module B. Then define AnngA
= {r € R|rA = 0}.

ProrosiTiON 1.2. Let R be a reduced ring.

(1) A prime ideal P of R is a minimal prime ideal of R iff for all x €
P, Anngx ¢ P.

(2) Let J be a finitely generated ideal of R. Then J is contained in a
minimal prime ideal of R if and only if AnngJ # 0.

(3) If x € R and y € Anngx, then Anng(Rx + Ry) = 0 iff x — y is
not a zero divisor in R.

Proof. (1) If P is a minimal prime ideal of R and x € P, then by
Proposition 1.1(1), there exists u € R — P, such that ux = 0. Conversely,
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suppose that for all x € P, Anngx ¢ P. Suppose P, is a prime ideal of R
and P, C, P. Then there exists x € P — P,, and hence Anngx C P, C
P. This contradiction shows that P is a minimal prime ideal of R.

2) LetJ = Ra; + ** + Ra,, and let I = AnngJ. Suppose that J C
P, a minimal prime ideal of R. Then by Proposition 1.1(1), there exist
elements u; € R — P such that ua; = Oforalli = 1, ..., n. Let u = uu,
.. u,; then u & P and u € I. Conversely, suppose that I # 0. Then there
is a minimal prime ideal P of R such that I ¢ P, and hence J C P.

(3) Assume that Anng(Rx + Ry) = 0, and suppose that ¢+ € R and
tx — y) = 0. Then tx = ty and hence (tx)> = 0. Therefore, tx = 0 = ty
and hence t € Anng(Rx + Ry) = 0. Thus x — y is not a zero divisor in
R. The converse assertion is trivial.

DErFINITION. A commutative ring R is said to be a Von-Neumann regular
ring (VNR) if every principal ideal of R is a direct summand of R; i.e., is
generated by an idempotent of R.

ProrosiTioN 1.3 [8, Theorem 1.16]. Let R be a commutative ring. Then
R is a VNR iff R is reduced and every prime ideal of R is minimal. In this
case every ideal of R is an intersection of prime ideals of R.

Proof. Assume that R is a VNR. Let I be an ideal of R and x an element
of R such that x" € I for some n > 0. Since Rx = Re, where ¢* = e, we
have x € I, showing that I is an intersection of prime ideals of R. In
particular, taking I = 0, we see that R is reduced. Now let I = P be a
prime ideal of R. Then1 — e € Anngxand 1 — e & P. Hence by Proposition
1.2(1), P is a minimal prime ideal of R.

Conversely, suppose that R is reduced and that every prime ideal of R
is minimal. Let 0 # x € R and I = Anngx. Since R is reduced, Rx N
I = 0; and by Proposition 1.2(1), Rx + I is not contained in any minimal
prime ideal of R. Therefore, Rx + I = R, Rx is a direct summand of R;
and hence R is a VNR.

DeriNITION. Let R be a commutative ring and let S be the set of non-
zero divisors of R. Then Rj is the classical ring of quotients of R, and we
shall denote it by Q(R).

ProrosiTioN 1.4 [12, Proposition 9]. Let R be a reduced ring. Then the
following statements are equivalent:

(1) Q(R) is a VNR.

(2) If 1 is an ideal of R contained in the union of the minimal prime
ideals of R, then I is contained in one of them.

(3) If J is a finitely generated ideal of R, then there exist b € J and
a € AnngJ such that a + b is not a zero divisor in R.
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(4) If b € R then there exists a € Anngb such that Anng(Ra + Rb)
= 0.

Proof. (1) > (2) Suppose that I is contained in the union of the minimal
prime ideals of R. Then by Proposition 1.1(3), every element of I is a zero
divisor in R. Thus QI # Q, and so QI C %, a maximal ideal of Q; and
I C 2 N R. By Proposition 1.3, # is a minimal prime ideal of Q; and since
Q is a localization of R, 2 N R is a minimal prime ideal of R.

2)> (3) LetJ = Rb, + -+ + Rb, be a finitely generated ideal of R,
and I = AnngJ. Suppose that there do not exist elements b € J and a €
I such that a + b is a non-zero divisor in R. Then I + J is contained in
the union of the minimal prime ideals of R, and hence by hypothesis, there
exists a minimal prime P of R such that I + J C P. By Proposition 1.2(1),
there exists ¢; € Anng b; with ¢; &€ P. Let ¢ = ¢c, ... ¢,; then ¢ € I and
¢ & P. This contradiction proves that there exists b € J and a € I where
a + b is a non-zero divisor in R.

(3) = (4) This follows from Proposition 1.2(3).

4 > (1) Let g € 0 = Q(R); then there exists b € R with Qg = Qb.
By hypothesis, there is an a € Anngb such that Anng(Ra + Rb) = 0. By
Proposition 1.2(3), b — a is not a zero divisor in R. Thus, Qb + Qa =
Q; and since Q is reduced, Qb N Qa = 0. Therefore, Qb is a direct summand
of Q, and hence Q is a VNR.

ProrosiTION 1.5. Let R be a commutative ring and {P,, ..., P,} a finite
set of distinct minimal prime ideals of R. Let S = R — Ui, P;; then
Rs = RPI @ cee @Rp".

Proof. {(P))s, ..., (P,)s} is the set of all prime ideals of R, and each
of them is both maximal and minimal in Rg. Moreover, (Rg))s = Rp, for
i =1, ..., n. Thus without loss of generality we can assume that {P,, ...,
P,} is the set of all prime ideals of R, and that each of them is both maximal
and minimal in R.

Let O; = {r € R| there exists u € R — P; with ur = 0}. Since P,R,, is
the only minimal prime ideal of Rp,, every element of P; is nilpotent modulo
O;. Thus P; is the only prime ideal of R containing O;. Therefore R/O; =
Rp,i=1,..,nand O; + O; = R, i # j. The annihilator of an element
of N}_, O; is not contained in any maximal ideal of R and thus NY., O0; =
0. Hence by the Chinese Remainder Theorem,

R=R/0,® - ®R/O, = RP,@"'®RP,,-

ProproSITION 1.6. Let R be a reduced ring with only a finite number of
minimal prime ideals {P,, ..., P,}. Then Q(R) = Rp, ® - @ Rp, = E(R).
Hence Q(R) is a self-injective VNR (in fact a semi-simple ring), and E(R)
is a flat R-module.
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Proof. By Proposition 1.5, Q(R) = Rp, @ - @ Rp,. Thus by Proposition
1.1 Rp, is a field, and Q(R) is an injective R-module. Since Q(R) is an
essential extension of R, we have Q(R) = E(R).

ProrosITION 1.7. If R is a reduced, self-injective ring, then R is a VNR.
In this case if J is any ideal of R and I = AnngJ, then R = E(J) @ I.

Proof. Since R is reduced, I N J = 0; in addition, J @ I C R is an
essential extension. Thus R = E(R) = EJ @ I) = EJ) @ El). Now
EIJ C E) N EJ) = 0, and thus EJ) C I. Hence I = E(I), and R =
EJ)P I

Now suppose that J = Ra, a € R. Then by the preceding paragraph we
have I = Re, where ¢* = e; and hence Ra C E(Ra) = R(1 — e). Since
Anng(1 — e) = Re = Annga, there is an R-homomorphism f : Ra —
R( — e) with fla) = 1 — e. Since R is self-injective, f extends to
an R-homomorphism from R into R. Thus there exists t+ € R such that
1 — e = f(a) = ta. Therefore, R(1 — e¢) C Ra, and so R(1 — e¢) = Ra.
Thus Ra is a direct summand of R and hence R is a VNR.

ProrosiTION 1.8. Let R be a VNR and let {x,}, vy € T, be a set of
generators for an ideal I of R. If f : I — R is an R-homomorphism, then
there exists a set of elements {a,}, y € T, in R such that f(x,) = a,x, for
v € I'; and the system of congruences

y = a, mod(Anng x,), y €T,

is finitely solvable. Conversely, if the system is finitely solvable, then there
is an R-homomorphism f: I — R so that f(x,) = a,x,, vy €.

Proof. Let f: I — R be an R-homomorphism; and let x € I. Since R
is a VNR, we have Rx = Rx?, and thus there is an a € I with f(x) = ax.
In particular there is a set of elements {a,}, y € T, in I with f(x,) = a,x,,
vy € T'. Let {x,,, ..., x,,} be any finite subset of the generators {x,}. Then
there is an x € I with Rx,, + -+ + Rx,, = Rx; and hence there are elements
s; € R with x,, = s;x, i = 1, ..., n. Since f(x) = ax, we have

a,x, = f(x,) = s;f(x) = as;x = ax,,.

Therefore a = a,, mod(Anng x,,), and the system of congruences y = a,
mod(Anng x,) is finitely solvable.

Conversely, suppose that the system is finitely solvable, and define
f:I— Rby f(x,) = a,x;, and extend f linearly to all of 1. With the notations
of the preceding paragraph, suppose that 2i_, rix,, = 0, where r; € R. Since
a,x, = ax,, we have Z r,a,x, = aZrx, = 0. Thus, fis a well defined
R-homomorphism.
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DEerINITION. Let R be a commutative ring with 1, and
y=a,(modl), y€T,

a system of congruences where the a,’s are elements of R ‘and the I.’s are
principal ideals of R. If every such system that is finitely solvable has a
simultaneous solution, we shall say that R is linearly compact on principal
ideals.

ProrosiTiON 1.9. Let R be a reduced ring. Then R is self-injective iff R
is a VNR and is linearly compact on principal ideals.

Proof. By Proposition 1.7 we can assume that R is a VNR. Then the
principal ideals of R are exactly the annihilators of elements of R. Now R
is self-injective iff every R-homomorphism from an ideal I of R can be
realized by multiplication by an element a € R. By Proposition 1.9 the
R-homomorphisms from I into R arise from finitely solvable systems of
congruences y = a, mod(Anng x,) where the a,’s are in R and the x,’s
generate I. It is immediate that f is multiplication by an element a € R iff
a is a simultaneous solution of the system of congruences. Therefore, R is
self-injective iff R is linearly compact on principal ideals.

DeriNITION. Let R be a commutative ring with 1, E = E(R), and H =
Homg(E, E). Let

9 = {f € Hf() = 0}.

Then # is a left ideal of H. Define ¢ : H — E by ¢(h) h(1), h € H.
Then ¢ is an H-homomorphism of H onto E with Ker ¢ = #. Thus E =
H/$ is a cyclic H-module with generator 1 € R. We have ¢(I) = 1, where
I is the identity map on E. Since E is a faithful R-module we have a canonical
injection R C H sending 1 to I. If 0 = Q(R), then it is readily seen that
E is the Q-injective envelope of Q; and that the injection R C E extends
to an injection Q C E.

ProrosiTioN 1.10 [10, Proposition 3, p. 95]. Let R be a commutative
ring. Then the following statements are equivalent:

(1) $is a two-sided ideal of H.
2 $£=0.

(3) H = E as H-modules.

(4) E is a projective H-module.
(5) H is a commutative ring.

Proof. The implications (2) = (1), (3) = (4), and (5) > (1) are trivial.
For (2) = (3) we observe that ¢ is then an isomorphism. And for (1) =
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(2), let f € # and x € E. Since there is an h € H with k(1) = x, and fh
€ ¥, we have f(x) = 0. Thus f = 0 and hence $ = 0.

4) > (2) Since ¢ is onto and E is projective, there is an H-homomorphism
AN: E— Hwith pA = 1. Let g = A(1);then 1 = I(1) = ¢A(l) = ¢(g) =
g(1). Thus Ker g N R = 0, and since E is an essential extension of R, we
have Ker g = 0. But then Im g is an injective R-module containing R, and
hence Im g = E. Thus g is an isomorphism. Hence I = g7'g = g~ '(A(1))
= Mg~ !(1)) and thus I € Im \. Since Im \ is a left ideal of H, we have
Im A = H. Thus, if f € $ = Ker ¢, then there is an x € E with f = \(x),
and hence 0 = ¢(f) = dpA(x) = x. Therefore, f = A(0) = 0, and so ¥ =
0.

2)=> (5) Leth € Hand h(l) = x € E. Define h, : E — E as follows:
if y € E, then there is a unique g € H with g(1) = y because ¥ = 0. We
define 1 (y) = g(x). It is obvious that 4, is an Abelian group homomorphism
of E into E. Let k € H; then kg is the unique element of H such that
(kg)(1) = k(y). Hence h(ky) = kg(x) = kh(y). Thus h.k = kh,, k € H.
Therefore h, € H; and in fact A, is in the center of H. Now h(1) = I(x)
= x = h(l). Hence h, — h € $ = 0. Thus h, = h, and so A is in the
center of H. Thus H is a commutative ring.

DeriNITION. Let B be a submodule of an R-module A, and let x € A.
Then we define

(B : x) = {r € Rrx € B}.

We say that B is an essential submodule of A (or A an essential extension

of B) if every non-zero submodule of A has a non-zero intersection with
B.

ProposiTiON 1.11. Let R be a commutative ring, E = E(R), and H =
Homg(E, E). Let x € E; then (R : x) is an essential ideal of R. Moreover,
df€ H D f(1) = 0and f(x) # 0 iff Anng(R : x) # 0.

Proof. Letr € R; if rx = 0, then r € (R : x); while if rx # 0, then
there is a t € R with 0 # frx € R, and hence 0 # tr € (R : x). Therefore
(R : x) is an essential ideal of R.

If there is an f € H with f(1) = 0 and f(x) # 0, then there is an a €
R such that af(x) = s € Rand s # 0. Clearly s € Anng(R : x). Conversely,
if there is 0 # s € Anng(R : x), then there is an R-homomorphism g : R
+ Rx — Rs with g(1) = 0 and g(x) = s. Because E is injective, g extends
to an element of f € H.

ProrosiTioN 1.12 [10, Proposition 1, p. 102]. Let R be a reduced ring
and E = E(R). Then E is a commutative, self-injective VNR, and Homg(E,
E) = Homg(E, E) = E.
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Proof. Let H = Homg(E, E), and suppose that there is an f € H and
x € E with f(1) = 0 and f(x) # 0. By Proposition 1.11, Anng(R : x) #
0 and (R : x) is an essential ideal of R. But then (R : x) N Anng(R : x)
# 0, contradicting the fact that R is a reduced ring. Hence the map ¢ :
H — E defined by ¢(h) = h(1), h € H, is an H-isomorphism. Therefore,
by Proposition 1.10, H is a commutative ring extension of R. Since ¢ is
the identity on R, we can use ¢ to give E the structure of a commutative
ring extension of R such that Homg(E, E) = Homg(E, E).

Let x € E, x # 0, and suppose that x> = 0. Since E is an essential
extension of R there exists » € R with 0 # rx € R. But (rx)? = r’x? =
0; and this contradiction shows that F is a reduced ring.

Let £ be an ideal of E and f : $ — E and E-homomorphism. Because
E is R-injective, f extends to an element ¢ € H. But then g is an E-
homomorphism, and hence E is a self-injective ring. Thus by Proposition
1.9, E is a VNR.

Remarks. Let R be a reduced ring and E = E(R). Since Homg(E, E)
= Homy(E, E) = E is a commutative ring extension of R, it follows readily
that if A is another injective envelope of R with a commutative ring structure
extending that of R, and if § : E — A is an R-homomorphism that is the
identity on R, then 6 is a ring isomorphism.

ProrosiTioN 1.13.  Let R be a reduced ring and E = E(R). Suppose that
A and B are R-submodules of E such that E = A @ B. Then A and B are
ideals of E, and Homgx(A, B) = 0.

Proof. Let f be the element of Homg(E, E) that is 0 on A and the
identity on B. Then by Proposition 1.12, f is multiplication by e € E and
e = e. Thus B = Ee and A = E(1 — e); and hence A and B are ideals
of E. If g € Homg(A, B), define h € Homg(E, E) to be g on A and 0 on
B. Then h is multiplication by y € E, and hence g(A) = YA CA NB =
0. Thus g = 0.

DeriniTiON.  Let R be a reduced ring and let min R be the minimal prime
spectrum of R. If x € R, define D(x) = {P € min R|x & P}. Then the sets
of the form D(x) form a basis for the Zariski topology on min R. When
we say that min R is compact, we mean that it is compact in this topology.

ProrosiTioN 1.14 [12, Lemma 1]. Let R be a reduced ring, and let A
be a commutative ring extension of R.

(1) If every prime ideal of A contracts to a minimal prime ideal of R,
then min R is compact.

(2) Assume that A is a VNR. Then A is a flat R-module iff every prime
ideal of A contracts to a minimal prime ideal of R. Hence in this case min
R is compact.
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Proof. (1) Suppose that we have an open cover of min R. Then without
loss of generality we can assume it is of the form min R = U,D(x,), A €
A, x, € R. Let

Dy(x)) = {P € Alx)\ & P}

then as a consequence of our hypothesis we have spec A = U,D,(x,).
Since the spec of any commutative ring is compact, there exist
X, +-+5 X, SUch that

spec A = U Dy(x,).
i=1

Let P € min R; since R, C Ap, and R, is a field, it is easily seen that
there is a prime ideal ? of A with 2 N R = P. It follows from this that
min R = U, D(x,,). Thus min R is compact.

(2) Assume that A is a flat R-module. Let # be a prime ideal of A, and
let P = ? N R, and suppose that there is a prime ideal P, of R, P, C.
P. Then there is a p € P — P,, and we have an exact sequence

P
0 — R/P, — R/P,.

Since A is flat over R, we have an exact sequence

p
0—>A/P,A— A/PA.

However, since A is a VNR, there exists u € A — ? with pu = 0. This
contradiction shows that P is a minimal prime ideal of R.

Conversely, assume that if 2 is a prime ideal of A, then # " R = P is
a minimal prime ideal of R. Then since R is reduced, R, is a field. Now
Ag is an Rp-module, and hence Ay is flat over Rp, and thus over R. Thus
S @ Ap, ? maximal in A, is a flat R-module. Since = @ Ay is a faithfully
flat A-module, it follows that A is flat over R. (See [1, Proposition 7, Chapter
I, §4])

ProposiTioN 1.15 [12, Proposition 9]. Let R be a reduced ring. Then the
Jfollowing statements are equivalent:

() Q = Q) is a VNR.
(2) min R is compact; and if a finitely generated ideal is contained in

the union of the minimal prime ideals of R, then it is contained in one of
them.

Proof. (1) > (2) Since Q is a localization of R, it is a flat R-module.
Thus min R is compact by Proposition 1.14(2). The latter part of (2) follows
immediately from Proposition 1.4(2).

(2) > (1) Suppose that Q is not a VNR. Then by Proposition 1.3, Q
has a maximal ideal % that is not a minimal prime ideal of Q. Then ? N
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R is not a minimal prime ideal of R, because Q is a localization of R. Hence
? N R D, P, where P € min R. Choose b € (? N R) — P; and then

min R = D(b) U {UD(a)|a € P}.

Since min R is compact, there exist a,, ..., a, € P with min R = D(b) U
D(a,) U -+ U D(a,). Let J = Rb + Ra, + - + Ra,; then J is not
contained in any minimal prime ideal of R. Hence by hypothesis J is not
contained in the union of the minimal prime ideals of R; and thus J contains
an element that is not a zero. Hence QJ = Q. But QJ C ?; and this
contradiction shows that Q is a VNR.

Remarks. Quentel has produced an example of a reduced ring R where
min R is compact, but Q(R) is not a VNR. Thus the latter part of statement
(2) in Proposition 1.15 is not redundant.

The following proposition is also in part due to Quentel although with a
proof that depends on considerable machinery.

ProposiTioN 1.16 [12, Proposition 3]. Let R be a reduced ring. Then the
following statements are equivalent:

(1) min R is compact.

(2) If b € R, then there is a finitely generated ideal J C Anngb with
Anng(Rb + J) = 0.

(3) IIRp, P € min R, is a flat R-module.
4) E(R) is a flat R-module.
(5) If P is a prime ideal of E(R), then ? N R € min R.

Proof. (1) > (2) Let b € R; then by Proposition 1.2(1), Rb + Anngb
is not contained in any minimal prime ideal of R. Thus

min R = D(b) U {UD(a)|a € Anngb}.
Since min R is compact, there exist a;, ..., a, € Anngb such that
min R = D(b) U D(a,) U *-- U D(a,).

Thus if J = Ra, + - + Ra,, then Rb + J is not contained in any minimal
prime ideal of R. Hence by Proposition 1.2(2), Anng(Rb + J) = 0.

2) > (3) Letll = IIRp,, P, € min R; and let I # 0 be an ideal of R.
In order to prove that II is flat it is sufficient to prove that Tor ®(R/I, II)
= 0. But Tor ®(R/I, TI) is isomorphic to the kernel of the canonical map
0 : I ®g II — ITI. Thus it is sufficient to prove that Ker § = 0.

Let b € I and (x,) € II, where x, € Rp,. We will show that we can
write b ® (x,) in the form where x, = 0, for all « such that b € P,. By
hypothesis there is a finitely generated ideal

J = Ra, + -+ + Ra, withJ C Anngb and Anng(Rb + J) = 0.
By Proposition 1.2, min R = D(b) U D(a)) U -+ U D(a,). Thus we can
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take subsets D(a;) C D(a;) such that we have the disjoint union
min R = D(b) U D(a,) U - U D(a,).

Consider a fixed integer i, 1 < i < n. If P, € D(a;), then q; is a unit in
Rp,; and we can write x, = a;(y,(i)), where y,(i) € Rp,. If P, & D(a;), we
put y,(i) = 0. If P, € D(b), we let y,(0) = x,; and if P, & D(b) we let
v,(0) = 0. It is then clear that

) = (¥a(0)) + ai(y (1)) + -+ + a,(y.(n)).

Since a; € Anngb, we have b ® (x,) = b ® (y.(0)). Thus without loss of
generality we can assume that x, = 0 if b € P,,.

Now if b ® (x,) € Ker 0, thenx, = 0if b € P,, and bx, = 0if b &
P,. Butif b & P,, then b is a unit in Rp,, and so x, = 0 for all «. Therefore
b ® (x,) = 0. In general, suppose that x € Ker 6 and

x = (b; ® (xo (1)) + =+ + (b ® (x,(k))) where b; € I and x,(i) € Rp,.

We shall prove that x = 0 by induction on %, the case k = 1 having already
been proved.

As we have demonstrated, we can assume that x,(1) = 0 if b, € P,.
Now

0 = 0(x) = (bx (1) + -+ + byx,(k)),

and hence bx, (1) + -+ + bx,(k) = 0, for all a. For all a such that
b, & P,, b, is a unit in Rp_, and hence if i > 1 we can write x,(i) =
— by, (i), where y, (i) € Rp,. Thus

bi[x,(1) = byyo(2) — =+ = bry(k)] = 0.

But since b, is a unit in Ry, we have x,(1) = by, (2) + -+ + by, (k). It
is now clear that by substitution we can write x as

x = (b, ® (@2 + -+ + br ® (zalk)).

Hence x = 0 by induction on k. Thus Ker 6 = 0, and so IIR,, is flat.

(3) > (4) Since E(R) is a direct summand of IIR,, by Proposition 1.1(2),
E(R) is also a flat R-module.

(4) > (5) By Proposition 1.12, E(R) is a commutative VNR containing
R. Hence by Proposition 1.14(2), the prime ideals of E(R) contract to
minimal prime ideals of R.

(5) > (1) This is an immediate consequence of Proposition 1.14(1).

Remarks. (1) If R is a reduced coherent ring, then min R is compact.
For one of the definitions of a coherent ring is that every direct product
of flat R-modules is flat. Thus IIRp_ is flat, and hence min R is compact
by Proposition 1.16.

(2) If R is a reduced ring, then Homg(E(R), E(R)) is always a commutative
ring; but E(R) is flat iff min R is compact. However, if R is a Noetherian
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ring (not necessarily reduced) then min R is always finite (hence compact);
but as we shall show in Proposition 1.18, E(R) is flat iff Homz(E(R), E(R))
is a commutative ring.

DerINITION. We shall say that an ideal is irreducible if it is not the
intersection of two properly larger ideals.

Portions of the following two propositions are contained in [3, Theorem
3]

ProprosiTION 1.17. Let R be a commutative, Noetherian, local ring with
maximal ideal M. Then the following statements are equivalent:

(1) R is self-injective.

(2) M is the only prime ideal of R and 0 is an irreducible ideal of R.
(3) R = ER/M).

4 ER/M) is a flat R-module.

Proof. (1)=> (2) Let0 = Q, N - N Q, be an irredundant decomposition
of 0 in R, where Q; is an irreducible P; primary ideal. Then by [11, Theorem
2.3],

ER) = ER/P\) ® -+ ® ER/P,).

But R = E(R) and R is indecomposable. Hence n = 1 and R = E(R/P)).
Thus every element of R — P, is a unit in R. Therefore, P, = M and
0 = Q, is irreducible and M-primary. Hence M is the only prime ideal of
R.

(2) > (3) Since 0 is an irreducible M-primary ideal of R, we have
E(R) = E(R/M). Now R has finite length and L(R) = L(Homg(R, E(R/M))
= L(E(R/M)). Since R C E(R/M), we have R = E(R/M).

(3) > (4) Trivial.

4)=> (1) Let E = E(R/M) and let I be an ideal of R. Then be [2, Ch.
V1, Proposition 5.3],

Homg(Extk(R/I, R),E) = Tor §(Homg(R, E),R/I) = 0

because E is flat. Therefore, Exty(R/I, R) = 0 showing that R is self-
injective.

ProrosiTioN 1.18. Let R be a commutative, Noetherian ring, and let
{P,, ..., P,} be the prime ideals belonging to 0 in R. Let O; = {r €
R | ur = 0 for some u € R — P;}. Then the following statements are
equivalent:

(1) Every P; is a minimal prime ideal of R, and O; is an irreducible
ideal of R.

(2) ER)=Rp, @ * D Rp,

(3) E(R) = Q(R).
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(4) Homg(E(R), E(R)) is a commutative ring.
(5) E(R) is a flat R-module.

Proof. (1) > (2) O, is a P;-primary ideal because P; is minimal; and
0= 0,N--N 0,is anormal, irreducible decomposition of 0 in R. Thus

E(R) = ER/P)) ® - @ ER/P,)

by [11, Theorem 2.3]. Since 0 is an irreducible ideal of Rp,, and P;Rp, is
the only prime ideal of Rp,, it follows from Proposition 1.17 that

E(R/P;) = E(Rp,/P;Rp,) = Rp,.

Therefore E(R) = Rp, ® -+ @ Rp,.

(2) > (3) Since every Ry, is a self-injective ring, it follows from Proposition
1.17 that every P; is a minimal prime ideal of R. Since S = R — U/ P,
is the set of non-zero divisors of R, we have by Proposition 1.5 that

OR) = Rs=Rp, @ * DRy,

Therefore, E(R) = Q(R).

(3) > (4) Homg(E(R), E(R)) = Homg(Rs, Rs) = R is a commutative
ring.

(4) > (5) By Proposition 1.10, E(R) = Homg(E(R), E(R)). Let I be an
ideal of R. By [2, Ch. VI, Proposition 5.2] we have

Tor {(Homg(E(R), E(R)), R/I) = Homg(Extr(R/I, ERR)), E(R)) = 0.

Therefore, Homg (E(R),E(R)) is a flat R-module.

(5) > (1) Let E; = E(R/P); then E(R) = E¥' @ -+ @ E¥. Hence E, is
a flat R-module, i = 1, ... , n. Since E; is an Rp-module, E; is a flat
Rp-module. Hence by Proposition 1.17, P;Rp, is the only prime ideal of
R;, and 0 is irreducible in Rp,. Therefore, P; is a minimal prime ideal of R
and O, is an irreducible ideal of R.

2. PIF Rings

DEeFINITIONS.  Let R be a commutative ring. We shall say that R is a PIF
if every principal ideal of R is flat; and we shall say that R is a PIP if every
principal ideal of R is projective. If P is a prime ideal of R we shall define

Op = {r € R | there is u € R — P with ur = 0}.

In this section we shall give necessary and sufficient conditions for a PIF
to be a PIP. Then we shall focus on a single ideal and give necessary and
sufficient conditions for it to be a direct summand of R in terms of the
properties of subsets of min R. From these considerations we shall be able
to give necessary and sufficient conditions for a principal ideal of a PIF to
be a projective ideal.



THE MINIMAL PRIME SPECTRUM OF A REDUCED RING 367

The following proposition characterizes PIF rings as those rings that are
locally integral domains.

ProrosiTiON 2.1.  Let R be a commutative ring. Then the following state-
ments are equivalent:

(1) R is a PIF.
(2) Ry, is an integral domain for all maximal ideals M of R.

(3) R s reduced; and a maximal ideal M of R contains only one minimal
prime ideal P of R.

In this case, P = Oy; and Rp = Q(Ry,), the quotient field of Ry,.

Proof. (1) > (2) Let M be a maximal ideal of R. Then every principal
ideal of R,, is flat, hence free over R,,. Thus R, has no zero divisors.

(2) > (1) Leta € R; then either Ry,a = 0 or Rya is Ry,-free V maximal
ideals M of R. Hence w.dimg Ra = sup,(w.dimg, Rya) = 0. Thus Ra is
a flat ideal of R.

(2) > (3) Let M be a maximal ideal of R. Then 0,, is contained in every
prime ideal of R contained in M. On the other hand R/0,, C R,,, and hence
O, is a prime ideal of R. Thus O,, is the unique minimal prime ideal of R
contained in M. The annihilator of an element of NO,, (where M ranges
over all of the maximal ideals of R) is not contained in any maximal ideal
of R. Hence NO,, = 0 and thus R is reduced. If O, = P, then Ry is a
field by Proposition 1.1, and clearly R, = Q(R,,).

(3) > (2) Let M be a maximal ideal of R. Then R,, is reduced and has
only one minimal prime ideal. Therefore, R, is an integral domain.

ProPOSITION 2.2. Let R be a commutative ring with only a finite number
of minimal prime ideals. Then the following statements are equivalent:

(1) R is a PIF.
(2) R is a PIP.
(3) R is a finite direct sum of integral domains.

Proof. (2) = (1) is trivial.

(1) > 3) Let{P,, ..., P,} be the minimal prime ideals of R. Then R
is reduced and so Ni_,P; = 0. By Proposition 2.1, P, + P, = R, i # j.
Thus by the Chinese Remainder Theorem, R = R/P, @ -+ @ R/P,.

(3) > (2) If R is a finite direct sum of integral domains, then every
principal ideal of R is a direct sum of principal ideals over each of these
domains. Hence it is obvious that principal ideals of R are projective.

ProprosITION 2.3.  Let R be a reduced ring and J a finitely generated flat
ideal of R. If 3 elements a € J and b € AnngJ such that a + b is not a
zero divisor in R, then J is a projective ideal of R.
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Proof. LetI = Rb + J;thenI = Rb @ J because R is reduced and
b € AnngJ. Let P be a prime ideal of R. If Jp # 0, then Jp is a free Rp-
ideal of rank 1 and bJp = 0. Therefore, Rpb = 0, and so I, = Jp is free
of rank 1 over Rp. On the other hand suppose that J, = 0. Then I, =
Rpb = Rp(a + b) is free of rank 1 over R, because a + b is not a zero
divisor in Rp. Thus I, is free of rank 1 if P is a prime ideal of R. Hence
by [1, Ch. II, §5, Theorem 2] I is a projective ideal of R. Since J is a direct
summand of I, J is also a projective ideal of R.

ProrosiTION 2.4. Let R be a reduced ring such that Q(R) is a VNR.
Then every finitely generated flat ideal of R is projective.

Proof. This is an immediate consequence of Propositions 1.4(3) and 2.3.

PROPOSITION 2.5. Let R be a commutative ring and I an ideal of R. Then
the following statements are equivalent:

(1) R/I is a flat R-module.

2) I N K = IK for any ideal K of R.

(3) If a € I, then there exists ¢ € I with (1 — ¢)a = 0.

(4) If J is a finitely generated ideal of R, J C I, then there is a ¢ € I
with (1 — ¢)J = 0.

(5) I, = 0 or Ry for any maximal ideal M of R.

If I and K are ideals of R such that R/I and R/K are flat, then
R/ + K) is also flat.

Proof. (1) > (2) If A is an R-module, then A ®r R/I = A/IA. Let K
be an ideal of R; then since R/I is flat we have a commutative diagram
with exact rows and vertical isomorphisms:

0— K/IK — R/I->R/UI+K)—0
lz l: lz
0>+ K)/I->R/I >R/U+ K)—0.

Since the kernel of the canonical map K/IK — (I + K)/Iis (I N K)/IK,
we have I N K = IK.

(2) > (3) Let a € I, then Ra = Ia. Hence there is a ¢ € I with
1 -2c¢a =0.

3)=> @4) LetJ = Ra, + - + Ra,, where a; € 1. By hypothesis, there
arec;, € Iwith(l — ¢)a; = 0,i =1,...,n Then (1 — ¢){1 = ¢,) -
1 -c)=1—-c,wherec€land 1 — ¢)JJ = 0.

4) = (5) Let M be a maximal ideal of R. If I ¢ M, then I,, = R,,.
Hence assume that I C M. If a € I, then there isa c € I with (1 — ¢)a =

0; and since 1 — ¢ &€ M, it follows that the image of a in R, is 0. Therefore,
IM = 0.
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(5) > (1) Since (R/I)); = Ry or 0, it follows that (R/I),, is a flat R,,-
module V maximal ideals M of R. Therefore because flatness is determined
locally, R/I is a flat R-module.

Assume that I and K are ideals of R such that R/I and R/K are flat R-
modules. Let x = a + b, where a € I and b € K. Then there are c € I
and d € Ksuchthat (1 — ¢)a = 0and (1 — d)b = 0. Thus (1 — ¢)
A -dx=0,and(1 — )1 —d) =1 -y, wherey € I + K. Thus
R/(I + K) is a flat R-module by (3).

The following proposition is due to Vasconcelos [14, Proposition 3.4].

PROPOSITION 2.6. Let R be a reduced ring such that min R is compact.
Then every principal flat ideal of R is projective.

Proof. Let Rb be a flat ideal of R and let I = Anngb. By Proposition
1.16, there is a finitely generated ideal J C I such that Anng(J + Rb) =
0. Since R/I = Rb is flat, there exists a € I with (1 — a)J = 0 by Proposition
2.5. Thus J C Ra and hence Anng(Ra + Rb) = (. By Proposition 1.2(3),
a + b is not a zero divisor in R. Thus by Proposition 2.3, Rb is a projective
ideal of R.

DEFINITION. A commutative ring R is said to be semi-hereditary if every
finitely generated ideal of R is projective.

Portions of the next proposition are due to Hattori [9], Endo [6], Vasconcelos
[13], [14], and Quentel [12].

ProrosiTiON 2.7. Let R be a PIF; then the following statements are
equivalent:

(1) R is a PIP.

(2) Every finitely generated flat ideal of R is projective.
(3) Q(R) is a semi-hereditary ring.

(4) Q(R) is a VNR.

(5) min R is compact.

(6) E(R) is a flat R-module.

Proof. (4) = (2) is Proposition 2.4; and (2) = (1) is trivial. (4) = (5)
follows from Proposition 1.15; and (5) = (1) is Proposition 2.6. (5) < (6)
is Proposition 1.16.

(1) > 4) Leta € R and I = Annga; then I is a direct summand of R,
and hence I = Re, where ¢’ = e. Now Anng(Re + Ra) = 0 by Proposition
1.2, and so Q(R) is a VNR by Proposition 1.4.

(4) > (3) is elementary.

(3) > (4) Since principal ideals of Q(R) are projective Q(R)-modules,
and Q(R) is its own ring of quotients, Q(R) is a VNR by (1) = 4).
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Remarks. The assumption in Proposition 2.7 that R is a PIF, is necessary.
There exist many examples where R is a reduced ring and Q(R) = E(R)
is a VNR, but R is not a PIF. The easiest example is the following. Let
R be a quasi-local reduced ring with only a finite number of minimal prime
ideals but such that R is not a domain. (Take any Noetherian local ring
that is not a domain and factor out the intersection of the minimal prime
ideals.) By Proposition 1.6, Q(R) = E(R) is a semi-simple ring. If R were
a PIF, then by Proposition 2.2, R would be a finite direct sum of integral
domains. But since R is quasi-local, it is indecomposable. This contradiction
shows that R is not a PIF.

DeriniTIONs. Let R be a commutative ring. The weak global dimen-
sion of R (w.gl.dim R) is defined to be the smallest non-negative inte-
ger n (if any such exist) such that Tor %, is the O-functor. Otherwise,
w.gl.dim R = o,

Thus w.gl.dim R = 0 iff every R-module is flat. It is not hard to see
that w.gl.dim R = 0 iff R is a VNR. It also follows from the definitions
that w.gl.dim R < 1 iff every submodule of a flat R-module is flat iff every
ideal of R is flat.

Remarks. (1) Let R be a commutative ring such that w.gl.dim R < 1.
Then each of the 6 conditions of Proposition 2.7 is equivalent to R being
a semi-hereditary ring. Thus Proposition 2.7 is a generalization of the results
of Hattori [9], Endo [6], Vasconcelos [13] and Quentel [12].

(2) It is well known (see [7, Corollary 11.30]) that a finitely generated
flat ideal is projective iff it is finitely presented. Since a coherent ring is
defined to be a ring such that finitely generated ideals are finitely presented,
it follows that if w.gl.dim R < 1, then R is semi-hereditary iff R is a coherent
ring. One would therefore expect that the conditions for a PIF to be a PIP
would involve some weakened form of coherence. Since a ring R is coherent
iff a direct product of flat R-modules is flat [4, Theorem 2.1], we have a
better understanding of why a PIF is a PIP iff min R is compact (Proposition
2.7). For as we have seen in Proposition 1.16, if R is a reduced ring, then
min R is compact iff IR, (P € min R) is a flat R-module.

In a recent paper (Commutative coherent rings, Canad. J. Math., vol.
34 (1982), pp. 1240-1244) we have shown that a commutative ring R is a
coherent ring iff Homg(B, C) is flat for injective R-modules B and C. Thus
condition (4) of the next proposition is seen to be related to coherence,
since flat modules over integral domains are torsion-free. Furthermore, it
follows from Proposition 2.7 that if w.gl.dim R < 1, then each of the four
conditions of the next proposition is equivalent to R being a semi-hereditary
ring.

ProOPOSITION 2.8. Let R be a PIF. Then the following statements are
equivalent:
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(1) R is a PIP.

2) QO(R)y is the quotient-field of Ry, for any maximal ideal M of R.

() If C is an injective R-module, then Cy, is a divisible Ry,-module for
any maximal ideal M of R.

(4) If C is an injective R-module, then Homg(C, E(R/M)) is a torsion-
free Ry-module for any maximal ideal M of R.

Proof. (1) > (2) Let O = Q(R) and S the set of non-zero divisors in
R so that Q = R;. Let M be a maximal ideal of R, P the unique minimal
prime ideal of R contained in M, and S the image of S in R/P. Then
Q/PQ = (R/P)s C Rp because R, is the quotient field of R/P. But Q is a
VNR by Proposition 2.7, and so Q/PQ is a field. Thus Q/PQ = R,. But
by Proposition 2.1, R; is the quotient field of R, and P,, = 0. Therefore,
(PQ)w = 0, and we have Rp = (Rp)y = Qun/(PQ)y = Qu.

2) > (3) Let C be an injective R-module. For each x € C, there is an
R-homomorphism f : Q@ — C with f(1) = x. Hence there is an R-module
F that is a direct sum of copies of Q and an R-surjection g : F —» C —
0. Let M be a maximal ideal of R. Then we have an R,,-surjection g, :
Fy — Cy — 0. But by hypothesis F), is a direct sum of copies of the
quotient field of R,,. Therefore, C,, is a divisible R,,-module.

(3) > (4) Let C be an injective R-module and M a maximal ideal of R.
Then E(R/M) (the injective envelope of R/M) is an R,,-module; and hence

Homg(C, E(R/M)) = Homg(C, Homg,(R,,, E(R/M))
= Homg,(Cy, E(R/M)).

Now Homg,, (Cy,, E(R/M)) is Ry,-torsion-free because Cy, is a divisible Ry,-
module.

(4) = (1) Leta € R, and suppose that Ra is not a projective R-module.
Then hdz(R/Ra) > 1; and thus there is a B (a homomorphic image of an
injective R-module) such that

Ext X(R/Ra, B) # 0.

Hence there is a maximal ideal M of R such that Homg(Ext;(R/Ra, B),
D) = 0 where D = E(R/M). Because R/Ra is finitely presented, there
is a canonical surjection

TorXHompg(B, D), R/Ra) — Homg(Ext XR/Ra, B), D).
Thus Tor®(Homg (B, D), R/Ra) # 0. Because D is an R,,-module, we have
Tor f(Homg(B, D), R/Ra) = Tor{*(Homg, (B, D), R1,/R .a).

But Rya is a flat Ry-module; and Homg, (B,,, D) is R,-torsion-free by
hypothesis. Thus Tor f*Homg,, (By;, D), Ry /Rya) = 0. This contradiction
proves that Ra is a projective ideal of R.
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Remarks. Let R be a PIF that is not a PIP (there is an example due to
Vasconcelos of such a ring that we shall reproduce in §4). Then injective
R-modules do not localize. In fact, according to Proposition 2.8, there is
an injective R-module C and a maximal ideal M of R such that C), is not
even a divisible R,,-module. Again this is related to a lack of coherence.
For further results on this subject and its relation to coherence see [5].

We now turn our attention to the problem of finding out when a single

principal ideal is projective, or when an ideal is a direct summand of the
ring.

DeriNiTION.  Let R be a reduced ring and € a subset of min R = {P,}.
Let €' denote the complement of € in min R, and let J, = N P,, P, €
%. It is immediate that € is a closed subset of min R iff P, D J, implies
that P, € €. If € is closed, it is also easy to verify that AnngJ, = Je.
We shall say that € is a good subset of min R if J¢ ¢ U P,, P, € €.

ProposITION 2.9. Let R be a reduced ring.

(1) % is a good subset of min R iff there exists a € R with € = D(a).
In this case € is both open and closed in min R; Annga = J¢; and
Anng(Annga) = Jg.

(2) € good implies that €' is good for any subset € of min R iff Q(R)
is a VNR.

Proof. (1) € is a good subset of min R iff Jo & U P, P, € € iff there
exists a € J¢, a € U P,, P, € ¥ iff there exists a € R with D(a) = €.
Suppose that € = D(a), then € is open in min P. By Proposition 1.1, €
is the set of minimal prime ideals of R that contain Annga. Thus € is closed
in min R and J¢ D Annga. On the other hand, Joa C (J¢o N J¢) = 0, and
so Annga = J¢. Since € is closed, AnngJy, = Jg.

(2) Let € be a good subset of min R. Then there exists a € J,, a &
U P,, P, € €, and hence Annga = Jg. Now €' is a good subset of
min R iff there exists b € J, such that b & U P, Py € €', iff there exists
b € Annga such that a + b is not in any minimal prime ideal of R. Hence
by Proposition 1.4(3), € good implies €' good for any subset € of min R
iff Q(R) is a VNR.

ProrosiTioN 2.10. Let R be a reduced ring and J an ideal of R such
that R/J is a flat R-module. Then R/J is a reduced ring and J = J4, where
%€ is a closed subset of min R. If R is a PIF, or a PIP, then so is R/J.

Proof. Let x € J; then by Proposition 2.5 there is a b € J such that
(1 — b)x = 0. Thus if P is any prime ideal of R containing J, then x is
contained in every minimal prime ideal of R contained in P. Thus if € is
the set of minimal prime ideals of R containing J, then € is a non-empty
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closed subset of min R and J C J,. Now suppose that y € R and y" =
x € J; then (1 — b)y"” = 0, and so (1 — b)y)" = 0. Therefore (1 — b)y
= 0, and hence y € J. Therefore, J = J¢, and R/J is a reduced ring.

Assume that R is a PIF; let M be a maximal ideal of R containing J; and
let P be the unique minimal prime ideal of R contained in M. As we have
seen, J C P, and so P/J is the unique minimal prime ideal of R/J contained
in M/J. Hence R/J is a PIF by Proposition 2.1.

Letr€R,andc € (J : r), and x = rc € J. Then there is a b € J with
(1 = b)cr = 0 and so

(1 — b)c = a € Anngr.

Thus (J : r) = J + Anngr. Let I = Anngr and assume that Rr is a pro-
jective R-module. Then I = Re, where ¢ = e; and hence (J : r)/J =
(Re + J)/J is generated by an idempotent element of R/J. Since (J : r)/J
is the annihilator in R/J of r + J, we see that r + J generates a projective
ideal of R/J. Hence if R is a PIP, then so is R/J.

ProrosiTiON 2.11. Let R be a PIF and € a finite subset of min R. Then
R/J¢ is a flat R-module.

Proof. Let M be a maximal ideal of R and let P be the unique maximal
prime ideal of R contained in M. If P € €, then J, C P, and so (J¢)y C
Py, =0.If P& € and Jo, C M, then there is a P’ € € with P’ C M, and
hence P' = P. This contradiction shows that J, ¢ M and hence (J¢)), =

Ry,. Thus (J¢)y = 0 or Ry, and hence R/Jis a flat R-module by Proposition
2.5.

Remarks. If a principal ideal of a commutative ring R is a projective
R-module, then its annihilator is a direct summand of R. In the next proposition
we characterize the direct summands of a reduced ring R in terms of
the subsets of min R. We note that if € is a subset of min R and € =
{P € min R | P D Jg}, then € is closed and J, = Jz. Thus the restriction
in (1) of the next proposition that € be closed is no restriction at all on
the ideal J,. Moreover, by Proposition 2.10, every direct summand of R
is of the form J,, where € is a closed subset of min R.

ProrosiTiON 2.12. Let R be a reduced ring and € a subset of min R.
Then the following statements are equivalent:

(1) % is closed and J4 is a direct summand of R.
(2) € is a good subset of min R and R/J, is flat.
(3) € is both open and closed in min R and R/Jg;and R/J¢, are flat.

In this case both € and €' are good subsets of min R. If R is a PIF,
then this condition is equivalent to the other three.
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Proof. (1) => (2) J¢ = Re, where ¢’ = e. Since € is closed, if P €
%',then Jo & P,and so e € P. Thus Jo & U P, P € €', and so €' is a
good subset of R. Sinc¢e € is closed, Jo = Anng J¢, = R(1 — ¢). Moreover,
since €’ is closed by Proposition 2.9, the same argument we have just used
shows that €” = € is a good subset of min R. Finally, R/J¢, = Re is
R-projective.

(2) > (3) By Proposition 2.9, € is both open and closed in min R;
€ = D(a) for some element a € R; Annga = J¢, and Anng J¢ = Je.
Therefore a € J¢ ; and hence by Proposition 2.5, there exists b € J¢ with
(1 — b)a = 0.Butthen1 — b € Annga = Jeand so J¢ + J¢ = R. Since
Je N Jg = 0, J¢ and Jo are direct summands of R; and R/J, = J¢ and
R/J, = J,are R-projective.

(3) = (1) By Proposition 2.5, R/(J¢ + J¢) is a flat R-module. Suppose
that J, + J¢ # R; then by Proposition 2.10, J; + J¢ = Jg where P is a
non-empty subset of min R. Let P € &; then P D Jg D J¢; and since €
is closed P € €. Similarly P € €'. This contradiction shows that J, +
Je¢ = R. Since J¢ N J¢ = 0, J¢is a direct summand of R.

In the course of proving (1) = (2) we showed that both € and €' are
good subsets of min R. Conversely, suppose that R is a PIF and that both
% and €' are good subsets of min R. By Proposition 2.9, there exists b €
R such that D(b) = €' and J4 = Anngb. Therefore R/J, = Rb; and since
R is a PIF, R/J¢ is a flat R-module. Thus we have proved (2).

PropoSITION 2.13. Let R be a PIF; a € R; I = Annga; andJ = Anng I.
Then the following statements are equivalent:.

(1) Ra is a projective ideal of R.

(2) Homg(I, R) is a flat R-module.

(3) R/J is a flat R-module.

(4) There exists b € R such that J = Anngb.

S If{P,} = 9D is a subset of min R and 1 C U, P,, then there is a
P, € DwithlCP,.

Proof. (1) > (2) [ is a direct summand of R, and hence Homg(I, R) is
a projective R-module.

(2) > (3) We have an exact sequence
0 — Homg(R/I, R) - R — Homg(I, R).

Since Homgz(R/I, R) = Anngl = J, we have an embedding R/J C Homg(, R).
Let M be a maximal ideal of R. Then R,,/J,, C Homg(I, R),,. Now Homg(Z, R),
is a flat R),-module; and R, is an integral domain by Proposition 2.1. Thus
Homg(I, R),, is a torsion-free R,,-module; and hence so is R,,/J,,. Therefore
Ju = 0or R,,; and thus by Proposition 2.5, R/J is aflat R-module.

(3) = (4) Let € = D(a); then by Proposition 2.9, € is a good subset
of min R; J, = I; and J¢ = J. By hypothesis, R/J, is flat; and thus by
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Proposition 2.12, J is a direct summand of R. Therefore, J, = Re, where
e’ = e; and hence Jo = Annge.

(4) = (5) Clearly I = AnngJ, and since J = Anngb, we have b € I.
Suppose that {P,} = P is a subset of min R and that I C U, P,. Then there
exists Py, € & such that b € Py,. Hence by Proposition 1.2(1), J € Py,.
However, since IJ = 0, we have I C Py,

(5) > (1) By Proposition 2.9, I = J,, where € is a good subset of
min R. If J,C U,P,, P, € €'; then by hypothesis there is a Po, € €' with
J¢ C Pq,. But € is closed, and hence P, € 6. This contradiction shows
that €’ is a good subset of min R. Hence by Proposition 2.12, I is a direct
summand of R, and hence Ra is a projective ideal of R.

The following proposition is a generalization of Proposition 2.2.

ProrosiTiON 2.14. Let R be a PIF and a € R; and suppose that a is
an element of only a finite number of primes P,, ... , P, in min R.

(1) Ra is a projective ideal of R.
(2) R=(NL_P) D E- ®R/P).
(3) Every P;is a direct summand of R.

Proof. (1) Let € = D(a); then J, = Anngza by Proposition 2.9(1). Now
¢ = {P;, ..., P,} and Jo & P; for all i since € is closed. Therefore
Je & UL, P;, and hence %’ is a good subset of min R. Therefore, by
Proposition 2.12, J¢ @ J¢ = R. Thus Ra = R/J,= J is a projective ideal
of R.

(2) By Proposition 2.1, every maximal ideal of R contains a unique
minimal prime ideal of R. Thus P, + P; = R, i # j. Hence by the Chinese
Remainder Theorem,

R/J¢ = 2 @ R/P,.

Since J4 = N_\P;and R = J;, @ J¢, we have R = (N \P) @ G-, @
R/P).

(3) Since R/P; is isomorphic to a direct summand of R, there is an
idempotent ¢; € R so that P, = Anng ¢; = R(1 — ¢;). Hence P; is a direct
summand of R, fori = 1, ..., n.

ProprosiTiON 2.15. Let R be a commutative ring such that w.gl.dim R
< 1. Then the following statements are equivalent:

(1) R is a semi-hereditary ring.

() R/J¢is flat for all subsets € of min R.

() R/J¢ is a semi-hereditary ring for all subsets € of min R.

4 If € is any subset of min R and M is a maximal ideal of R, then
J¢ C M iff J¢ C Oy, the unique minimal prime ideal of R contained in M.
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Proof. (1) > (2) Let € = {P,} be a subset of min R. Since R,_ is a flat
R-module, and R is a coherent ring, IIR,, (P € %) is a flat R-module. Since
w.gl.dim R < 1, and R/J,; C IIR,, (P, € %), it follows that R/Jis a flat
R-module.

(2) = (4) Let € be a subset of min R and M a maximal ideal of R S
J¢ C M. By Proposition 2.5(5), we have (J¢)y, = 0. Thus J, C Oy, the
unique minimal prime ideal of R contained in M.

(4) > (2) Let € be a subset of min R and M a maximal ideal of R. If
J¢ & M, then (J¢)y = Ry, while if Jo C M, then J4 C Oy, and hence (J¢)y
= 0. Thus by Proposition 2.5, R/J¢ is a flat R-module.

(2) > (1) Let € be a good subset of min R. Then by Proposition 2.12,
€' is also a good subset of min R. Thus by Proposition 2.9, O(R) is a VNR.
Therefore by Proposition 2.7, R is a semi-hereditary ring.

(3) > (1) Take € = min R, so that J, = 0.

() = (3) Let ¥ be a subset of min R. Since (1) > (2), R/J¢ is a flat
R-module. Therefore w.gl.dim R/J, < w.gl.dim R < 1. By Proposition
2.10, R/J is a PIP. Therefore by Proposition 2.7, R/J is a semi-hereditary
ring.

Remarks. (1) Let R be a commutative semi-hereditary ring, and let J
be an ideal of R. Then it follows from Propositions 2.12 and 2.15 that J is
a direct summand of R iff J = J, where € is an open and closed subset
of min R. An equivalent formulation of this fact is that a subset € of min
R is good < 4 is open and closed in min R.

(2) 1In order to illustrate how close a PIF is to being an integral domain,
we make the following definitions. Let R be a PIF, min R = {P,}, and
C = IIRp,. If A is an R-module, we say that A is a torsion R-module if
Homgz(A, C) = 0; and we say that A is torsion-free if A has no non-zero
torsion submodules. We define #(A) to be the sum of all of the torsion
submodules of A. Then #(A) is the unique largest torsion submodule of A,
and A/t(A) is torsion-free.

Since C is an injective R-module, submodules as well as factor modules
of torsion modules are again torsion modules. Thus #(4) has the usual
properties of a torsion-functor. It is easy to verify that #(A) = N Ker f, f
€ Homg(A, C); and that A is torsion-free iff A can be embedded in a direct
product of copies of C.

If M is a maximal ideal of R, and P is the unique minimal prime ideal
of R contained in M, then by Proposition 2.1, R,, is an integral domain
and R, is the quotient field of R,,. It follows readily from this that A is a
torsion R-module iff A,, is a torsion R,,-module V maximal ideals of R. As
a consequence it can easily be shown that if A is a flat R-module, then A
is a torsion-free R-module.

3. The Injective Envelope of a Reduced Ring

Let R be a reduced ring and {P,} = min R. By Proposition 1.1, E(R) is
a direct summand of I[IR,,, P, € min R; and by Proposition 1.12, E(R) is
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a self-injective VNR. In this section we shall describe some of the structure
of E(R), and also exactly how it sits in [IRp .

ProrosiTION 3.1. Let R be a reduced ring and {P,} = min R. Then E(R)
is a subdirect product of the Rps.

Proof. Let E = E(R). By Proposition 1.1 we can identify E with its
image in IIR,,. Let ¢, be the identity element of Rp, so that 1 = (e,). Let
Pz € min R; then the projection of [IR, onto R p, induces an R-homomorphism
fs: E = Rp, such that f(1) = e;. We wish to show that f; is onto.

Let a € R — Pg; since E is a VNR, Ea is a direct summand of E. Hence
there is an ideal F of E with E = Ea @ F. Thus F = Annga. Now a is
a unit in Rp,; and hence if x € F, then 0 = fz(ax) = afg(x) shows that
fa(x) = 0. Thus F C Ker f3, and so fg(E) = fg(Ea) = afy(E). Therefore,
fg(E) is an R/Pg-divisible submodule of Rp,. Since Rp, is the quotient field
of R/P; it follows that fz(E) = Rp,.

This shows that E is a subdirect product of the Rp’s.

DerNITION.  Let R be a commutative ring with 1, {P,}, a € &, a collection
of distinct prime ideals of R, and let A = II, Rp,. With componentwise
addition and multiplication, A is a commutative ring with identity and we
have a canonical ring homomorphism R — A. We identify Hom,(A, A)
with A in the usual way via left multiplication by elements of A. For each
a € oA, let

O,={reR|sr=0forsomes ER — P,},
and let J, = NOg, B # a. If I and J are ideals of R, we define
I:J)={reR|rJCI}.

ProrosiTioN 3.2. If (O, : J,) = O,, a € A, then Homg(A, A) = A.

Proof. Let B, = IIRp,, B # a. We shall first prove that Homg(B,,
Rp,)) = 0, a € A. Let f € Homg(B,, Rp,), x = (xg) € B,, and a € J,.
Since Rp,0, = 0 for all B, we have ax = (axg) = 0. Thus af(x) = 0. Now
f(x) = r/s, where r € R and s € R — P,. Since af(x) = 0, there exists
u € R — P, with uar = 0. Thus ar € O, for a € J,, and so r €
©,: J,) = 0,. Therefore, r/s = 0, and hence f = 0.

Leti,: Rp,— AandIl, : A — Rp, be the canonical inclusion and projection
maps, respectively. Let f € Homg(A, A) and define f, : Rp, = Rp, by f,
= I1,fi,; then f, is multiplication by g, € Rp,. We let ¢ = {q,) € A, and
we shall show that f is multiplication by q.

Let x = (x,) € A, where x, € Rp,. For each o« € &, we can write
X = iu(xy) + Y., wWhere y, € B,. Let h, = f|B,; then II, h, €
Homg(B,,Rp,) = 0. Thus

Haf(ya) = Haha(ya) = 0.



378 EBEN MATLIS

Hence II, f(x) = II, fi,(x,) + I, f(y.) = fulx.), @ € . Therefore,
F&) = (fu(x2)) = (gax.) = qix,) = gxforallx € A.
Thus Homg(A, A) = A.

ProposITION 3.3.  Let R be a commutative ring; with the preceding notation,
assume that N, 0, = 0, and that Rp, is a self-injective ring for o € 4.
Then the following statements are equivalent:

M J,#0andJ, N Anng J, = 0, a € A.

2 AmngJ,= 0,, a € A.

(3) Homg(A, A) = A.

(4) R C A is an essential extension and J,N\ Anng J, = 0, a € A.

(5) ER) = A, (O :0,) = OgforB # a, and J,N Anng J, = 0 for
all o € A.

Proof. (1) > (2) Let I, = Anng J,. Then
Anng, (Rp,Jo) = Rp[,.
In one direction the inclusion is obvious. On the other hand, let
x =r/v € Anng, (Rp,J,)

wherer e RandvER — P,. If a € J,, then (ra)/v = 0 in Rp,, and so
there exists u € R — P, such that ura = 0 in R. Therefore, ra € Op,_,
and hence rJ, C Op, N J, = 0. Therefore, r € Anng J, = I,; and thus x
€ Ry I,.

Now Rp I, N RpJ, = Rp(I, NJ,) = Rp,0 = 0 and

RPQIa @ RPaJa = AnnRPa(RPaJa) @ RPa‘,a

is an essential Ry -submodule of Rp. Thus, since Rp, is self-injective, we
have

Rp, = ERp 1) @ ERpJ,).

But Rp, is a quasi-local ring, and hence decomposable. If R, J, = 0, then
J,C Op,, and so J, = J,N Op, = 0, contrary to hypothesis. Therefore
Rp I, = 0, and so I, C O,,. Since O, J, = 0, we have O, C I,. Thus O,
= Ia = AnnR Ja’ a € A.

2) > (3) Since N0, = 0, we have (O, : J,) = Anng J,, a € A.
Hence Homg(A, A) = A by Proposition 3.2.

(3) > (4) The kernel of the canonical map R — A is N,0, = 0, and
hence R C A. Since A is an injective R-module we have E(R) C A. Thus
A = ER) @ X, where X is an R-submodule of A and 1 € E(R). Let
f: A — A be the R-homomorphism that is the identity on E(R) and O on
X. By hypothesis, f is multiplication by ¢ € A. Hence ¢ = g - 1 = f(1)
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= 1. Thus if x € X, we have 0 = f(x) = gx = 1 - x. Therefore, X = O,
and A = E(R).

Let B be a fixed index and let t € Jg N Anng Jg. Let y, = 0, a # B,
let y; be the image of ¢ in Rp,, and let y = (y,). Let x, be the identity of
Rp,, o # B, let x; = 0, and let x = (x,). Then Anng x = Jg, and Jz C
Anngy. Thus there is an R-homomorphism f : Rx — Ry such that f(x) =
y. Since A is an injective R-module, f extends to an R-homomorphism from
A to A. By hypothesis, this homomorphism is multiplication by an element
q = {q.) € A. Therefore, gx = y and so 0 = ggxz = yg. Thus t € Op,
and since ¢t € J,z, we have t € Oy N Jg = 0. Thus J; N Anng Jg = 0.

(4) = (5) Since A is injective, we have E(R) = A. Let a,3 be a fixed
pair of indices, o # B, let s € (Og : O,) and suppose s & Og. Let y, =
0, ¥ # B, let y; be the image of s in Rp,, and let y = (y,). Since A is an
essential extension of R, there is an r € R with ry = a # 0 € R. We have
identified a with the element (a,), where a, is the image of a in R, for all
y. Therefore ry, = a,, y € . Therefore, a, = 0, vy # B, and thus a €
Js. Since s € (Og : O,) we have O,s C Og. Therefore, O,y; = 0, and
hence O,y = 0. Thus O,a = rO,y = r - 0 = 0. Since J;C O,, we have
Jsa = 0. Therefore, a € J; N Anng Jz = 0. This contradiction shows that
(O : O0,) = Og.

(5)=> (1) Suppose J, = 0. Let B, = IIRp,, B # «. Since J,is the kernel
of the canonical map R — B,, we have R C B,. Since B is injective, we
have A = E(R) C B,. Now Rp, C A, and hence there is an x = (xz3) € B,
with Anngx = O,. Now there exists 8 # a so that x; # 0, and we have
O, C Anng xg. Since xg = t/u where t € R and u € R — P4, we have
O,t C Og4. Thus by hypothesis, t € (Og : O,) = Og. But then xz = 0.
This contradiction shows that J, # 0.

Note. 1t is easy to see directly that Anng J; = O,z implies (Og : O,) =
Og. For suppose that t € (Og : O,). Since J; C O,, we have Jgt C Og.
Thus Jzt C Og N Jg = 0. Therefore, t € Anng J; = Og by assumption.

DEerNITION.  We shall let n-min R denote the set of those minimal prime
ideals of R that are not essential ideals of R.

ProrosiTiON 3.4. Let R be a reduced ring.

(1) Let P be a prime ideal of R. Then P € n-min R iff Anng P # 0.
(2) If P is a prime ideal of R and 0 # a € AnngP, then P = Annga;
and a is an element of every prime ideal in min R that is not equal to P.

Proof. (1) Suppose that P € n-min R. Then there exists a € R, a #
0, RaN P = 0. Thus Pa = 0, and so AnngP # 0. Conversely, suppose
that AnngP # 0, and let 0 # a € AnngP. Because R is reduced Ra N P
= 0; and hence P is a non-essential ideal of R. Suppose that P, is a prime
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ideal of R and that P, C P. Since a &€ P, and Pa = 0 C P,, we have P
C P,. Thus P € n-min R.

(2) Since Pa = 0, we have P C Annga. But a € P; and a - (Annga)
= 0 C P implies Annga C P. Let P’ € min R and P’ # P. Then aP =
0 C P’ implies a € P'.

ProrosITION 3.5. Let R be a reduced ring; let {P,}, o € A, be a subset
of min R, and let A = I1, Rp,. Assume that NP, = 0. Then the following
statements are equivalent:

(1) {NgPs|B # a} #0,a € A.

2) Anng P, # 0, « € A (i.e., P, € n-min R, a € ).
(3) Homg(A, A) = A.

(4) R C A is an essential extension.

(5) ER) = A.

Thus E(R) = I1Rp, where P, ranges over all elements of min R if and only
if min R is totally disconnected.

Proof. Let O, = {r € R|ur = 0 for some u € R — P,}. By Proposition
1.1, O, = P,and R;_ is a self-injective ring for all &. Thus with the notation
of Proposition 3.3, J, = NgPs, B # a. Since R is reduced, we have J, N
Anng J, = 0 for all a. It is also obvious that (Pg: P,) = Pg, 8 # a. Thus
the equivalence of (1)-(5) is a consequence of Proposition 3.3. The final
statement of Proposition 3.5 follows from (1) and the fact that an element
P in min R is an open set in min R if and only if there exists an element
x of R such that P is the only prime ideal in min R that does not contain
X.

ProposiTION 3.6. Let R be a reduced ring and {Ps}, B € B, be a subset
of min R so that E(R) = IRy, (B € R).

1) NP,
(2) {Pg}

Thus the representation E(R) = IIRp, (if it exists) is unique.

0; and the Pg’s are all distinct.
n-min R.

Proof. (1) Since NPy annihilates E(R), we have NP, = 0. Suppose that
Pg, = Pg, = P for B; # B,. Then there are elements x and y of E(R) such
that Anngx = P = Anngy and Rx N Ry = 0. Now there are r, t € R with
0#rx =a€Rand 0 # ty = b € R. We have Pa = 0 = Pb, and thus
a & P and b & P. However, ab € Rx N Ry = 0 € P. This contradiction
shows that the P,’s are distinct.

(2) If B € %, then there exists nonzero az € R with Pgag = 0, and
hence P; € n-min R by Proposition 3.4. Conversely, let P € n-min R and
0 # a € AnngP. Since a € IIRp,, there exists 8 € B such that Annga
C Py Thus P = Pg, and so {Pg} = n-min R.
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ProposITION 3.7. Let R be a reduced ring such that min R is compact.
Then the following statements are equivalent:

(1) EWR) = IlI, Rp,, where P, ranges over all elements of min R.
(2) Every minimal prime ideal of R is non-essential.
(3) min R is finite.

Proof. (1) = (2) follows from Proposition 3.6; and (3) = (1) is Proposition
1.6.

(2) > (@) For each o € «, there exists nonzero a, € AnngP,. By
Proposition 3.4, a, € NPz, B # a. Thus P, = D(a,) is an open subset of
min R. Therefore, min R is finite.

ProrosiTioN 3.8. Let R be a commutative ring and let {P,} = min R.
Then min R is finite iff P, & {UPg| B # o} for all a.

Proof. 1If min R is finite, then the assertion is an elementary and well-
known fact. On the other hand, assume that P, ¢{UPs| 8 # o} for all a.
By factoring out {NP, | @ € o} we can assume without loss of generality
that R is reduced. Let A = TIR;_, then A is a commutative ring and R C
A.

Suppose that min R is not finite. Then 3, @ Rp, is a proper ideal of A,
and hence is contained in a maximal ideal 4 of A. Then # N R contains
a minimal prime ideal P, of R. By hypothesis there is an a € P, such that
a & {UPgz| B # v}. Let a, be the image of a in Rp, for all ; then by our
identification R C A we have a = (a,). For 8 # v, ag is a unit in Rp,
because Ry, is a field and az # 0. Let ug = az ' for B # vy, let u, = 0, and
let u = (u,) € A. Since a € P, C M, we have ua € M. But ua is the
element of A that is the identity at every component 8 # y and is 0 at the
y-component. Since 3, @ Rp, is also contained in ./ we see that 1 € .
This contradiction shows that min R is finite.

ProrosITION 3.9. Let R be a reduced ring and E = E(R). There is a
1-1 correspondence of n-min E onto n-min R such that if M € n-min E,
then M N R = P € n-min R. In this case E/M = E,, = Rp and M is the
only prime ideal of E contracting to P.

Proof. Let M € n-min E and P = M N R. Since (AnngM) N R # 0,
there is a nonzero t € R with Mt = 0. But then Pt = 0; and hence by
Proposition 3.4, P € n-min R. If N is any prime ideal of E satisfying N N
R = P, thent & N. But Mt = 0; and so M C N. Thus M = N, since the
prime ideals of E are all minimal.

On the other hand, let P € n-min R. Since R, C E,, and R; is a field,
there is a prime ideal M of E with M N R = P. Now there exists t € R
such that Pt = 0. Suppose that Mt # 0. Then there exist m € M and
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r € R such that 0 # s = rmt € R. But then Ps = 0 and s € P. This
contradiction proves that Mt = 0, and hence M € n-min E.

Now we have a canonical injection R/P C E/M; and this is an essential
extension. For let 0 # x € E/M. Since t € M, and M is a maximal ideal
of E, there is a y € Et such that x = y + M. Also there exists r € R with
0 # ry € R. Since Pry = 0, ry & P. Thus rx = r(y + M) is a non-zero
element of R/P. Therefore, R/P C E/M is an essential extension. But
E/M is a field, and thus E/M is the quotient field of R/P. Therefore, since
R; is the quotient field of R/P, and E,, = E/M, we have Rp = E,.

ProrosiTiON 3.10. Let R be a reduced ring and J an ideal of R. Let
I = AnngJ, K = Anngl, and E = E(R).

(1) E = E(J) ® E(); and E(J) and E (I) are ideals of E.

(2) J C K is an essential extension, and so E(J) = E(K).

(3) EI)NR =TIand EJ) N R = K. Thus R/I and R/K are reduced
rings.

4) E(J) = Anngl; and thus E(J) is a unique submodule of E.

(5) E(I) = E(R/K) and E(K) = ER/I).

6) E(R/I) is an R/I-module, and as such it is the injective envelope
of the ring R/1. A similar statement holds for E(R/K).

(7) E = ER/I) ® E(R/K) is a ring direct sum decomposition.

Proof. (1) Since R is reduced, J NI = 0. It is easily seen that I @ J
is an essential ideal of R. Thus E = E(I) @ E(J). By Proposition 1.13,
E(J) and E(I) are ideals of E.

(2) Since IJ = 0, we have J C K. Let ¢t be a non-zero element of K.
Since I @ J is essential in R, there exists r € R such that 0 # rt = a +
bwherea€ lIandb & J. Thena =rt —b€INK =0; hencert = b
€ J. Thus J C K is an essential extension. Therefore, E(J) = E(K).

(3) Of course, I C (E(I) N R). On the other hand, J - EJ) C EJ) N
E(I) = 0, and so (E(I) N R) C I. A similar argument shows that E(K) N
R = K. By 2), EJ) = E(K) and so E(J) "N R = K.

By Proposition 1.3, E(I) is an intersection of some prime ideals of E.
Thus I = E(I) N R is an intersection of some prime ideals of R. Therefore,
R/I is a reduced ring. Similarly, R/K is a reduced ring.

(4) Wehavel: - EJ)C EI)NE(J) = 0, and so E(J) C Anngl. Because
E(I) is an essential extension of I, there is no non-zero element of E(I)
that is annihilated by I. Hence E(J) = Anngl.

(5) Since I @ K is essential in R, it is easy to see that I is isomorphic
to an essential R-submodule of R/K. Thus E(I) = E(R/K). Similarly E(K)
= E(R/I).

(6) Since E(K) = E(J) = Anngl; and E(K) = E(R/I), we see that
E(R/I) is annihilated by I. Thus E(R/I) is an R/I-module. Clearly as such
it is injective and essential over R/I. By symmetry we have a similar
statement for E(R/K).
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(7) There is a canonical monomorphism of rings: R — R/I @ R/K; and
as R-modules it is not difficult to verify that this is an essential extension.
Hence we have an induced R-module isomorphism 6 : E = ER/I) @
E(R/K). By (6), E(R/I) ® E(R/K) has a ring structure that is compatible
with that of R. By the remarks following Proposition 1.12, 0 is a ring
isomorphism.

ProposiTION 3.11. Let R be a reduced ring and let {P, |y € T} be a
non-empty subset of n-min R. Let I = N ,P,; and let J be the intersection
of the minimal primes of R that are not in {P, | y € T}. Let R = R/I, P

/1, and E be the injective envelope of R over R.

(1) R is a reduced ring; {P,| y €T} = n-min R; and E = ILR;,
) I = AnngJ; and RP ‘Rp,; moreover, E = ER/I) = IIRp, is a
direct summand of E(R).

Proof. (1) We have N P = 0, and so R is a reduced rmg Now there
exists a, & P, such that P ,a, = 0. But then @, # 0 and P,@, = 0 shows
that P, € n-min R. By Proposition 3.5 we have E=1 » Rp,. Hence by
Proposmon 3.6, {P,| y € T} = n-min R.

(2) 1IN Jis the intersection of all of the minimal prime ideals of R, and
thus I N J = 0. Therefore, I C AnngJ. By Proposition 3.4, P, = Anng a,
and a, € J. Now if r € AnngJ, then ra, = 0, and hence r e pP,y€eT.
Thus r € I. Hence I = AnngJ. Thus by Proposmon 3.10, E = E(R/I) and
E(R/I) is a direct summand of E(R). The only thing remaining to be proved
is that RP = Rp,. But R, is the quotient field of R/P,and Ry, is the quotient
field of R/P = R/P Hence R7, and Rp, are isomorphic R-modules.

DerFINITION.  Let R be a reduced ring; and {P;| B8 € %} = n-min R; and
let {P;| 8 € A} be the set of all essential minimal prime ideals of R. Let
HR) = NgPg and FR) = N,;P;. (By convention we put the intersection
of an empty set of ideals equal to R.)

ProrosiTiON 3.12. Let R be a reduced ring; E = E(R); I = $(R); J =
HR); and K = Anngl.

(1) I = AnngJ. Thus all of the statements of Proposition 3.10 are true
in this case.

() ERR/I) = IIRp, (B € B) is a direct product of fields.

(3) E =IIRp, @ E(R/K).

4) IfI # 0, then R/K is a reduced ring with no non-essential minimal
prime ideals and E(R/K) is the R/K-injective envelope of R/K and hence
is a self-injective VNR with the same property.

Proof. (1) and (2) follow from Proposition 3.11, and (3) follows from
Proposition 3.10.
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(4) Assume I # 0. Then by Proposition 3.10, R/K is a reduced ring
and E(R/K) is the R/K-injective envelope of R/K. Thus E(R/K) is a self-
injective VNR.

Suppose that P is a prime ideal of R such that P O K and P/K €
n-min(R/K). Then there exists a € R — K with Pa C K. Because K =
Anngl, we have Pal = 0. But since a € K, we have al # 0. Then P €
n-min R. By Proposition 3.4, we have al C J; and hence al CINJ = 0.
This contradiction shows that R/K has no non-essential minimal prime
ideals. Hence by Proposition 3.9, E(R/K) has no non-essential minimal
prime ideals.

Remark. Let R be a reduced ring. It is clear from Proposition 3.12 that
E(R) is a direct product of fields iff #(R) = 0 iff #(R) is an essential ideal
of R. Thus if R has only a finite number (or no) essential minimal prime
ideals, then R is a direct product of fields. On the other hand E(R) has no
direct summand that is a field iff every minimal prime ideal of R is essential
iff #(R) = 0. In general, E(R) is a direct sum of two rings: one of which
is a direct product of fields, and the other having no direct summand that
is a field. We shall see by the examples in §4 that both kinds of summands
can exist.

ProposITION 3.13.  Let R be a commutative, self-injective VNR. Let {Az},
B € B, be the set of distinct simple submodules of R, and let P = Anng
Ag. Let I = $R),J = #R), and K = Anngl. Then

(1) {Pg| B € B} is the set of non-essential prime ideals of R; and Rp,

Bo
(2) The sum of the Ag’s is direct and 2 @ Ag = J.
(3) K = E(J) = IIAg; and K is the intersection of the essential prime
ideals of R that do not contain I. Thus R = 1 ® K = (NPg) @ IlAg; and
if I # 0, then I = R/K is a self-injective VNR with no non-essential prime
ideals.

Proof. We recall that by Proposition 1.3, every prime ideal of R is a
minimal prime ideal of R.

(1) Since Azis simple, Pgis a maximal ideal; and by Proposition 3.4,
Pgis a non-essential prime ideal. We have Ag = R/Py = Rp,. On the other
hand let P be a non-essential prime ideal of R. By Proposition 3.4, there
exists a € R with P = Annga. Since P is a maximal ideal of R, Ra =
R/P is a simple R-module. Hence P is one of the P;’s by definition.

(2) Let Ay and Ag, be two different simple submodules of R. Then
Ag = Re;, e/ = ¢ for i = 1,2 since R is a VNR. Now eje, € Az N
Ag, = 0. And hence e,,e, are orthogonal. It follows from this that the sum
of the Ay’s is direct. By Proposition 3.4, 3 @ Az C J. Since R is a VNR,
2 @ A, is the intersection of the prime ideals of R that contain it. Since
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no P, can contain 2 @ Ag, and J is the intersection of the essential prime
ideals of R, we see that 2 @ Ag = J.

(3) By Proposition 3.12, I = AnngJ; and hence by Proposition 1.7, R
= I @ E(J). Therefore, E(J) = Anngl = K. By Propositions 3.10 and
3.12,

E(J) = E(R/I) =TIRp, = I1Ag;

and since I = N Pg, we have R = (NPy) @ IAg. If I # 0, then I =
R/K is a self-injective VNR with no non-essential minimal prime ideals by
Proposition 3.12. Finally, since K is the intersection of the prime ideals of
R that contain it, and R = I @ K, we see that K is the intersection of the
prime ideals of R that do not contain I, and these are necessarily essential.

ProprosiTiON 3.14. Let R be a reduced ring.

(1) There are 1-1 correspondences between the sets of simple submodules
{Ag} of E(R), n-min E(R) = {M,} and n-min R = {Pg}, given by Pz = Anng
Ag = MgN R.

Q) 2@ Az = HAER)); and 1Az = E(¥(R)) = E(K), where K = Anngl.

(3) E(H(R)) = HER)).

@4 EJMR) NR = K and E(¥(R)) N R = H#R).

Proof. (1) follows from Propositions 3.9 and 3.13.

(2) By Proposition 3.13 we have 3 @ Az = HE(R)); and by Proposition
3.12 we have E(#(R)) = E(K) = ER/I) = IIRp, = I1A,.

(3) Now HE(R)) = NMg; and by Proposition 3.12,

HR) = NPy = "My N R = HER) N R.

Thus $(E(R)) is an essential extension of $(R). By Proposition 3.13, $(E(R))
is a direct summand of E(R) and hence R-injective. Thus we have E($(R))
= H(ER)).

(4) follows from Proposition 3.12.

DerINITION. Let R be a reduced ring and let P € min R. We shall say
that P is irrelevant if P is an essential ideal of R and P D $#(R). Otherwise
an essential minimal prime will be called relevant.

ProrosiTiON 3.15. Let R be a reduced ring such that min R is compact.
Then R has an irrelevant minimal prime ideal iff n-min R is infinite.

Proof. 1If n-min R is finite, then $(R) is the intersection of finitely many
non-essential minimal primes, and hence these are the only minimal primes
that can contain $(R). Conversely, suppose that {P;} = n-min R is infinite.
Let Agbe the simple submodule of E(R) corresponding to Ps. Now I1A,
is the intersection of the relevant essential prime ideals of E(R); and 3 @
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Agis the intersection of all of the essential prime ideals of E(R) by Proposition
3.13. Since 3 @ Az # I1Ag, E(R) has an irrelevant prime ideal N. Thus

NOARDHER)NR =EHR)NR = HR)

by Proposition 3.12. Since min R is compact, N N R is a minimal prime
ideal of R by Proposition 1.6. By Proposition 3.9, N N R is an essential
prime ideal of R. Thus N N R is an irrelevant prime ideal of R.

4. Examples

In this section we present some examples to illustrate the ideas of this
paper.

Example 1. Let & be an infinite index set; for each a € «f let K, be a
field, and let K = IIK, (a« € &f). Then K is a self-injective VNR. Let ¢,
be the element of K that is the identity of K, at the a-coordinate and 0
elsewhere; and let 1 be the identity of K. For each a let P, = K(1 — e,);
then P, is a non-essential prime ideal of K and NP, = 0. Thus the P,’s are
all of the non-essential prime ideals of K and K = IIK,, by Propositions
3.5 and 3.6. Since Kp, = K,, this is not surprising.

LetJ = 3@ Ke,= 3 ® K,; then J is the sum of all of the simple
submodules of K, and by Proposition 3.13, J is the intersection of all of
the essential prime ideals of K. It is clear that there are elements a and b
in K — J such that ab = 0, and thus J is not a prime ideal of K. We put
R = K/J; and then R is a VNR with an infinite number of prime ideals,
and they are all essential in R. For let P be a prime ideal of K containing
J; then P is an essential prime ideal of K. The problem is to show that
P/J is essential in R.

Suppose that there is an e € K — J such that Pe C J. Without loss of
generality we can assume that e = e. Since R/J is reduced, e & P. Thus
P = K(1 — ¢) + J. If x € K, we define Supp x to be the set of coordinates
o in &, where x is not 0. Thus J is the set of elements x € K such that
Supp x is finite; and P is the set of elements x € K such that Supp x C
Supp(l — e) except for a finite number of coordinates.

Now Supp e and Supp(l — e) are complementary subsets of &f. Supp e
is not finite because e & J, and Supp(l — e) is not finite because P# J.
Thus we can write each of Supp e and Supp(l — e) as disjoint unions of
two infinite sets:

Suppe = A{UA, and Supp(l —e) = B, UB,.

We let ¢ be the element of K such that the a-coordinate of c is the identity
of K, fora« € A, U B, and 0 for « € A, U B,; and we let d be the element
of K such that the a-coordinate of d is the identity of K, for « € A, U B,
and 0 for « € A, U B,. Then ¢ and d are not in P, but ¢d = 0. This
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contradiction shows that every prime ideal of R is essential in R, and hence
they are infinite in number.

Remarks. (1) It is an open question whether or not the ring R of example
(1) is self-injective.

(2) Let R be any self-injective VNR that is not a finite direct sum of
fields; and let J be the sum of all of the simple submodules of R. (J could
be 0.) Then R/J is a VNR with an infinite number of prime ideals and they
are all essential in R. For by Proposition 3.13 the proof can easily be reduced
to the case of Example 1. The question of whether or not R/J is self-
injective is a generalization of the open question posed by Example 1.

Example 2. Let D be an integral domain and N the natural numbers.
Let D, = D, n € N; and let 1 be the identity of I[ID,. We put R = 3 @
D, + D - 1;i.e., R is the set of sequences in I1D, that are ultimately constant.
In the future we shall denote this ring by D(x).

We let e, be the element of R that is the identity of D at the n-th
coordinate, and 0 elsewhere, and we put P, = R(1 — e,). Then P, is a
non-essential prime ideal of R and NP, = 0. Hence by Propositions 3.5
and 3.6, the P,’s are all of the non-essential prime ideals of R, and E(R)
= [IRp,. Since R/P, = D, = D, it follows that Rp, = Q,, the quotient field
of D, and we have E(R) = I1Q,.

It is clear that the annihilator of an element of R is generated by an
idempotent element of R, and thus R is a PIP.

LetJ =3 ® Re, =3 ® D,. Since R/J = D, J is a prime ideal of R
and is the only essential minimal prime ideal of R. Since R/P = D for
every minimal prime ideal P of R, and since P = O, for every maximal
ideal M of R that contains P, we see that w.gl.dim R = w.gl.dim D. Since
R is a PIP, it follows from Proposition 2.7 that R is semi-hereditary iff
w.gl.dim D < 1 (i.e., D is a Priifer domain).

Let Q be the quotient field of D; then it is easily seen that Q(R) = Q().
It is of course easy to verify directly that Q(«) is a VNR (so that w.gl.dim
Q(») = 0). Since Q(«) has only a countable number of idempotents, it
follows from [8, Corollary 2.15] that every ideal of Q(x) is a projective
Q()-module. Thus Q(«) is a non-Noetherian hereditary ring (i.e., gl.dim
Q() = 1). Q(R) is not a self-injective ring, since E(Q(x)) = E(R) = IIQ,.

Example 3. The following example of a ring R was constructed by
Vasconcelos [13, Example 3.2] as an example of a commutative ring of
w.gl.dim 1 that is not semi-hereditary. Our chief interest lies in computing
E(R) and showing that E(R) = IIRp, where P ranges over all of min R,
even though min R is infinite. The example is a slight modification of
Example 2, but the modification produces some interesting consequences.

Let N be the natural numbers, Z the integers, and A, = Z/2Z, n € N.
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Let A = 3 ® A, and define addition and multiplication componentwise in
A. We let R be the ring obtained by adjoining the identity 1 of Z to A.
That is, R = Z X A, where addition is defined componentwise and mul-
tiplication is given by the formula

(m,a)m',a') = (mm',ma’ + m'a + aa').

It is clear that R is a reduced ring. Let P = (0,A). Then R/P = Z, and
hence P is a prime ideal of R. Since Anng(P) = (2,0), P is a non-essential
minimal prime ideal by Proposition 3.4. We have R = Q, the field of
rational numbers; and the only prime ideals properly containing P are of
the form M = (mz,A) where 0 # m is a prime integer. M is a maximal
ideal of R, O), = P, and Ry, = Z,, is a discrete valuation ring.

Let e, be the identity of A,, and let P, = R(1,e,). Then R/P, = Z/27
is a field, and hence P, is a maximal ideal of R. But Ann; P, = R(0,¢e,),
and thus P is a non-essential minimal prime ideal of R. Since it is easily
seen that a prime ideal of R either contains P, or is equal to P, for some
n € N, we see that {P,P,} is the full set of minimal prime ideals of R, and
that they are all non-essential. Thus we have E(R) = Rp X IIRp, = Q X
ITA, (where A, = Z/2Z). Strangely enough, the multiplication in this direct
product is not twisted, but is componentwise multiplication. It follows from
Proposition 3.7 that min R is not compact. Since the localizations of R at
the prime ideals of R are fields or discrete valuation rings, w.gl.dim R =
1; and, a fortiori, R is a PIF. But since min R is not compact, R is not a
PIP by Proposition 2.7. We have Q(R) = Z,, X A (with twisted multiplication)
and Q(R) is not a VNR.

Example 4. Let K be a VNR and R = K[X]. Then R is a PIP. For let
fX) €R,

fX)=a9y+a X+ -+ a,X" whereaq,; €K,

and let I = Anng(aq, ..., a,). Since K is a VNR, (qq, ..., a,) = Ke, where
¢’ = e€ K. ThusI = K- (1 — e). Since K is a reduced ring, it follows
that if b’a; = 0, where b € K, then ba;, = 0. Using this fact, and an easy
calculation, we obtain Anng(f(X)) = I[X] = R - (1 — e). Thus Anng(f(X))
is a direct summand of R, and hence R - f(X) is a projective ideal of R.
Let P be a prime ideal of R and p = P N K; then p[X] is a prime ideal
of R contained in P, and hence all of the minimal prime ideals of R are of
the form p[X]. We have R/p[X] = (K/p)[X]; and since K/p is a field,
R/p[X] is a principal ideal domain. Thus if P is not a minimal ideal of R,
it is a maximal ideal of R; and Op = p[X] by Proposition 2.1. Thus we see
that R, is a discrete valuation ring, or a field V prime ideals P of R. Hence
w.gl.dim R = 1. Therefore, by Proposition 2.7, R is a semi-hereditary ring.
Let {p,} be the set of all non-essential prime ideals of K, and suppose
that N,p, = 0; then {p,[X]} is a set of non-essential minimal prime ideals
of R and N p,[X] = 0. Thus by Propositions 3.5 and 3.6, {p,[X]} is the
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set of all non-essential minimal prime ideals of R; and in this case, E(R)
= IL(K/p)(X).

Example 5. Let k be a field, and with the notation of Example 2, let K
= k(«), so that K is a hereditary VNR. Let R = K[[X]].

(1) R is reduced but is not a PIF.

2) QR) is a VNR, and E(R) = 11, k,((X)), where k, = k, n € N.

(3) R is a flat essential ring extension of k[[X]I(»); and the latter ring
is semi-hereditary.

Proof. Let e, be the element of K that is the identity of k at the n-th
coordinate, and 0 elsewhere; then €2 = ¢,, and p, = K(1 — e,) is a non-
essential prime ideal of K by Example (2). Let P, = p,[[X]] = R(1 — e,);
then it is readily verified that P, is a non-essential prime ideal of R. Since
Np, = 0, we have NP, = 0; and thus R is a reduced ring. Hence by
Propositions 3.5 and 3.6, the P,’s are all of the non-essential minimal prime
ideals of R and E(R) = II, Rp,. Now R/P, = Re,, and Re, = k,[[X]], where
k, = k. Therefore Rp, = k,((X)), and E(R) = II, k,((X)).

Let M = 3, @ Ke,; then / is a maximal ideal of K by example (2). It
is readily verified that M = 4 + RX is a maximal ideal of R. Let

Oy = {r€R|ur = Oforsome u € R — M}.

We shall prove that Oy, = RAM. For lety € RM; theny = rja;, + - +
r.a,, where r; € R and a; € M. Since K is a VNR, Ka, + - + Ka, =
Ke, where ¢ = e. Then (1 — ¢) E R — M and (1 — e)y = 0. Therefore,
y € Oy. Conversely, let y € O,y C M. Then y = 37, a,X, where a, €
M and g; € K for all i; and there exists u = 37, b;X' such that b, € K
— M, b; € K and uy = 0. Therefore, there exist c €E K — M and d € M
such that 1 = cb, + d. Replacing u by cu € R — M, we see that without
loss of generality we can assume that b, = 1 — d, d € M. Now ayb, =

0, and so a, = da,. Assume that we have proved that a; € Kd, j < i.
Since

aob,» + albi_l + o+ a;__lb] + aibo = 0,

we see that a; € Kd. Thus y € Rd C RM, and so Oy, = RM.

To prove that R is not a PIF, it is sufficient by Proposition 2.1 to prove
that Oy, = RJ( is not a prime ideal of R. Let a; = ey, and b; = ey;1 ),
i=0;lety =37 ,aX and z = 37, b;X'; then yz = 0. If y € RM, then
there is an n, € N such that ye, = 0, n = n,y. But this is not the case and
so y & RAM. Similarly z & R/ . Therefore, RA is not a prime ideal of R.

In order to prove that Q(R) is a VNR, we need to be able to identify
the nonzero divisors in R. For this purpose we make the following definitions.
If a € K, we define

Supp a = {n € N | the n-th coordinate of a is not 0}.
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And if y = 3, a,X' € R, we define Supp y = U, Supp a;. Let z
376 b:X' € R. Then we shall prove that yz = 0 iff Supp y N Supp z
@, the empty set.

If Supp y N Supp z = @, then Supp a; N Supp b; = @ for all i,j. Therefore
a;b; = 0 for all i,j and so yz = 0. Conversely, suppose that yz = 0. Let
I = Anng U7, a;. Since K is reduced, if @’ = 0 in K, then ab = 0. An
easy calculation using this fact shows that Anngy = I[[X]]. Thus b; € I
for all j, and so

o

Supp a; N Supp b; = P for all i,j.

Hence Supp y N Supp z = @. It follows from this fact that y is not a zero-
divisor in R iff Supp y = N. By Proposition 1.4, to prove that Q(R) is a
VNR it is sufficient to prove that if y € R, then there exists z € Anngy
such that y + z is not a zero divisor in R. But if y = 32, a,X’, Supp y
= A # N; and A’ is the complement of A in N, it is not difficult to find
elements b, € K with U, Supp b; = A’. If we let z = 37, b, X', then yz
= 0 and Supp(y + z) = N. Hence y + z is not a zero divisor in R, and
therefore, Q(R) is a VNR.

If a € K, define n(a) to be the smallest element of N such that the
coordinates of a are constant from n(a) to ©. If y = 37, a;X' € R, define
n(y) = sup; n(a;). Let B = {y € R | n(y) < «}. Then B is a subring of R
containing 1, and R4 C B. Thus R, as a B-module, is an essential extension
of B. We shall prove that B = k{[X]](«), and hence by Example 2, B is a
semi-hereditary ring.

Let f, : K— k be the n-th coordinate function; and define § : B —
k[[X]1(«) as follows: if y = 3, ;X' € B, then 0(y) = (X7, f.(a;)X’), an
element of 11, k,[[X]], where k, = k, n € N. If ny = n(y), then for n =
ny we have f,(a;) = f,,(a;),i = 0, 1, ..., ». Thus, in fact, 8(y) € k[[X]](x).
It is readily verified that @ is a ring isomorphism.

By Example (2), E(B) = I1k,((X)); and we have already proved that E(R)
= IIk,((X)). Hence E(B) = E(R). Since E(B) is a flat B-module by Proposition
2.7, and since w.gl.dim B < 1 and R is a B-submodule of E(B), we see
that R is a flat ring extension of B.

We note that if we extend 6 with the same definition to a ring homomorphism
from R into Ilk,[[X]], then 6 remains a monomorphism. It is not onto
because the latter ring is a PIP. Thus we have

KIIX11(*) Ty R = k(=)[[X]] C4 IL, k,[[X]]

as essential ring extensions.

REFERENCES

1. N. BourBakl, Algébre commutative, Eléments de mathématique, Chapters I-1I, Hermann,
Paris, 1961.

2. H. CartaN and S. EILENBERG, Homological algebra, Princeton Univ. Press, Princeton,
N.J., 1956.



THE MINIMAL PRIME SPECTRUM OF A REDUCED RING 391

3. T. CueataMm and E. ENocns, Injective hulls of flat modules, Comm. Algebra, vol. 8
(1980), pp. 1989-1995.
. S. CHASE, Direct product of modules, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 457-
473,

E. DabE, Localization of injective modules, J. Algebra, vol. 69 (1981), pp. 416-425.

. S. ENDo, On semi-hereditary rings, J. Math. Soc. Japan, vol. 13 (1961), pp. 109-119.

. C. FartH, Algebra: Rings, modules, and categories I, Springer-Verlag, New York, 1973.

. K. GoobeArL, Von Neuman regular rings, Pitman, San Francisco, 1979.

. A. HattoR1, On Priifer rings, J. Math. Soc. Japan, vol. 9 (1957), pp. 381-385.

10. J. LAMBEK, Lectures on rings and modules, Blaisdell, Waltham, 1966.

11. E. MaATLIs, Injective modules over Noetherian rings, Pacific J. Math., vol. 8 (1958),
pp. S11-528.

12. Y. QUENTEL, Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math. France,
vol. 99 (1971), pp. 265-272.

13. W. VASCONCELOS, On finitely generated flat modules, Trans. Amer. Math. Soc., vol. 138

(1969), pp. 505-512.

, Finiteness in projective ideals, J. Algebra, vol. 25 (1973), pp. 269-278.

IS

O 0 W

14.

NORTHWESTERN UNIVERSITY
Evanston, ILLINOIS



