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THE MINIMAL PRIME SPECTRUM OF A REDUCED RING

BY

EBEN MATLIS

Introduction

Throughout this discussion R will be a commutative ring with 1. We say
R is a reduced ring if it has no nilpotent elements other than 0. Of course,
this is equivalent, to saying that the intersection of the minimal prime ideals
of R is 0. The purpose of this paper is to study min R, the minimal prime
spectrum of R, in order to obtain information about (R), the classical ring
of quotients of R; and E(R), the injective envelope of R; as well as other
properties of R.
Some of this information is already known. Thus in order to present

more detailed results, a good deal of background information has to be
used, imposing a severe strain on the general reader unfamiliar with the
subject. Further compounding the problem is that much of the information
is scattered wholesale about the literature. An even deeper difficulty is that
this information, while relatively elementary in character, is usually thrown
off as pieces of debris from general construction in the theory of non-
commutative rings, or category and sheaf theory, so that no easy route to
the subject is available.

In order to overcome these problems we shall present statements and
proofs of most relevant facts about a reduced ring and its minimal prime
spectrum including folklore and elementary exercises, as well as the work
of other authors, giving attributions only for the deeper results.

In we give some of the necessary background material. Because we
are interested only in commutative rings, and specifically reduced rings,
much of this material has been greatly simplified. We conclude with an
interesting contrast between reduced rings and non-reduced Noetherian
rings.
The notion of a Von-Neumann regular ring, VNR, plays a key role in

the subject. The definition that we use (among the many possible equivalent
definitions) is that every principal ideal is a direct summand of the ring.
This definition (in contrast to the definition of a semi-simple ring as a ring
in which every ideal is a direct summand of the ring) shows that it is the
set of principal ideals that matters. This definition gives rise immediately
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to two successively weaker ones: a commutative ring is a PIP if every
principal ideal is projective; and itis a PIF if every principal ideal is flat.
All of these rings are reduced rings.

In 2 we review the list of known equivalent conditions for a PIF to be
a PIP, and add a few of our own. This problem dates back to the problem
of finding necessary and sufficient conditions for a ring of weak global
dimension to be a semi-hereditary ring; and has been worked on by
Hattori, Endo, Vasconcelos, and Quentel. One of the surprising results we
prove is that a PIF ring R is a PIP if and only if CM is a divisible
RM-module for all injective R-modules C and maximal ideals M of R. This
provides new examples of rings whose injective modules do not localize.

Looking at the problem one ideal at a time, we find necessary and sufficient
conditions for a principal ideal of a reduced ring (or a PIF) to be a projective
ideal. Since a principal ideal is projective if and only if its annihilator is a
direct summand of the ring, we analyze the conditions for an ideal to be
a direct summand of R in terms of properties of subsets of min R.

If R is a reduced ring, one of the known theorems about E(R) is that it
is a self-injective VNR. If P min R, then Re is a field; and hence E(R)
is a direct summand of 1-IRe (P min R). We prove in 3 that E(R) is a
subdirect product of the Re’s. There are examples where E(R) I-IRe
(P min R); and others where E(R) IIP (P F C a min R). Thus it
is clear that the structure of E(R) can be quite complex.

If R is a reduced ring and min R {P, Pn} is finite, then

Q(R) Re, ( Re E(R).

There are two interesting generalizations of this theorem. On the one hand
Quentel and others have shown (see Proposition 1.16) that min R is compact
if and only if E(R) is flat. On the other hand we show that min R is totally
disconnected if and only if E(R) I-IRe (P min R) (see Proposition, 3.5).

In 3 we prove that if {P},/3 , is a subset of min R, then E(R)
IIRe (/3 ) if and only if the P’s are distinct, every P is a non-essential
ideal of R, and P 0. In this case {P},/3 , is the set of all non-
essential minimal prime ideals of R. Hence the decomposition (if it exists)
is unique.

In the general case, if {P},/3 g, is the set of all distinct non-essential
minimal prime ideals of R, and we let I N P, then E(R/I) IIR,o;
E(R/I) is a ring direct summand of E(R); the complementary summand is
E(R/K), where K anng I; and R/K is a reduced ring with no non-essential
minimal prime ideals. Furthermore, there is a 1-1 correspondence between
the non-essential minimal prime ideals of E(R) and those of R given by
contraction; and the corresponding localizations are isomorphic.

In 4 we give a number of examples to show that the general theorems
of this paper provide efficient methods of deciding whether or not a ring
is a PIF, or a PIP, and also of computing E(R). In particular, we produce
an example of a ring R K[[x]] (where K is a hereditary VNR) that is
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not a PIF; a fortiori, not a ring of w.gl.dim 1. Nevertheless, Q(R) is a VNR,
E(R) is a direct product of copies of k((x)) where k is a field, and R is an
essential extension of a semi-hereditary ring.

1. Preliminaries

DEFINITION. Let R be a commutative ring and A an R-module. We shall
let E(A) denote the injective envelope of A.

PROPOSITION 1.1. Let R be a reduced ring, and let {P}, a c M, be the
set of minimal prime ideals of R.

(1) Re is the quotientfield ofR/P,,, and hence is an injective R-module.

(2) E(R) is a direct summand of IIRe.
(3) t.JP is the set of all zero divisors of R.

Proof. (1) Let O {r Rlur 0for some u R P}. Then O
is an ideal of R and O C P. Since PRp is the only prime ideal of
Re, every element of PRe is nilpotent. Thus if p P, there exists u
R P and n > 0 such that up" 0. Hence (up) 0, and since R is
reduced, up 0. Thus O P, and hence PRp 0. Therefore, Rp is
the quotient field of R/P; and since R, is a fiat R-module, Re is an
injective R-module.

(2) It follows from (1) that IIRe is an injective R-module; and that the
canonical map R IIRe has kernel equal to fqP 0, and hence is a
monomorphism. Thus the canonical map extends to a monomorphism: E(R)
--* IIRe.

(3) It follows from (1) that every element of t_JP is a zero divisor in
R. Conversely, let x R, x - 0 be a zero divisor in R. Then there exists
y R, y :/: 0 such that xy 0. Since NP 0, there exists P such that
y P; and hence x P.

DEFINITION. Let A be a subset of an R-module B. Then define AnnRA
{r glrA 0}.

PROPOSITION 1.2. Let R be a reduced ring.

(1) A prime ideal P of R is a minimal prime ideal of R ifffor all x
P, AnnRx q P.

(2) Let J be a finitely generated ideal of R. Then J is contained in a
minimal prime ideal of R if and only if Ann,J :/: 0.

(3) If x R and y AnnRx, then Ann,(Rx + Ry) 0 iff x y is
not a zero divisor in R.

Proof. (1) If P is a minimal prime ideal of R and x P, then by
Proposition 1.1(1), there exists u R P such that ux 0. Conversely,
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suppose that for all x P, AnnRx q P. Suppose P1 is a prime ideal of R
and P1 C a P. Then there exists x P P1, and hence Annnx C P1 C
P. This contradiction shows that P is a minimal prime ideal of R.

(2) LetJ Ra / / Ran, and letI AnnnJ. Suppose thatJ C
P, a minimal prime ideal of R. Then by Proposition 1.1(1), there exist
elements ui R P such that uai 0 for all l, n. Let u UlU

un; then u q P and u I. Conversely, suppose that I - 0. Then there
is a minimal prime ideal P of R such that I q P, and hence J C P.

(3) Assume that Anng(Rx / Ry) 0, and suppose that R and
t(x y) 0. Then tx ty and hence (tx) 0. Therefore, tx 0 ty
and hence Anng(Rx + Ry) 0. Thus x y is not a zero divisor in
R. The converse assertion is trivial.

DEFINITION. A commutative ring R is said to be a Von-Neumann regular
ring (VNR) if every principal ideal of R is a direct summand of R; i.e., is
generated by an idempotent of R.

PROPOSITION 1.3 [8, Theorem 1.16]. Let R be a commutative ring. Then
R is a VNRiffR is reduced and every prime ideal ofR is minimal. In this
case every ideal of R is an intersection of prime ideals of R.

Proof. Assume that R is a VNR. Let I be an ideal of R and x an element
of R such that x I for some n > 0. Since Rx Re, where e2 e, we
have x I, showing that I is an intersection of prime ideals of R. In
particular, taking I 0, we see that R is reduced. Now let I P be a
prime ideal of R. Then e Anngx and e q P. Hence by Proposition
1.2(1), P is a minimal prime ideal of R.
Conversely, suppose that R is reduced and that every prime ideal of R

is minimal. Let 0 x R and I Annnx. Since R is reduced, Rx f)

I 0; and by Proposition 1.2(1), Rx / I is not contained in any minimal
prime ideal of R. Therefore, Rx + I R, Rx is a direct summand of R;
and hence R is a VNR.

DEFINITION. Let R be a commutative ring and let S be the set of non-
zero divisors of R. Then Rs is the classical ring of quotients of R, and we
shall denote it by Q(R).

PROPOSITION 1.4 [12, Proposition 9].
following statements are equivalent:

Let R be a reduced ring. Then the

(1) Q(R is a VNR.
(2) If I is an ideal of R contained in the union of the minimal prime

ideals of R, then I is contained in one of them.
(3) If J is a finitely generated ideal of R, then there exist b J and

a AnnRJ such that a + b is not a zero divisor in R.
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(4)
O.

If b R then there exists a AnnRb such that AnnR(Ra + Rb)

Proof. (1) = (2) Suppose that I is contained in the union of the minimal
prime ideals of R. Then by Proposition 1.1 (3), every element of I is a zero
divisor in R. Thus QI Q, and so QI c , a maximal ideal of Q; and
I c R. By Proposition 1.3, is a minimal prime ideal of Q; and since
Q is a localization of R, A R is a minimal prime ideal of R.

(2) =:> (3) Let J Rbl + + Rbn be a finitely generated ideal of R,
and I AnnRJ. Suppose that there do not exist elements b J and a
I such that a + b is a non-zero divisor in R. Then I + J is contained in
the union of the minimal prime ideals of R, and hence by hypothesis, there
exists a minimal prime P of R such that I + J C P. By Proposition 1.2(1),
there exists c Ann b with c P. Let c cc2 c,; then c I and
c P. This contradiction proves that there exists b J and a I where
a + b is a non-zero divisor in R.

(3) ::), (4) This follows from Proposition 1.2(3).
(4):if(l) Letq Q Q(R);thenthereexistsb RwithQq Qb.

By hypothesis, there is an a AnnRb such that Annn(Ra + Rb) 0. By
Proposition 1.2(3), b a is not a zero divisor in R. Thus, Qb + Qa
Q; and since Q is reduced, Qb Qa 0. Therefore, Qb is a direct summand
of Q, and hence Q is a VNR.

PROPOSITION 1.5. Let R be a commutative ring and {P, en} a finite
set of distinct minimal prime ideals of R. Let S R t37= Pi; then
Rs Re ( ( Re..

Proof. {(Pl)s, (Pn)s} is the set of all prime ideals of Rs, and each
of them is both maximal and minimal in Rs. Moreover, (Rs)e,) -Rp, for

1, n. Thus without loss of generality we can assume that {P
P} is the set of all prime ideals of R, and that each of them is both maximal
and minimal in R.
Let Oi {r RI there exists u R Pi with ur 0}. Since eiRei is

the only minimal prime ideal of Re,, every element of P is nilpotent modulo
O. Thus ei is the only prime ideal of R containing O. Therefore R/O
Re,, n;andOi + Oj R,i j. The annihilator of an element
of ["i=ln Oi is not contained in any maximal ideal of R and thus I" ni=l Oi
0. Hence by the Chinese Remainder Theorem,

PROPOSITION 1.6. Let R be a reduced ring with only a finite number of
minimal prime ideals {P, P,}. Then Q(R) Re, ( Re. E(R).
Hence Q(R) is a self-injective VNR (in fact a semi-simple ring), and E(R)
is a fiat R-module.
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Proof. By Proposition 1.5, Q(R) Re, @ Re,. Thus by Proposition
1.1 Re is a field, and Q(R) is an injective R-module. Since Q(R) is an
essential extension of R, we have Q(R) E(R).

PROPOSITION 1.7. IfR is a reduced, self-injective ring, then R is a VNR.
In this case if J is any ideal ofR and I AnnRJ, then R E(J) @ I.

Proof. SinceR is reduced, I N J 0; in addition, JIC R is an
essential extension. Thus R E(R) E(J I) E(J) E(I). Now
E(I)J C E(1) E(J) 0, and thus E(I) C I. Hence I E(I), and R
E(J) I.
Now suppose that J Ra, a R. Then by the preceding paragraph we

have I Re, where e2 e; and hence Ra C E(Ra) R(1 e). Since
Annn(1 e) Re Anna, there is an R-homomorphism f Ra --->

R(1 e) with f(a) 1 e. Since R is self-injective, f extends to
an R-homomorphism from R into R. Thus there exists R such that

e =f(a) ta. Therefore, R(1 e) CRa, andsoR(1 e) Ra.
Thus Ra is a direct summand of R and hence R is a VNR.

PROPOSITION 1.8. Let R be a VNR and let {x}, y F, be a set of
generators for an ideal I of R. Iff: I ---> R is an R-homomorphism, then
there exists a set of elements {a}, 3’ F, in R such that f(x) ax for
y F; and the system of congruences

y a mod(Annn x), y F,

is finitely solvable. Conversely, if the system is finitely solvable, then there
is an R-homomorphism f: I ---> R so that f(x) ax, y F.

Proof. Let f: I ---> R be an R-homomorphism; and let x I. Since R
is a VNR, we have Rx Rx2 and thus there is an a I with f(x) ax
In particular there is a set of elements {av}, y F, in I with f(xv) axv,
y F. Let {x, xv.} be any finite subset of the generators {x}. Then
there is an x I with Rxr, + + Rx. Rx; and hence there are elements
siRwithx, =six, 1, n. Sincef(x) ax, we have

a,xr, f(x]ti) sif(x asix ax3,i.

Therefore a a,/i mod(AnnR xv,), and the system of congruences y av
mod(AnnR x) is finitely solvable.

Conversely, suppose that the system is finitely solvable, and define
f: I---> R byf(x) axj, and extend flinearly, to all of I. With the notations
of the preceding paragraph, suppose that Xin-_O rix, O, where ri U_ R. Since
av,xv, axv,, we have X riav,x, a X rix O. Thus, f is a well defined
R-homomorphism.
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DEFINITION. Let R be a commutative ring with 1, and

y =- av(modly), y F,

a system of congruences where the av’s are elements of R ,and the Iv’s are
principal ideals of R. If every such system that is finitely solvable has a
simultaneous solution, we shall say that R is linearly compact on principal
ideals.

PROPOSITION 1.9. Let R be a reduced ring. Then R is self-injective iffR
is a VNR and is linearly compact on principal ideals.

Proof. By Proposition 1.7 we can assume that R is a VNR. Then the
principal ideals of R are exactly the annihilators of elements of R. Now R
is self-injective iff every R-homomorphism from an ideal I of R can be
realized by multiplication by an element a R. By Proposition 1.9 the
R-homomorphisms from I into R arise from finitely solvable systems of
congruences y a mod(AnnR x) where the a’s are in R and the x’s
generate I. It is immediate that f is multiplication by an element a R iff
a is a simultaneous solution of the system of congruences. Therefore, R is
self-injective iff R is linearly compact on principal ideals.

DEFINITION. Let R be a commutative ring with 1, E E(R), and H
Homg(E, E). Let

{f nlf(1) 0}.

Then 5 is a left ideal of H. Define d H -- E by b(h) h(1), h H.
Then b is an H-homomorphism of H onto E with Ker b 5. Thus E
HI5 is a cyclic H-module with generator R. We have b(I) 1, where
I is the identity map on E. Since E is a faithful R-module we have a canonical
injection R C H sending 1 to I. If Q Q(R), then it is readily seen that
E is the Q-injective envelope of Q; and that the injection R C E extends
to an injection Q c E.

PROPOSITION 1.10 [10, Proposition 3, p. 95]. Let R be a commutative
ring. Then the following statements are equivalent:

(1)
(2)
(3)
(4)
(5)

# is a two-sided ideal of H.
,9=0.

H E as H-modules.
E is a projective H-module.
H is a commutative ring.

Proof. The implications (2) :ff (1), (3) :ff (4), and (5) ::)> (1) are trivial.
For (2) :ff (3) we observe that + is then an isomorphism. And for (1) :ff
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(2), let f 5 and x E. Since there is an h H with h(1) x, and fh, we have f(x) 0. Thus f 0 and hence 5 0.
(4) (2) Since + is onto and E is projective, there is an H-homomorphism

k EHwithd,k I. Letg ,k(1);then I(1) thk(1) d(g)
g(1). Thus Ker g R 0, and since E is an essential extension of R, we
have Ker g 0. But then Im g is an injective R-module containing R, and
hence Im g E. Thus g is an isomorphism. Hence I g-lg g-l(k(1))

k(g-l(1)) and thus I Im . Since Im X is a left ideal of H, we have
Im k H. Thus, iff Ker 4, then there is an x E with f )(x),
and hence 0 (b(f) 4k(x) x. Therefore, f k(0) 0, and so
0.

(2) : (5) Let h H and h(1) x E. Define hx E---> E as follows"
if y E, then there is a unique g H with g(1) y because 5 0. We
define h(y) g(x). It is obvious that hx is an Abelian group homomorphism
of E into E. Let k H; then kg is the unique element of H such that
(kg)(1) k(y). Hence hx(ky) kg(x) khx(y). Thus hk kh, k H.
Therefore hz H; and in fact hx is in the center of H. Now hx(1) l(x)

x h(1). Hence hx h 5 0. Thus hx h, and so h is in the
center of H. Thus H is a commutative ring.

DEFINITION.
Then we define

Let B be a submodule of an R-module A, and let x A.

(B x) {r R[rx B}.

We say that B is an essential submodule of A (or A an essential extension
of B) if every non-zero submodule of A has a non-zero intersection with
B.

PROPOSITION 1.11. Let R be a commutative ring, E E(R), and H
Homg(E, E). Let x E; then (R x) is an essential ideal of R. Moreover,
f Hf(1) 0andf(x) OiffAnng(R x) :0.

Proof. Let r R; ifrx 0, then r (R x); while ifrx 0, then
there is a R with 0 - trx R, and hence 0 - tr (R x). Therefore
(R x) is an essential ideal of R.

If there is an f H with f(1) 0 and f(x) O, then there is an a
R such that af(x) s R and s :P- 0. Clearly s AnnR(R x). Conversely,
if there is 0 : s AnnR(R x), then there is an R-homomorphism g R
+ Rx -- Rs with g(1) 0 and g(x) s. Because E is injective, g extends
to an element off E H.

PROPOSITION 1.12 [10, Proposition 1, p. 102]. Let R be a reduced ring
and E E(R). Then E is a commutative, self-injective VNR, and Homg(E,
E) Home(E, E) E.
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Proof. Let H HomR(E, E), and suppose that there is an f H and
x E with f(1) 0 and f(x) -- 0. By Proposition 1.11, AnnR(R’x)
0 and (R x) is an essential ideal of R. But then (R x) f’) AnnR(R x)
:/: 0, contradicting the fact that R is a reduced ring. Hence the map 4)
H -- E defined by th(h) h(1), h H, is an H-isomorphism. Therefore,
by Proposition 1.10, H is a commutative ring extension of R. Since + is
the identity on R, we can use th to give E the structure of a commutative
ring extension of R such that Homg(E, E) Home(E, E).

Let x E, x - 0, and suppose that x 0. Since Eis an essential
extension of R there exists r R with 0 : rx R. But (rx) rEx
0; and this contradiction shows that E is a reduced ring.

Let 5 be an ideal of E and f" 5 -- E and E-homomorphism. Because
E is R-injective, f extends to an element g H. But then g is an E-
homomorphism, and hence E is a self-injective ring. Thus by Proposition
1.9, E is a VNR.

Remarks. Let R be a reduced ring and E E(R). Since HomR(E, E)
Homn(E, E) E is a commutative ring extension of R, it follows readily

that ifA is another injective envelope ofR with a commutative ring structure
extending that of R, and if 0 E -- A is an R-homomorphism that is the
identity on R, then 0 is a ring isomorphism.

PROPOSITION 1.13. Let R be a reduced ring and E E(R). Suppose that
A and B are R-submodules ofE such that E A B. Then A and B are
ideals of E, and Homn(A, B) 0.

Proof. Let f be the element of Homn(E, E) that is 0 on A and the
identity on B. Then by Proposition 1.12, f is multiplication by e E and
e e. Thus B Ee and A E(1 e); and hence A and B are ideals
of E. If g HomR(A, B), define h HomR(E, E) to be g on A and 0 on
B. Then h is multiplication by y E, and hence g(A) yA C A N B
0. Thusg 0.

DEFINITION. Let R be a reduced ring and let min R be the minimal prime
spectrum of R. If x R, define D(x) {P min RIx q P}. Then the sets
of the form D(x) form a basis for the Zariski topology on min R. When
we say that min R is compact, we mean that it is compact in this topology.

PROPOSITION 1.14 [12, Lemma 1]. Let R be a reduced ring, and let A
be a commutative ring extension of R.

(1) If every prime ideal ofA contracts to a minimal prime ideal of R,
then min R is compact.

(2) Assume that A is a VNR. Then A is a fiat R-module iff every prime
ideal ofA contracts to a minimal prime ideal ofR. Hence in this case min
R is compact.
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Proof. (1) Suppose that we have an open cover of min R. Then without
loss of generality we can assume it is of the form min R tOxD(xx), h
A, xx R. Let

DA(Xx) { Alxx };

then as a consequence of our hypothesis we have spec A UxDa(xx).
Since the spec of any commutative ring is compact, there exist
xx xx such that

spec A 6 DA (Xxi)o
i=1

Let P min R; since Re C Ae, and Re is a field, it is easily seen that
there is a prime ideal of A with fq R P. It follows from this that
min R uin=lD(Xxi). Thus min R is compact.

(2) Assume that A is a fiat R-module. Let be a prime ideal of A, and
letP N R, and suppose that there is aprimeidealPl ofR, Pl C a
P. Then there is a p P P, and we have an exact sequence

p

0 - R/P R/P.

Since A is fiat over R, we have an exact sequence
p

0 "- AlPhA AlPhA.
However, since A is a VNR, there exists u A with pu 0. This
contradiction shows that P is a minimal prime ideal of R.

Conversely, assume that if is a prime ideal of A, then N R P is
a minimal prime ideal of R. Then since R is reduced, Re is a field. Now
A is an Re-module, and hence A is flat over Re, and thus over R. Thus
5; ) A, maximal in A, is a fiat R-module. Since E A is a faithfully
fiat A-module, it follows that A is fiat over R. (See [1, Proposition 7, Chapter
I, 4].)

PROPOSITION 1.15 12, Proposition 9].
following statements are equivalent:

Let R be a reduced ring. Then the

(1) Q Q(R is a VNR.
(2) min R is compact; and if a finitely generated ideal is contained in

the union of the minimal prime ideals of R, then it is contained in one of
them.

Proof. (1) ::), (2) Since Q is a localization of R, it is a fiat R-module.
Thus min R is compact by Proposition 1.14(2). The latter part of (2) follows
immediately from Proposition 1.4(2).

(2) ::> (1) Suppose that Q is not a VNR. Then by Proposition 1.3, Q
has a maximal ideal that is not a minimal prime ideal of Q. Then f3
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R is not a minimal prime ideal of R, because Q is a localization of R. Hence
f) R P, where P min R. Choose b ( f3 R) P; and then

min R D(b ) tO {toD(a)la P}.

Since min R is compact, there exist al, a, P with min R D(b) tO
D(a) tO tO D(an). Let J Rb + Ra + + Ran; then J is not
contained in any minimal prime ideal of R. Hence by hypothesis J is not
contained in the union of the minimal prime ideals of R; and thus J contains
an element that is not a zero. Hence QJ Q. But QJ c ; and this
contradiction shows that Q is a VNR.
Remarks. Quentel has produced an example of a reduced ring R where

min R is compact, but Q(R) is not a VNR. Thus the latter part of statement
(2) in Proposition 1.15 is not redundant.
The following proposition is also in part due to Quentel although with a

proof that depends on considerable machinery.

PROPOSITION 1.16 [12, Proposition 3].
following statements are equivalent:

Let R be a reduced ring. Then the

(1) min R is compact.
(2) If b R, then there is a finitely generated ideal J C AnnRb with

Anng(Rb + J) O.
(3) 1-IRe, P min R, is a fiat R-module.
(4) E(R) is a fiat R-module.
(5) If is a prime ideal of E(R), then N R min R.

Proof. (1) ::> (2) Let b R; then by Proposition 1.2(1), Rb + Annnb
is not contained in any minimal prime ideal of R. Thus

min R D(b) t_J {t.JD(a)la Annnb}.

Since min R is compact, there exist a an Annnb such that

min R D(b) tO D(a) tO t_J D(an).

Thus if J Ra + + Ran, then Rb + J is not contained in any minimal
prime ideal of R. Hence by Proposition 1.2(2), Annn(Rb + J) 0.

(2) =), (3) Let II IIRe, P, min R; and let I - 0 be an ideal of R.
In order to prove that II is flat it is sufficient to prove that Tor (R/I, II)

0. But Tor (R/I, II) is isomorphic to the kernel of the canonical map
0 I @n II ---> III. Thus it is sufficient to prove that Ker 0 0.

Let b I and (x) II, where x Re. We will show that we can
write b @ (x) in the form where x 0, for all a such that b P. By
hypothesis there is a finitely generated ideal

J= Ral + + Ra, withJCAnnnbandAnnn(Rb + J) O.

By Proposition 1.2, min R D(b) tO D(a) t.J tO D(a,). Thus we can
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take subsets D(ai) C D(ai) such that we have the disjoint union

min R D(b) LI D(al) LI t.J D(an).

Consider a fixed integer i, 1 < < n. If P D(ai), then ai is a unit in
R; and we can write x, a(y(i)), where y(i) R,. If P D(ai), we
put y(i) 0. If P D(b), we let y(0) x; and if P q D(b) we let
y(0) 0. It is then clear that

(x) (y(0)) + a,(y(1)) + + a(y(n)).

Since ai Annb, we have b (x) b (y(0)). Thus without loss of
generality we can assume that x 0 if b P.
Now ifb((x) Ker0, thenx 0ifb P, andbx 0ifbC

P. But if b C P, then b is a unit in Re, and so x 0 for all a. Therefore
b (x) 0. In general, suppose that x Ker 0 and

x (b () (x(1))) + + (bk ( (xa(k))) where b I and x(i) Re.
We shall prove that x 0 by induction on k, the case k having already
been proved.
As we have demonstrated, we can assume that x(1) 0 if b P.

Now

0 O(x) (bx(1) + + bkX,(k)),

and hence bx(1) + + bkx(k) 0, for all ct. For all a such that
b P, bl is a unit in R,, and hence if > we can write x(i)
-by(i), where y(i) Re. Thus

b[x(1) bEy(2) bky(k)] O.

But since bl is a unit in R,, we have x(1) bEy,(2) + + bky(k). It
is now clear that by substitution we can write x as

x (bE () (Z(2))) + + (b ( (z(k))):
Hence x 0 by induction on k. Thus Ker 0 0, and so IIR, is flat.

(3) =)> (4) Since E(R) is a direct summand of IIRe by Proposition 1.1(2),
E(R) is also a flat R-module.

(4) =)> (5) By Proposition 1.12, E(R) is a commutative VNR containing
R. Hence by Proposition 1.14(2), the prime ideals of E(R) contract to
minimal prime ideals of R.

(5) (1) This is an immediate consequence of Proposition 1.14(!).

Remarks. (1) If R is a reduced coherent ring, then min R is compact.
For one of the definitions of a coherent ring is that every direct product
of flat R-modules is flat. Thus IIR,o is flat, and hence min R is compact
by Proposition 1.16.

(2) IfR is a reduced ring, then HomR(E(R), E(R)) is always a commutative
ring; but E(R) is flat iff min R is compact. However, if R is a Noetherian
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ring (not necessarily reduced) then min R is always finite (hence compact);
but as we shall show in Proposition 1.18, E(R) is flat iff Homn(E(R), E(R))
is a commutative ring.

DEFINITION. We shall say that an ideal is irreducible if it is not the
intersection of two properly larger ideals.

Portions of the following two propositions are contained in [3, Theorem
3].

PROPOSITION 1.17. Let R be a commutative, Noetherian, local ring with
maximal ideal M. Then the following statements are equivalent:

(1)
(2)
(3)
(4)

R is self-injective.
M is the only prime ideal of R and 0 is an irreducible ideal of R.
R E(R/M).
E(R/M) is a flat R-module.

Proof. (1) =), (2) Let 0 Ol o CI On be an irredundant decomposition
of 0 in R, where Qi is an irreducible P primary ideal. Then by [11, Theorem
2.3],

E(R) E(R/P) E(R/P).

But R E(R) and R is indecomposable. Hence n and R E(R/P).
Thus every element of R P is a unit in R. Therefore, P M .and
0 Q is irreducible and M-primary. Hence M is the only prime ideal of
R.

(2) => (3) Since 0 is an irreducible M-primary ideal of R, we have
E(R) E(R/M). Now R has finite length and L(R) L(HOmR(R, E(R/M))

L(E(R/M)). Since R C E(R/M), we have R E(R/M).
(3) :ff (4) Trivial.
(4) :ff (1) Let E E(R/M) and let I be an ideal of R. Then be [2, Ch.

VI, Proposition 5.3],

Homg(Extg(g/I, R),E) Tot (nomn(R, E),R/I) 0

because E is flat. Therefore, Ext(R/I, R) 0 showing that R is self-
injective.

PROPOSITION 1.18. Let R be a commutative, Noetherian ring, and let
{P en} be the prime ideals belonging to 0 in R. Let Oi {r
R lur 0 for some u R Pi}. Then the following statements are
equivalent:

(1) Every Pi is a minimal prime ideal of R, and Oi is an irreducible
ideal of R.

(2) E(R)
(3) E(R) Q(R).
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(4)
(5)

HomR(E(R), E(R)) is a commutative ring.
E(R) is a flat R-module.

Proof. (1) :ff (2) Oi is a Pi-primary ideal because Pi is minimal; and
0 Ot O, is a normal, irreducible decomposition of 0 in R. Thus

E(R) E(R/PI) ( ( E(R/Pn)

by [11, Theorem 2.3]. Since 0 is an irreducible ideal of Re,, and PiRei is
the only prime ideal of Re,, it follows from Proposition 1.17 that

E(R/P,) E(ge,/P,ge,) gp

Therefore E(R) Rp,
(2) (3) Since every gt, is a self-injective ring, it follows from Proposition

1.17 that every Pi is a minimal prime ideal of R. Since S R
is the set of non-zero divisors of R, we have by Proposition 1.5 that

Q(R) gs Re, ( ( Re,.

Therefore, E(R) Q(R).
(3) : (4) HomR(E(R), E(R)) HOmR(Rs, Rs) Rs is a commutative

ring.
(4) :ff (5) By Proposition 1.10, E(R) Homn(E(R), E(R)). Let I be an

ideal of R. By [2, Ch. VI, Proposition 5.2] we have

Tor R(Hom(E(R), E(R)), R/I) HomR(EXtR(R/I, E(R)), E(R)) O.

Therefore, Homn(E(R),E(R)) is a flat R-module.
(5) :ff (1) Let Ei E(R/Pi); then E(R) Ek Ekn". Hence E; is

a flat R-module, 1, n. Since E is an Re,-module, E is a flat
Re,-module. Hence by Proposition 1.17, PRe is the only prime ideal of
Re, and 0 is irreducible in R. Therefore, Pi is a minimal prime ideal of R
and O is an irreducible ideal of R.

2. PIF Rings

DEFINITIONS. Let R be a commutative ring. We shall say that R is a PIF
if every principal ideal of R is flat; and we shall say that R is a PIP if every
principal ideal of R is projective. If P is a prime ideal of R we shall define

Oe= {rR[thereisuR- Pwithur 0}.

In this section we shall give necessary and sufficient conditions for a PIF
to be a PIP. Then we shall focus on a single ideal and give necessary and
sufficient conditions for it to be a direct summand of R in terms of the
properties of subsets of rain R. From these considerations we shall be able
to give necessary and sufficient conditions for a principal ideal of a PIF to
be a projective ideal.
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The following proposition characterizes PIF rings as those rings that are
locally integral domains.

PROPOSITION 2.1. Let R be a commutative ring. Then the following state-
ments are equivalent:

(1) R is a PIF.
(2) Rt is an integral domain for all maximal ideals M of R.
(3) R is reduced; and a maximal ideal M ofR contains only one minimal

prime ideal P of R.
In this case, P OM; and Re Q(Rt), the quotient field of RM.

Proof. (1) ::), (2) Let M be a maximal ideal of R. Then every principal
ideal of R is fiat, hence free over Rt. Thus Rt has no zero divisors.

(2) ::> (1) Let a R; then either Rta 0 or Rta is Rt-free V maximal
ideals M of R. Hence w.dimR Ra supt.(w.dimR, Rta) 0. Thus Ra is
a flat ideal of R.

(2) :ff (3) Let M be a maximal ideal of R. Then 0 is contained in every
prime ideal ofR contained in M. On the other hand R/O C Rt, and hence
Ot is a prime ideal of R. Thus OM is the unique minimal prime ideal of R
contained in M. The annihilator of an element of O (where M ranges
over all of the maximal ideals of R) is not contained in any maximal ideal
of R. Hence fqOt 0 and thus R is reduced. If Ot P, then Re is a
field by Proposition 1.1, and clearly Re Q(Rt).

(3) :ff (2) Let M be a maximal ideal of R. Then Rt is reduced and has
only one minimal prime ideal. Therefore, R is an integral domain.

PROPOSITION 2.2. Let R be a commutative ring with only a finite number
of minimal prime ideals. Then the following statements are equivalent:

(1) R is a PIF.
(2) R is a PIP.
(3) R is a finite direct sum of integral domains.

Proof. (2) ::), (1) is trivial.
(1) :::> (3) Let {P P,} be the minimal prime ideals of R. Then R

is reduced and so [")in_-P; 0. By Proposition 2.1, Pi + Pj R, :/: j.
Thus by the Chinese Remainder Theorem, R R/P RIP,.

(3) ::> (2) If R is a finite direct sum of integral domains, then every
principal ideal of R is a direct sum of principal ideals over each of these
domains. Hence it is obvious that principal ideals of R are projective.

PROPOSITION 2.3. Let R be a reduced ring and J a finitely generatedfiat
ideal of R. If elements a ,J and b AnnnJ such that a + b is not a
zero divisor in R, then J is a projective ideal of R.
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Proof. LetI Rb + J; thenI Rb J because R is reduced and
b AnnRJ. Let P be a prime ideal of R. If Jp O, then Je is a free Rp-
ideal of rank 1 and bJe 0. Therefore, Reb 0, and so le Je is free
of rank over Re. On the other hand suppose that Je 0. Then le
Reb Re(a + b) is free of rank over Re because a + b is not a zero
divisor in Re. Thus le is free of rank if P is a prime ideal of R. Hence
by [1, Ch. II, 5, Theorem 2] I is a projective ideal of R. Since J is a direct
summand of I, J is also a projective ideal of R.

PROPOSITION 2.4. Let R be a reduced ring such that Q(R) is a VNR.
Then every finitely generated fiat ideal of R is projective.

Proof. This is an immediate consequence of Propositions 1.4(3) and 2.3.

PROPOSITION 2.5. Let R be a commutative ring and I an ideal ofR. Then
the following statements are equivalent:

(1) R/I is a flat R-module.
(2) I N K IK for any ideal K of R.
(3) If a I, then there exists c I with (1 c)a O.
(4) If J is a finitely generated ideal of R, J C I, then there is a c 1

with (1 c)J O.
(5) IM 0 or RM for any maximal ideal M of R.

If I and K are ideals of R such that R/I and R/K are flat, then
R/(I + K) is also flat.

Proof. (1) ::), (2) If A is an R-module, then A (R R/I A/IA. Let K
be an ideal of R; then since R/I is flat we have a commutative diagram
with exact rows and vertical isomorphisms:

0- K/IK R/I R/(I + K)O

0 --> (I + K)/I -- R/I --. R/(I + K) --, O.

Since the kernel of the canonical map K/IK --, (I + K)/I is (I K)/IK,
we havelN K IK.

(2) ::> (3) Let a I; then Ra la. Hence there is a c I with
(1 c)a O.

(3) ::), (4) Let J Ra + + Ran, where ai I. By hypothesis, there
are ci I with (1 ci)ai 0, 1, n. Then (1 c)(l c2)
(1 cn) c, wherec Iand(l c)J O.

(4) ::), (5) Let M be a maximal ideal of R. If I g: M, then I R.
Hence assume that I C M. If a I, then there is a c I with (1 c)a
0; and since 1 c q M, it follows that the image of a in R is 0. Therefore,
IM 0.
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(5) :ff (1) Since (R/l)t Rt or 0, it follows that (R/I) is a flat Ra-
module ’ maximal ideals M of R. Therefore because flatness is determined
locally, R/I is a flat R-module.

Assume that ! and K are ideals of R such that R/I and R/K are flat R-
modules. Let x a + b, where a I and b K. Then there are c I
and d K such that (1 c)a 0 and (1 d)b 0. Thus (1 c)
(1 d)x 0, and (1 c)(1 d) y, wherey I + K. Thus
R/(! + K) is a fiat R-module by (3).
The following proposition is due to Vasconcelos [14, Proposition 3.4].

PROPOSITION 2.6. Let R be a reduced ring such that min R is compact.
Then every principal flat ideal of R is projective.

Proof. Let Rb be a flat ideal of R and let I AnnRb. By Proposition
1.16, there is a finitely generated ideal J C I such that Annn(J + Rb)
0. Since R/I Rb is fiat, there exists a I with (1 a)J 0 by Proposition
2.5. Thus J C Ra and hence AnnR(Ra + Rb) 0. By Proposition 1.2(3),
a + b is not a zero divisor in R. Thus by Proposition 2.3, Rb is a projective
ideal of R.

DEFINITION. A commutative ring R is said to be semi-hereditary if every
finitely generated ideal of R is projective.

Portions of the next proposition are due to Hattori [9], Endo [6], Vasconcelos
[13], [14], and Quentel [12].

PROPOSITION 2.7.
equivalent:

Let R be a PIF; then the following statements are

(1)
(2)
(3)
(4)
(5)
(6)

R is a PIP.
Every finitely generated flat ideal ofR is projective.
Q(R) is a semi-hereditary ring.
Q(R) is a VNR.
min R is compact.
E(R) is a flat R-module.

Proof. (4) :: (2) is Proposition 2.4; and (2) ::), (1) is trivial. (4) :ff (5)
follows from Proposition 1.15; and (5) =), (1) is Proposition 2.6. (5) :> (6)
is Proposition 1.16.

(1) ::), (4) Let a R and I Anna; then I is a direct summand of R,
and hence I Re, where e2 e. Now AnnR(Re + Ra) 0 by Proposition
1.2, and so Q(R) is a VNR by Proposition 1.4.

(4) :z), (3) is elementary.
(3) :::), (4) Since principal ideals of Q(R) are projective Q(R)-modules,

and Q(R) is its own ring of quotients, Q(R) is a VNR by (1) :ff (4).
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Remarks. The assumption in Proposition 2.7 that R is a PIF, is necessary.
There exist many examples where R is a reduced ring and Q(R) E(R)
is a VNR, but R is not a PIF. The easiest example is the following. Let
R be a quasi-local reduced ring with only a finite number of minimal prime
ideals but such that R is not a domain. (Take any Noetherian local ring
that is not a domain and factor out the intersection of the minimal prime
ideals.) By Proposition 1.6, Q(R) E(R) is a semi-simple ring. If R were
a PIF, then by Proposition 2.2, R would be a finite direct sum of integral
domains. But since R is quasi-local, it is indecomposable. This contradiction
shows that R is not a PIF.

DEFINITIONS. Let R be a commutative ring. The weak global dimen-
sion of R (w.gl.dim R) is defined to be the smallest non-negative inte-
ger n (if any such exist) such that Tot is the 0-functor. Otherwisen+l

w.gl.dim R .
Thus w.gl.dim R 0 iff every R-module is fiat. It is not hard to see

that w.gl.dim R 0 iff R is a VNR. It also follows from the definitions
that w.gl.dim R < 1 iff every submodule of a flat R-module is flat iff every
ideal of R is fiat.

Remarks. (1) Let R be a commutative ring such that w.gl.dim R < 1.
Then each of the 6 conditions of Proposition 2.7 is equivalent to R being
a semi-hereditary ring. Thus Proposition 2.7 is a generalization of the results
of Hattori [9], Endo [6], Vasconcelos [13] and Quentel [12].

(2) It is well known (see [7, Corollary 11.30]) that a finitely generated
flat ideal is projective iff it is finitely presented. Since a coherent ring is
defined to be a ring such that finitely generated ideals are finitely presented,
it follows that if w.gl.dim R < 1, then R is semi-hereditary iffR is a coherent
ring. One would therefore expect that the conditions for a PIF to be a PIP
would involve some weakened form of coherence. Since a ring R is coherent
iff a direct product of flat R-modules is flat [4, Theorem 2.1], we have a
better understanding of why a PIF is a PIP iff min R is compact (Proposition
2.7). For as we have seen in Proposition 1.16, if R is a reduced ring, then
min R is compact iff 1-IRe (P min R) is a flat R-module.

In a recent paper (Commutative coherent rings, Canad. J. Math., vol.
34 (1982), pp. 1240-1244) we have shown that a commutative ring R is a
coherent ring iff Hom(B, C) is flat for injective R-modules B and C. Thus
condition (4) of the next proposition is seen to be related to coherence,
since flat modules over integral domains are torsion-free. Furthermore, it
follows from .Proposition 2.7 that if w.gl.dim R < 1, then each of the four
conditions of the next proposition is .equivalent to R being a semi-hereditary
ring.

PROPOSITION 2.8,, Let R be a PIF. Then the following statements are
equivalent:
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(1) R is a PIP.
(2) Q(R)t is the quotient-field of Rt for any maximal ideal M of R.
(3) If C is an injective R-module, then Ct is a divisible Rt-module for

any maximal ideal M of R.
(4) If C is an injective R-module, then HomR(C, E(R/M)) is a torsion-

free Rt-module for any maximal ideal M of R.

Proof. (1) =), (2) Let Q Q(R) and S the set of non-zero divisors in
R so that Q Rs. Let M be a maximal ideal of R, P the unique minimal
prime ideal of R contained in M, and S the image of S in RIP. Then
Q/PQ (R/P) C Re because Re is the quotient field of RIP. But Q is a
VNR by Proposition 2.7, and so Q/PQ is a field. Thus Q/PQ Re. But
by Proposition 2.1, Re is the quotient field of RM and Pt 0. Therefore,
(PQ)M 0, and we have Re (Rp)M QM/(PQ)M QM.

(2) (3) Let C be an injective R-module. For each x C, there is an
R-homomorphism f" Q ---> C with f(1) x. Hence there is an R-module
F that is a direct sum of copies of Q and an R-surjection g F C --->

0. Let M be a maximal ideal of R. Then we have an RM-surjection gM

FM -’-> CM ---> O. But by hypothesis F is a direct sum of copies of the
quotient field of RM. Therefore, CM is a divisible RM-module.

(3) :ff (4) Let C be an injective R-module and M a maximal ideal of R.
Then E(R/M) (the injective envelope of R/M) is an R-module; and hence

HomR(C, E(R/M)) HomR(C, Homm,(RM, E(R/M))

Homm,(CM, E(R/M)).

Now Homm,(Ct, E(R/M)) is Rt-torsion-free because Cm is a divisible Rt-
module.

(4) =), (1) Let a R, and suppose that Ra is not a projective R-module.
Then hdn(R/Ra) > 1; and thus there is a B (a homomorphic image of an
injective R-module) such that

Ext R(R/Ra, B) O.

Hence there is a maximal ideal M of R such that Hom(Extg(R/Ra, B),
D) 0 where D E(R/M). Because R/Ra is finitely presented, there
is a canonical surjection

Tor(Homg(B, D), R/Ra) --. Homs(ExtR/Ra, B), D).

Thus Torg(Homg(B, D), R/Ra) :/: O. Because D is an RM-module, we have

Tor(Hom(B, D), R/Ra) Tor’(Homm,(B, D), R/Rma).

But Ra is a flat R-module; and Hom,(B, D) is R-torsion-free by
hypothesis. Thus Tor ’Homg,(B, D), R/RMa) 0. This contradiction
proves that Ra is a projective ideal of R.
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Remarks. Let R be a PIF that is not a PIP (there is an example due to
Vasconcelos of such a ring that we shall reproduce in 4). Then injective
R-modules do not localize. In fact, according to Proposition 2.8, there is
an injective R-module C and a maximal ideal M of R such that Ct is not
even a divisible Rt-module. Again this is related to a lack of coherence.
For further results on this subject and its relation to coherence see [5].
We now turn our attention to the problem of finding out when a single

principal ideal is projective, or when an ideal is a direct summand of the
ring.

DEFINITION. Let R be a reduced ring and c a subset of min R {P}.
Let c, denote the complement of c in min R, and let J f’l P, P
c. It is immediate that c is a closed subset of min R iff P 3 J implies
that P c. If c is closed, it is also easy to verify that AnngJ J,.
We shall say that c is a good subset of min R if J, q tO Pv, Pv .

PROPOSITION 2.9. Let R be a reduced ring.

(1) q is a good subset of min R iff there exists a R with qg D(a).
In this case c is both open and closed in min R; AnnRa J; and
Annn(Annna) J,.

(2) c good implies that c, is good for any subset q of min R iff Q(R)
is a VNR.

Proof. (1) is a good subset of min R iff J, q tO P, P c iff there
exists a J,, a q tO P, P iff there exists a R with D(a) %
Suppose that D(a), then is open in min P. By Proposition 1.1, c
is the set of minimal prime ideals of R that contain AnnRa. Thus c is closed
in min R and J Annna. On the other hand, Ja C (J J,) 0, and
so AnnRa J. Since is closed, AnnJ J,.

(2) Let q be a good subset of min R. Then there exists a Je,, a q
tO P, P , and hence AnnRa Je. Now c, is a good subset of
min R iff there exists b J such that b q t.J P, P ’, iff there exists
b Annga such that a + b is not in any minimal prime ideal of R. Hence
by Proposition 1.4(3), qg good implies ’ good for any subset c of min R
iff Q(R) is a VNR.

PROPOSITION 2.10. Let R be a reduced ring and J an ideal of R such
that R/J is a fiat R-module. Then R/J is a reduced ring and J J, where
c is a closed subset of min R. If R is a PIF, or a PIP, then so is R/J.

Proof. Let x J; then by Proposition 2.5 there is a b J such that
(1 b)x 0. Thus if P is any prime ideal of R containing J, then x is
contained in every minimal prime ideal of R contained in P. Thus if qg is
the set of minimal prime ideals of R containing J, then is a non-empty
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closed subset of min R and J C J. Now suppose that y R and yn
x J;then(1 b)yn 0, and so((1 b)y)n 0. Therefore(1 b)y

0, and hence y J. Therefore, J J, and R/J is a reduced ring.
Assume that R is a PIF; let M be a maximal ideal of R containing J; and

let P be the unique minimal prime ideal of R contained in M. As we have
seen, J C P, and so P/J is the unique minimal prime ideal of R/J contained
in M/J. Hence R/J is a PIF by Proposition 2.1.
LetrR, andc (J" r),andx rcJ. ThenthereisabJwith

(1 b )cr 0and so

(1 b)c aAnnRr.
Thus (J r) J + Annr. Let I Annr and assume that Rr is a pro-
jective R-module. Then I Re, where e e; and hence (J r)/J
(Re + J)/J is generated by an idempotent element of R/J. Since (J r)/J
is the annihilator in R/J of r + J, we see that r + J generates a projective
ideal Of R/J. Hence if R is a PIP, then so is R/J.

PROPOSITION 2.11. Let R be a PIF and c a finite subset of min R. Then
R/J is a fiat R-module.

Proof. Let M be a maximal ideal of R and let P be the unique maximal
prime ideal of R contained in M. If P , then J C P, and so (Je)t C
P 0. If P , and JC M, then there is a P’ c with P’ c M, and
hence P’ P. This. contradiction shows that Je q M and hence (J)
Rt. Thus (J)t 0 or Rt, and hence R/J is a fiat R-module by Proposition
2.5.

Remarks. If a principal ideal of a commutative ring R is a projective
R-module, then its annihilator is a direct summand ofR. In the next proposition
we characterize the direct summands of a reduced ring R in terms of
the subsets of min R. We note that if qg is a subset of min R and
{P min RIP J}, then is closed and J J. Thus the restriction
in (1) of the next proposition that qg be closed is no restriction at all on
the ideal J. Moreover, by Proposition 2.10, every direct summand of R
is of the form J, where is a closed subset of min R.

PROPOSITION 2.12. Let R be a reduced ring and q a subset of min R.
Then the following statements are equivalent"

(1)
(2)
(3)

c is closed and J is a direct summand of R.
qg is a good subset of min R and R/J,, is flat.
qg is both open and closed in min R and R/Jand R/J,, are fiat.

In this case both and qg’ are good subsets of min R. If R is a PIF,
then this condition is equivalent to the other three.
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Proof. (1) => (2) J Re, where e e. Sinceqg is closed, if P
’, then J P, and so e q P. Thus J q LI P, P %", and so ’ is a
good subset of R. Sinee qg ig closed, J, Anng J R(1 e). Moreover,
since qg’ is closed by Proposition 2.9, the same argument we have just used
shows that c,, c is a good subset of min R. Finally, R/J, Re is
R-projective.

(2) : (3) By Proposition 2.9, c is both open and closed in min R;
c D(a) for some element a R; AnnRa J, and Annn J J,.
Therefore a J, and hence by Proposition 2.5, there exists b J, with
(1 b)a 0. But then b Annga Jand so J / J, R. Since
J f3 J, 0, J and J, are direct summands of R; and R/J J, and
R/J, J are R-projective.

(3) : (1) By Proposition 2.5, R/(J / J,) is a flat R-module. Suppose
that J + J, R; then by Proposition 2.10, J / J, J where is a
non-empty subset of min R. Let P @; then P D J D J; and since c
is closed P %’. Similarly P ’. This contradiction shows that J /

J, R. Since J f3 J, 0, J is a direct summand of R.
In the course of proving (1) =), (2) we showed that both q and qg’ are

good subsets of min R. Conversely, suppose that R is a PIF and that both
c and c, are good subsets of min R. By Proposition 2.9, there exists b
R such that D(b) c,, and J, Annnb. Therefore R/J, Rb; and since
R is a PIF, R/J, is a flat R-module. Thus we have proved (2).

PROPOSITION 2.13. Let R be a PIF; a R; I Annna; and J Annn I.
Then the following statements are equivalent:

(1) Ra is a projective ideal of R.
(2) HOmR(I, R) is a flat R-module.
(3) R/J is a flat R-module.
(4) There exists b R such that J AnnRb.
(5) If{P, @is a subset of min R and I C tOPv, then there is a

Po with I C Po"

Proof. (1) =), (2) I is a direct summand of R, and hence HOmR(I, R) is
a projective R-module.

(2) (3) We have an exact sequence

0 - Homn(R/l, R) --. R - Homg(I, R).

Since HomR(R/I, R) Anngl J, we have an embedding R/J C Homn(l, R).
LetM be a maximal ideal ofR. Then RM/JM C HOmR(I, R)M. NOW HOmg(I, R)M
is a flat RM-module; and Ru is an integral domain by Proposition 2.1. Thus
Homg(I, R)M is a torsion-free RM-module; and hence so is Ru/Ju. Therefore
Jt 0 orRu; and thus by Proposition 2.5,R/Jis a flat R-module.

(3) =), (4) Let q D(a); then by Proposition 2.9, c is a good subset
of min R; J I; and J, J. By hypothesis, R/J, is flat; and thus by
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Proposition 2.12, J is a direct summand of R. Therefore, J Re, where
ez e; and hence J, AnnRe.

(4) => (5) Clearly I AnnnJ, and since J Annnb, we have b I.
Suppose that {P} is a subset of min R and that I C UvPv. Then there
exists P0 such that b Po. Hence by Proposition 1.2(1), J q Pv0.
However, since IJ 0, we have I C P0.

(5) =), (1) By Proposition 2.9, ! J, where c is a good subset of
min R. IfJ C t.JP, P c,; then by hypothesis there is a P0 c, with
J C P%. But c is closed, and hence P% q. This contradiction shows
that q’ is a good subset of min R. Hence by Proposition 2.12, I is a direct
summand of R, and hence Ra is a projective ideal of R.
The following proposition is a generalization of Proposition 2.2.

PROPOSITION 2.14. Let R be a PIF and a R; and suppose that a is
an element of only a finite number ofprimes P, Pn in min R.

(1)
(2)
(3)

Ra is a projective ideal of R.
R ((7=Pi) ( (7= ( R/Pi).
Every Pi is a direct summand of R.

Proof. (1) Let c D(a); then J Annna by Proposition 2.9(1). Now
q’ {Pi, P,} and J q P for all since is closed. Therefore
J - -’Jin---I ei, and hence %" is a good subset of min R. Therefore, by
Proposition 2.12, J J, R. Thus Ra R/J-- J, is a projective ideal
of R.

(2) By Proposition 2.1, every maximal ideal of R contains a unique
minimal prime ideal of R. Thus ei -k- ej R, (: j. Hence by the Chinese
Remainder Theorem,

R/J, = Z ( R/Pi.
i=1

Since Je, f’l’._ IPi and R J ) J,, we have R (f37=Pi) ( (2._1
R/ei).

(3) Since R/Pi is isomorphic to a direct summand of R, there is an
idempotent e R so that Pi Annn ei R(1 e;). Hence Pi is a direct
summandofR, fori 1, n.

PROPOSITION 2.15. Let R be a commutative ring such that w.gl.dim R
1. Then the following statements are equivalent:

(1) R is a semi-hereditary ring.
(2) R/J is flat for all subsets qg of min R.
(3) R/J is a semi-hereditary ring for all subsets qg of min R.
(4) If qg is any subset of min R and M is a maximal ideal of R, then

J C M iffJ C OM, the .unique minimal prime ideal ofR contained in M.
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Proof. (1) :ff (2) Let {P} be a subset of min R. Since Re is a flat
R-module, and R is a coherent ring, IIRe (P q) is a flat R-module. Since
w.gl.dim R < 1, and R/J C IIRe (P c), it follows that R/J is a flat
R-module.

(2) =), (4) Let be a subset of min R and M a maximal ideal of R
J C M. By Proposition 2.5(5), we have (J)t 0. Thus J C Ot, the
unique minimal prime ideal of R contained in M.

(4) =), (2) Let c be a subset of min R and M a maximal ideal of R. If
J q M, then (J)t Rt; while if J C M, then J C OM and hence (J)M

0. Thus by Proposition 2.5, R/J is a fiat R-module.
(2) =), (1) Let be a good subset of min R. Then by Proposition 2.12,

q’ is also a good subset of min R. Thus by Proposition 2.9, Q(R) is a VNR.
Therefore by Proposition 2.7, R is a semi-hereditary ring.

(3)=),(1) Take minR, so thatJ 0.
(1) :ff (3) Let c be a subset of min R. Since (1) ::), (2), R/J is a flat

R-module. Therefore w.gl.dim R/J < w.gl.dim R < 1. By Proposition
2.10, R/J is a PIP. Therefore by Proposition 2.7, R/J is a semi-hereditary
ring.

Remarks. (1) Let R be a commutative semi-hereditary ring, and let J
be an ideal of R. Then it follows from Propositions 2.12 and 2.15 that J is
a direct summand of R iff J J where c is an open and closed subset
of min R. An equivalent formulation of this fact is that a subset c of min
R is good : is open and closed in min R.

(2) In order to illustrate how close a PIF is to being an integral domain,
we make the following definitions. Let R be a PIF, min R {P}, and
C IIRe. If A is an R-module, we say that A is a torsion R-module if
HomR(A, C) 0; and we say that A is torsion-free if A has no non-zero
torsion submodules. We define t(A) to be the sum of all of the torsion
submodules of A. Then t(A) is the unique largest torsion submodule of A,
and AIr(A) is torsion-free.

Since C is an injective R-module, submodules as well as factor modules
of torsion modules are again torsion modules. Thus t(A) has the usual
properties of a torsion-functor. It is easy to verify that t(A) f3 Ker f, f
Hom(A, C); and that A is torsion-free iff A can be embedded in a direct

product of copies of C.
If M is a maximal ideal of R, and P is the unique minimal prime ideal

of R contained in M, then by Proposition 2.1, R is an integral domain
and Re is the quotient field of RM. It follows readily from this that A is a
torsion R-module iff At is a torsion R-module maximal ideals of R. As
a consequence it can easily be shown that if A is a fiat R-module, then A
is a torsion-free R-module.

3. The Injective Envelope of a Reduced Ring

Let R be a reduced ring and {P} min R. By Proposition 1.1, E(R) is
a direct summand of IIRp, P min R; and by Proposition 1.12, E(R) is
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a self-injective VNR. In this section we shall describe some of the structure
of E(R), and also exactly how it sits in IIRe.

PROPOSITION 3.1. Let R be a reduced ring and {Pa} min R. Then E(R)
is a subdirect product of the Rep’s.

Proof. Let E E(R). By Proposition 1.1 we can identify E with its
image in IIRe. Let e be the identity element of Re so that 1 (e). Let
P min R; then the projection ofIIRe ontoRe induces an R-homomorphism
f: E Re such that f(1) e. We wish to show that f is onto.

Let a R P; since E is a VNR, Ea is a direct summand of E. Hence
there is an ideal F of E with E Ea F. Thus F Annea. Now a is
a unit in Re; and hence if x F, then 0 f(ax) aft(x) shows that
f(x) 0. Thus F C Ker f, and so f(E) f(Ea) aft(E). Therefore,
fo(E) is an R/Po-divisible submodule of Reo. Since Re is the quotient field
of R/P it follows that f(E) Reo.

This shows that E is a subdirect product of the Rep’s.

DEFINITION. Let R be a commutative ring with 1, {Pa}, a M, a collection
of distinct prime ideals of R, and let A IIa Re. With componentwise
addition and multiplication, A is a commutative ring with identity and we
have a canonical ring homomorphism R --> A. We identify HOmA(A, A)
with A in the usual way via left multiplication by elements of A. For each
a M, let

Oa {r R sr 0forsomes

and let Ja fqOt,/3 : a. If I and J are ideals of R, we define

(I" J) {r R IrJ C I}.

PROPOSITION 3.2. If (Oa" Ja) Oa, a M, then HomR(A, A) A.

Proof. Let Ba IIRe, fl a. We shall first prove that HomR(Ba,
Re) 0, a M. Let f HomR(Ba, Re), x (x) Ba, and a
Since ReO 0 for all/3, we have ax (axe) 0. Thus af(x) 0. Now
f(x) r/s, where r R and s R Pa. Since af(x) 0, there exists
u R Pa with uar 0. Thus ar Oa for a Ja, and so r
(Oa" Ja) Oa. Therefore, r/s 0, and hence f 0.
Let ia Re A and IIa A --> Re be the canonical inclusion and projection

maps, respectively. Let f Homg(A, A) and define fa" ge -"> gt, by
Hafia; then fa is multiplication by qa gp. We let q (qa) A, and

we shall show that f is multiplication by q.
Let x (x) A, where x Rp. For each a M, we can write

x ia(Xa) + Ya, where Ya Ba. Let ha f[B; then IIa
Hom(Ba,Re) 0. Thus

IIaf(ya) I-laha(Ya) O.
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Hence IIf(x) IIfi(x) + IIf(y) f(x), a M. Therefore,

f(x) (f(x)) (qx) q(x) qx for all x A.

Thus Homn(A, A) A.

PROPOSITION 3.3. Let R be a commutative ring; with the preceding notation,
assume that f’)O 0, and that Re is a self-injective ring for a M.
Then the following statements are equivalent:

(1) J 0 and J f-) AnnR J 0, a M.
(2) Annn J O, a M.
(3) HomR(A, A) A.
(4) R C A is an essential extension and J f3 AnnR J 0, a M.
(5) E(R)-A, (O0 O) Oofor a, and J N AnnR J 0for

all a M.

Proof. (1) ::)> (2) Let I AnnR J. Then

Anngp.(Re.J Rv/.

In one direction the inclusion is obvious. On the other hand, let

x r/v Annp.(Re.J
where r R and v R P,. If a J, then (ra)/v 0 in Re., and so
there exists u R P such that ura 0 in R. Therefore, ra
and hence rJ C Oe J 0. Therefore, r AnnR J I; and thus x

Now Rv.I Rv.J Rv.(I J) Re. 0 0 and

RvJ Rp.J AnnR.(Rv.J) R

is an essential Rv-submodule of Rye. Thus, since Re. is self-injective, we
have

Rv. E(Re.I E(ReJ ).

But Re is a quasi-local ring, and hence decomposable. If ReJ 0, then
J c Opt, and so J J Ov 0, contrary to hypothesis. Therefore
Re.I 0, and so I C O. Since OJ 0, we have O C I. Thus O

I, AnnR J,, c M.
(2) =), (3) Since t,O, 0, we have (O, J,) Ann J,, a M.

Hence HomR(A, A) A by Proposition 3.2.
(3) : (4) The kernel of the canonical map R - A is t,O, 0, and

hence R C A. Since A is an injective R-module we have E(R) C A. Thus
A E(R) ( X, where X is an R-submodule of A and E(R). Let
f" A --) A be the R-homomorphism that is the identity on E(R) and O on
X. By hypothesis, f is multiplication by q A. Hence q q f(1)
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1. Thus if x X, we have 0 f(x) qx 1 x. Therefore, X O,
and A E(R).
Let/3 be a fixed index and let J8 N AnnR J8. Let y 0, a - /3,

let Y8 be the image of in Re, and let y (y,). Let x be the identity of
Re, a :/: /3, let x8 0, and let x (x). Then AnnR x Js, and J8 C
Annny. Thus there is an R-homomorphism f" Rx Ry such that f(x)
y. Since A is an injective R-module, fextends to an R-homomorphism from
A to A. By hypothesis, this homomorphism is multiplication by an element
q (q) A. Therefore, qx y and so 0 q8x8 Y8. Thus 08
and since J8, we have O8 N J8 0. Thus J8 f) Annn J8 0.

(4) :ff (5) Since A is injective, we have E(R) A. Let a,/3 be a fixed
pair of indices, a : /3, let s (08 O) and suppose s 08 Let yv
0, y : /3, let ya be the image of s in Reo, and let y (y). Since A is an
essential extension of R, there is an r R with ry a 4:0 R. We have
identified a with the element (av), where a is the image of a in Re, for all
y. Therefore ry a, y M. Therefore, av 0, y - /3, and thus a

J. Since s (O O) we have Os c O. Therefore, Oy 0, and
hence Oy 0. Thus Oa rOsy r. 0 0. Since J C O, we have
Ja 0. Therefore, a J Annn J 0. This contradiction shows that
(O O) O.

(5) :ff (1) Suppose J 0. Let B IIReo, . Since J is the kernel
of the canonical map R B, we have R C B. Since B is injective, we
have A E(R) C B. Now Re C A, and hence there is an x (x8) B
with Annex O. Now there exists/3 # a so that x - 0, and we have
O C Ann x8. Since x8 t/u where R and u R Ps, we have
Oat C 08 Thus by hypothesis, t (08 O,) 08 But thenx8 0.
This contradiction shows that J # 0.

Note. It is easy to see directly that Ann J Oa implies (O O)
O. For suppose that (O" O). Since J C O, we have Jat c 0.
Thus Jst C O8 f) J8 0. Therefore, Ann J8 O8 by assumption.

DEFINITION. We shall let n-min R denote the set of those minimal prime
ideals of R that are not essential ideals of R.

PROPOSITION 3.4. Let R be a reduced ring.

(1) Let P be a prime ideal of R. Then P n-min R iff AnnR P 0.
(2) If P is a prime ideal ofR and 0 a AnngP, then P AnnRa;

and a is an element of every prime ideal in min R that is not equal to P.

Proof. (1) Suppose that P n-min R. Then there exists a R, a -O, Ra f3 P 0. Thus Pa 0, and so AnnRP :/: 0. Conversely, suppose
that AnnRP :/: 0, and let 0 - a AnnnP. Because R is reduced Ra P

0; and hence P is a non-essential ideal of R. Suppose that P is a prime
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ideal of R and that P1 C P. Since a P, and Pa 0 C P1, we have P
c P1. Thus P n-min R.

(2) Since Pa 0, we have P C AnnRa. But a P; and a (AnnRa)
0 C P implies Anna C P. Let P’ min R and P’ - P. Then aP

0 C P’ implies a P’.

PROPOSITION 3.5, Let R be a reduced ring; let {P}, a d, be a subset
of min R, and let A II Re. Assume that fqP O. Then the following
statements are equivalent"

(1)
(2)
(3)
(4)
(5)

{n,P I/ # } #- o, .
Ann P, # 0, a M (i.e., P n-min R, a M).
Hom(A, A) A.
R C A is an essential extension.
E(R) A.

Thus E(R) IIRp where P ranges over all elements of min R if and only
if min R is totally disconnected.

Proof. Let O {r R ur 0 for some u R P}. By Proposition
1.1, O P and Rp is a self-injective ring for all a. Thus with the notation
of Proposition 3.3, J fqtPt,/3 a. Since R is reduced, we have J fq

AnnR J 0 for all a. It is also obvious that (P P) Pt,/3 - a. Thus
the equivalence of (1)-(5) is a consequence of Proposition 3.3. The final
statement of Proposition 3.5 follows from (1) and the fact that an element
P in min R is an open set in min R if and only if there exists an element
x of R such that P is the only prime ideal in min R that does not contain
X.

PROPOSITION 3.6. Let R be a reduced ring and {Pt}, fl , be a subset
of min R so that E(R) IIRp (fl ).

(1) NPt 0; and the P’s are all distinct.
(2) {Pt} n-min R.

Thus the representation E(R) IIRe, (if it exists) is unique.

Proof. (1) Since fqPt annihilates E(R), we have Pt 0. Suppose that
Pt, Pt2 P for/3 :p /32. Then there are elements x and y of E(R) such
that AnnRx P AnnRY and Rx tq Ry 0. Now there are r, R with
0 rx a RandO :P ty bR. WehavePa 0 Pb, andthus
a P and b P. However, ab Rx f3 Ry 0 P. This contradiction
shows that the P’s are distinct.

(2) If/3 , then there, exists nonzero a R with Pa 0, and
hence P n-min R by Proposition 3.4. Conversely, let P n-min R and
0 : a AnnP. Since a ,IIRp, there exists/3 such that Annga
C P. Thus P P,,and so {P} n-min R.
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PROPOSITION 3.7. Let R be a reduced ring such that min R is compact.
Then the following statements are equivalent:

(1)

3)

E(R) IIs Rp, where Ps ranges over all elements of min R.
Every minimal prime ideal ofR is non-essential.
min R is finite.

Proof. (1) ::> (2) follows from Proposition 3.6; and (3) ff (1) is Proposition
1.6.

(2) :ff (3) For each a M, there exists nonzero as AnngPs. By
Proposition 3.4, as fqPt,/3 :/: a. Thus Ps D(as) is an open subset of
min R. Therefore, min R is finite.

PROPOSITION 3.8. Let R be a commutative ring and let {Ps} min R.
Then min R is finite iff Ps {UPI fl a} for all a.

Proof. If min R is finite, then the assertion is an elementary and well-
known fact. On the other hand, assume that P g:{t.JP I/3 - a} for all c.
By factoring out {NPs c } we can assume without loss of generality
that R is reduced. Let A IIRe, then A is a commutative ring and R C
A.

Suppose that min R is not finite. Then Es ( Re is a proper ideal of A,
and hence is contained in a maximal ideal of A. Then fq R contains
a minimal prime ideal P of R. By hypothesis there is an a Pv such that
a q {t_JP fl :/: 5,}. Let as be the image of a in Re for all a; then by our
identification R C A we have a (as). For/3 3/, at is a unit in
because Re is a field and at - 0. Let us a for/3 =/: 5,, let uv 0, and
let u (us) A. Since a PvC , we have ua . But ua is the
element of A that is the identity at every component/3 3/and is 0 at the
y-component. Since E Rp is also contained in we see that
This contradiction shows that min R is finite.

PROPOSITION 3.9. Let R be a reduced ring and E E(R). There is a
1-1 correspondence of n-min E onto n-min R such that if M n-min E,
then M f) R P n-min R. In this case E/M EM Re and M is the
only prime ideal of E contracting to P.

Proof. LetM n-minEandP M R. Since(AnneM) fq R :fi 0,
there is a nonzero R with Mt 0. But then Pt 0; and hence by
Proposition 3.4, P n-min R. If N is any prime ideal of E satisfying N
R P, then t N. But Mt 0; and so M C N. Thus M N, since the
prime ideals of E are all minimal.
On the other hand, let P n-min R. Since Rp C Ep, and Rp is a field,

there is a prime ideal M of E with M f3 R P. Now there exists R
such that Pt 0. Suppose that Mt O. Then there exist rn M and
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r R such that 0 - s rmt R. But then Ps 0 and s P. This
contradiction proves that Mt 0, and hence M n-min E.
Now we have a canonical injection RIP C ElM; and this is an essential

extension. For let 0 x ElM. Since M, and M is a maximal ideal
of E, there is a y Et such that x y + M. Also there exists r R with
0 ry R. Since Pry O, ry . P. Thus rx r(y + M) is a non-zero
element of R/P. Therefore, RIP C E/M is an essential extension. But
E/M is a field, and thus E/M is the quotient field of RIP. Therefore, since
Re is the quotient field of R/P, and Era ElM, we have Re Era.

PROPOSITION 3.10. Let R be a reduced ring and J an ideal of R. Let
I AnnJ, K AnngI, and E E(R).

(1)
(2)
(3)

rings.
(4)
(5)
(6)

E E(J) @ E(I); and E(J) and E (1) are ideals of E.
J C K is an essential extension, and so E(J) E(K).
E(I) 71 R I and E(J) N R K. Thus R/I and R/K are reduced

E(J) Anne/; and thus E(J) is a unique submodule of E.
E(I) E(R/K) and E(K) E(R/I).
E(R/I) is an R/l-module, and as such it is the injective envelope

of the ring R/I. A similar statement holds for E(R/K).
(7) E E(R/I) E(R/K) is a ring direct sum decomposition.

Proof. (1) Since R is reduced, J t"l I 0. It is easily seen that I @ J
is an essential ideal of R. Thus E E(1) E(J). By Proposition 1.13,
E(J) and E(1) are ideals of E.

(2) Since IJ 0, we have J C K. Let be a non-zero element of K.
Since I @ J is essential in R, there exists r R such that 0 :/: rt a +.
bwherea Iandb J. Thena rt b IN K 0;hencert b

J. Thus J C K is an essential extension. Therefore, E(J) E(K).
(3) Of course, I C (E(I) fq R). On the other hand, J. E(I) C E(J) C

E(1) 0, and so (E(I) f’l R) C I. A similar argument shows that E(K)
R K. By (2), E(J) E(K) and so E(J) R K.
By Proposition 1.3, E(I) is an intersection of some prime ideals of E.

Thus ! E(I) f-1 R is an intersection of some prime ideals of R. Therefore,
R/I is a reduced ring. Similarly, R/K is a reduced ring.

(4) We have 1. E(J) C E(I) E(J) 0, and so E(J) C Anne/. Because
E(I) is an essential extension of I, there is no non-zero element of E(I)
that is annihilated by I. Hence E(J) Anne/.

(5) Since I @ K is essential in R, it is easy to see that I is isomorphic
to an essential R-submodule of R/K. Thus E(1) E(R/K). Similarly E(K)

E(R/I).
(6) Since E(K) E(J) Ann.l; and E(K) E(R/I), we see that

E(R/I) is annihilated by I. Thus E(R/I) is an R/I-module. Clearly as such
it is injective and essential over R/I. By symmetry we have a similar
statement for E(R/K).



THE MINIMAL PRIME SPECTRUM OF A REDUCED RING 383

(7) There is a canonical monomorphism of rings: R ---> R/I R/K; and
as R-modules it is not difficult to verify that this is an essential extension.
Hence we have an induced R-module isomorphism 0 E= E(R/I)
E(R/K). By (6), E(R/I) E(R/K) has a ring structure that is compatible
with that of R. By the remarks following Proposition 1.12, 0 is a ring
isomorphism.

PROPOSITION 3.11. Let R be a reduced ring and let {PI r’} be a
non-empty subset of n-min R. Let I NvPv; and let J be the intersection
of the minimal primes of R that are not in {PIv __r}. Let R R/l, Pv

Pv/1, and E be the injective envelope ofR over R.

(1) - is a reduced ring; { I/ F} n-min ; and , II’K.
(2) I AnnRJ; and R--7 =’Re; moreover, , E(R/I) IIRe is a

direct summand of E(R).

Proof. (1) We have NvPv 0, and so R is a reduced ring. Now there
existsa q Pv such_ that Pa 0. But then v 4: _0 and Pz.v 0 shows
that Pv n-min R. By Proposition 3.5 we have E II R,. Hence by
Proposition 3.6, {ev Y F} n-min .

(2) I N J is the intersection of all of the minimal prime ideals of R, and
thus I N J 0. Therefore, I C AnnRJ. By Proposition 3.4, P AnnR av
and a J. Now if r AnnRJ, then ray 0, and hence r P, y F.
Thus r I. Hence I AnnnJ. Thus by Proposition 3.10, E E(R/I) and
E(R/I) is a direct summand of E(R). The only thing remaining to be proved
is that Re. But Re is the quotient field ofR/P and R- is the quotient
field of R/Pv R/Pv. Hence R-- and Re are isomorphic R-modules.

DEFINITION. Let R be a reduced ring; and {Ptl/3 } n-min R; and
let {e,l A} be the set of all essential minimal prime ideals of R. Let
#(R) (qaP and (R) fqP,. (By convention we put the intersection
of an empty set of ideals equal to R.)

PROPOSITION 3.12. Let R be a reduced ring; E E(R); I #(R); J
(R); and K AnnRI.

(1) I AnnRJ. Thus all of the statements ofProposition 3.10 are true
in this case.

(2) E(R/I) IIRe (fl ) is a direct product offields.
(3) E HRv @ E(R/K).
(4) If I # 0, then R/K is a reduced ring with no non-essential minimal

prime ideals and E(R/K) is the R/K-injective envelope of R/K and hence
is a self-injective VNR with the same property.

Proof. (1) and (2) follow from Proposition 3.11, and (3) follows from
Proposition 3.10.
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(4) Assume I - 0. Then by Proposition 3.10, R/K is a reduced ring
and E(R/K) is the R/K-injective envelope of R/K. Thus E(R/K) is a self-
injective VNR.
Suppose that P is a prime ideal of R such that P K and P/K

n-min(R/K). Then there exists a R K with Pa C K. Because K
AnnRI, we have Pal O. But since a K, we have aI O. Then P
n-min R. By Proposition 3.4, we have aI C J; and hence aI C I fq J O.
This contradiction shows that R/K has no non-essential minimal prime
ideals. Hence by Proposition 3.9, E(R/K) has no non-essential minimal
prime ideals.

Remark. Let R be a reduced ring. It is clear from Proposition 3.12 that
E(R) is a direct product of fields iff (R) 0 iff (R) is an essential ideal
of R. Thus if R has only a finite number (or no) essential minimal prime
ideals, then R is a direct product of fields. On the other hand E(R) has no
direct summand that is a field iff every minimal prime ideal of R is essential
iff (R) 0. In general, E(R) is a direct sum of two rings: one of which
is a direct product of fields, and the other having no direct summand that
is a field. We shall see by the examples in 4 that both kinds of summands
can exist.

PROPOSITION 3.13. Let R be a commutative, self-injective VNR. Let {A},
fl , be the set of distinct simple submodules of R, and let P Anng
A. Let I (R), J (R), and K AnnI. Then

(1) {PI fl } is the set of non-essential prime ideals of R; and Re
Aa.
(2) The sum of the A’s is direct and , A J.
(3) K E(J) IIA; and K is the intersection of the essential prime

ideals ofR that do not contain I. Thus R I ) K (fqP) ) 1-IA; and
if I 0, then I R/K is a self-injective VNR with no non-essential prime
ideals.

Proof. We recall that by Proposition 1.3, every prime ideal of R is a
minimal prime ideal of R.

(1) Since As is simple, Pt is a maximal ideal; and by Proposition 3.4,
PC is a non-essential prime ideal. We have As R/P Reo. On the other
hand let P be a non-essential prime ideal of R. By Proposition 3.4, there
exists a R with P AnnRa. Since P is a maximal ideal of R, Ra
R/P is a simple R-module. Hence P is one of the P’s by definition.

(2) Let As, and Ao2 be two different simple submodules of R. Then
As, Rei, e/2 e for 1,2 since R is a VNR. Now ele As, fq

A2 0. And hence e,e2 are orthogonal. It follows from this that the sum
of the A’s is direct. By Proposition 3.4, As C J. Since R is a VNR,

As is the intersection of the prime ideals of R that contain it. Since



THE MINIMAL PRIME SPECTRUM OF A REDUCED RING 385

no Ps can contain E As, and J is the intersection of the essential prime
ideals of R, we see that ,E ( As J.

(3) By Proposition 3.12, I AnnRJ; and hence by Proposition 1.7, R
I ( E(J). Therefore, E(J) AnnRI K. By Propositions 3.10 and

3.12,

E(J) -E(R/I)- HRp HAs;
and since I N Ps, we have R (f)Ps) IIAs. IfI # 0, thenI
R/K is a self-injective VNR with no non-essential minimal prime ideals by
Proposition 3.12. Finally, since K is the intersection of the prime ideals of
R that contain it, and R I K, we see that K is the intersection of the
prime ideals of R that do not contain I, and these are necessarily essential.

PROPOSITION 3.14. Let R be a reduced ring.

(1) There are 1-1 correspondences between the sets of simple submodules
{As} ofE(R), n-min E(R) {Ms} and n-min R {Ps}, given by es Annn
As= Ms CI R.

(2) , ( As.= (E(R)); and HAs E(C(R)) E(K), where K AnnI.
(3) E((R))= (E(R)).
(4) E(J(R)) f3 R K and E(C(R)) f’l R (R).

Proof. (1) follows from Propositions 3.9 and 3.13.
(2) By Proposition 3.13 we have E As (E(R)); and by Proposition

3.12 we have E(C(R)) E(K) E(R/I) IIRe HAs.
(3) Now (E(R)) Ms; and by Proposition 3.12,

(R) fqPs NMs f) R (E(R)) R.

Thus (E(R)) is an essential extension of 5(R). By Proposition 3.13, (E(R))
is a direct summand of E(R) and hence R-injective. Thus we have E((R))

(E(R)).
(4) follows from Proposition 3.12.

DEFINITION. Let R be a reduced ring and let P min R. We shall say
that P is irrelevant if P is an essential ideal of R and P 5(R). Otherwise
an essential minimal prime will be called relevant.

PROPOSITION 3.15. Let R be a reduced ring such that min R is compact.
Then R has an irrelevant minimal prime ideal iff n-min R is infinite.

Proof. If n-min R is finite, then 5(R) is the intersection of finitely many
non-essential minimal primes, and hence these are the only minimal primes
that can contain 5(R). Conversely, suppose that {Pt} n-min R is infinite.
Let As be the simple submodule of E(R) corresponding to Ps. Now IIAs
is the intersection of the relevant essential prime ideals of E(R); and E (
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As is the intersection of all of the essential prime ideals of E(R) by Proposition
3.13. Since ) As : IIA, E(R) has an irrelevant prime ideal N. Thus

N fq g (E(R)) N R E((R)) N g (R)

by Proposition 3.12. Since min R is compact, N f) R is a minimal priine
ideal of R by Proposition 1.6. By Proposition 3.9, N f) R is an essential
prime ideal of R. Thus N R is an irrelevant prime ideal of R.

4. Examples

In this section we present some examples to illustrate the ideas of this
paper.

Example 1. Let be an infinite index set; for each c let Ks be a
field, and let K IIK (a ). Then K is a self-injective VNR. Let e
be the element of K that is the identity of K at the a-coordinate and 0
elsewhere; and let be the identity of K. For each c let P K(1 e);
then P is a non-essential prime ideal of K and fqP 0. Thus the P’s are
all of the non-essential prime ideals of K and K IIKp by Propositions
3.5 and 3.6. Since Keo K, this is not surprising.

Let J E @ Ke, , K,; then J is the sum of all of the simple
submodules of K, and by Proposition 3.13, J is the intersection of all of
the essential prime ideals of K. It is clear that there are elements a and b
in K J such that ab 0, and thus J is not a prime ideal of K. We put
R K/J; and then R is a VNR with an infinite number of prime ideals,
and they are all essential in R. For let P be a prime ideal of K containing
J; then P is an essential prime ideal of K. The problem is to show that
P/J is essential in R.

Suppose that there is an e K J such that Pe C J. Without loss of
generality we can assume that e e. Since R/J is reduced, e q P. Thus
P K(1 e) + J. If x K, we define Supp x to be the set of coordinates
a in , where x is not 0. Thus J is the set of elements x K such that
Supp x is finite; and P is the set of elements x K such that Supp x C
Supp(1 e) except for a finite number of coordinates.
Now Supp e and Supp(1 e) are complementary subsets of /. Supp e

is not finite because e q J, and Supp(1 e) is not finite because P:/: J.
Thus we can write each of Supp e and Supp(1 e) as disjoint unions of
two infinite sets:

Supp e A to A2 and Supp(1 e) B tO B2.

We let c be the element of K such that the a-coordinate of c is the identity
of Ks for a A tO B and 0 for a A tO B2; and we let d be the element
of K such that the a-coordinate of d is the identity of Ks for a A2 tO BE
and 0 for a A tO B. Then c and d are not in P, but cd 0. This
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contradiction shows that every prime ideal of R is essential in R, and hence
they are infinite in number.

Remarks. (1) It is an open question whether or not the ring R of example
(1) is self-injective.

(2) Let R be any self-injective VNR that is not a finite direct sum of
fields; and let J be the sum of all of the simple submodules of R. (J could
be 0.) Then R/J is a VNR with an infinite number of prime ideals and they
are all essential in R. For by Proposition 3.13 the proof can easily be reduced
to the case of Example 1. The question of whether or not R/J is self-
injective is a generalization of the open question posed by Example 1.

Example 2. Let D be an integral domain and N .the natural numbers.
Let D D, n N; and let be the identity of IIDn. We put R E
Dn / D l; i.e., R is the set of sequences in IIDn that are ultimately constant.
In the future we shall denote this ring by D().
We let en be the element of R that is the identity of D at the n-th

coordinate, and 0 elsewhere, and we put P R(1 en). Then Pn is a
non-essential prime ideal of R and fqPn 0. Hence by Propositions 3.5
and 3.6, the P’s are all of the non-essential prime ideals of R, and E(R)

IIRp. Since R/Pn D D, it follows that Re Q, the quotient field
of D, and we have E(R) IIQ,.

It is clear that the annihilator of an element of R is generated by an
idempotent element of R, and thus R is a PIP.

Let J .V_, Ren , ( Dn. Since R/J D, J is a prime ideal of R
and is the only essential minimal prime ideal of R. Since RIP D for
every minimal prime ideal P of R, and since P O for every maximal
ideal M of R that contains P, we see that w.gl.dim R w.gl.dim D. Since
R is a PIP, it follows from Proposition 2.7 that R is semi-hereditary iff
w.gl.dim D < (i.e., D is a Prtifer domain).

Let Q be the quotient field of D; then it is easily seen that Q(R) Q().
It is of course easy to verify directly that Q() is a VNR (so that w.gl.dim
Q() 0). Since Q() has only a countable number of idempotents, it
follows from [8, Corollary 2.15] that every ideal of Q() is a projective
Q()-module. Thus Q() is a non-Noetherian hereditary ring (i.e., gl.dim
Q() 1). Q(R) is not a self-injective ring, since E(Q()) E(R) IIQ,.

Example 3. The following example of a ring R was constructed by
Vasconcelos [13, Example 3.2] as an example of a commutative ring of
w.gl.dim that is not semi-hereditary. Our chief interest lies in computing
E(R) and showing that E(R) IIRp, where P ranges over all of min R,
even though min R is infinite. The example is a slight modification of
Example 2, but the modification produces some interesting consequences.
Let N be the natural numbers, Z the integers, and An Z/2Z, n N.
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Let A X @ An and define addition and multiplication.componentwise in
A. We let R be the ring obtained by adjoining the identity of Z to A.
That is, R Z A, where addition is defined componentwise and mul-
tiplication is given by the formula

(m,a)(m’,a’) (mm’,ma’ + m’a + aa’).

It is clear that R is a reduced ring. Let P (O,A). Then RIP Z, and
hence P is a prime ideal of R. Since AnnR(P) (2,0), P is a non-essential
minimal prime ideal by Proposition 3.4. We have Re Q, the field of
rational numbers; and the only prime ideals properly containing P are of
the form M (mz,A) where 0 rn is a prime integer. M is a maximal
ideal of R, OM P, and RM Zmz is a discrete valuation ring.

Let e, be the identity of An, and let Pn R(1,e,). Then R/P,, Z/2Z
is a field, and hence en is a maximal ideal of R. But AnnR Pn R(O, en),
and thus P is a non-essential minimal prime ideal of R. Since it is easily
seen that a prime ideal of R either contains P, or is equal to P, for some
n N, we see that {P,P,,} is the full set of minimal prime ideals of R, and
that they are all non-essential. Thus we have E(R) Re x HRe. Q
HA (where An Z/2Z). Strangely enough, the multiplication in this direct
product is not twisted, but is componentwise multiplication. It follows from
Proposition 3.7 that min R is not compact. Since the localizations of R at
the prime ideals of R are fields or discrete valuation rings, w.gl.dim R
1; and, a fortiori, R is a PIF. But since min R is not compact, R is not a
PIP by Proposition 2.7. We have Q(R) Z2z x A (with twisted multiplication)
and Q(R) is not a VNR.

Example 4. Let K be a VNR and R = K[X]. Then R is a PIP. For let
f(X) R,

f(X) ao + aX + + a,,X" whereaK;

and let I Ann(a0, a,). Since K is a VNR, (a0, a,) Ke, where
e: e K. Thus I K (1 e). Since K is a reduced ring, it follows
that if ba 0, where b K, then ba O. Using this fact, and an easy
calculation, we obtain Ann(f(X)) I[X] R (1 e). Thus Ann(f(X))
is a direct summand of R, and hence R f(X) is a projective ideal of R.
Let P be a prime ideal of R and p P fq K; then p[X] is a prime ideal

of R contained in P, and hence all of the minimal prime ideals of R are of
the form p[X]. We have RIp[X] (K/p)[X]; and since Kip is a field,
RIp[X] is a principal ideal domain. Thus if P is not a minimal ideal of R,
it is a maximal ideal of R; and Oe p[X] by Proposition 2.1. Thus we see
that Re is a discrete valuation ring, or a field ’ prime ideals P of R. Hence
w.gl.dim R 1. Therefore, by Proposition 2.7, R is a semi-hereditary ring.

Let {p} be the set of all non-essential prime ideals of K, and suppose
that f’lp 0; then {p[X]} is a set of non-essential minimal prime ideals
of R and ,p,[X] O. Thus by Propositions 3.5 and 3.6, {p[X]} is the
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set of all non-essential minimal prime ideals of R; and in this case, E(R)
II(K/p)(X).

Example 5. Let k be a field, and with the notation of Example 2, let K
k(), so that K is a hereditary VNR. Let R K[[X]].

(1) R is reduced but is not a PIF.
(2) Q(R) is a VNR, and E(R) 1-In kn((X)), where k, k, n N.
(3) R is a flat essential ring extension of k[[X]](); and the latter ring

is semi-hereditary.

Proof. Let e, be the element of K that is the identity of k at the n-th
coordinate, and 0 elsewhere; then e, e,, and p, K(1 e,) is a non-
essential prime ideal of K by Example (2). Let P, p,[[X]] R(1 e,);
then it is readily verified that P, is a non-essential prime ideal of R. Since
p, 0, we have Pn 0; and thus R is a reduced ring. Hence by
Propositions 3.5 and 3.6, the P,’s are all of the non-essential minimal prime
ideals of R and E(R) II, Re.. Now R/P, Re,, and Re, kn[[X]], where
k, k. Therefore Re. kn((S)), and E(R) II k,((X)).

Let n ( Ken then is a maximal ideal of K by example (2). It
is readily verified that M + RX is a maximal ideal of R. Let

0 {r R ur OforsomeuR-M}.

We shall prove that O R. For let y R; then y ra + +
man, where ri R and ai d[/[. Since K is a VNR, Ka + + Ka,
Ke, wheree2 e. Then(1 e) R Mand(1 e)y 0. Therefore,
y O. Conversely, let y Ot C M. Then y E=0 aX, where a0

and a K for all i; and there exists u ;\0 bi) such that b0 K, b K and uy 0. Therefore, there exist c K t and d
such that cbo + d. Replacing u by cu R M, we see that without
loss of generality we can assume that b0 d, d . Now aobo
0, and so ao dao. Assume that we have proved that aj Kd, j < i.
Since

aobi + ab_ + + a_b + abo O,

we see that ai Kd. Thus y Rd C R, and so O R.
To prove that R is not a PIF, it is sufficient by Proposition 2.1 to prove

that O R is not a prime ideal of R. Let a e2+ and b; e2ti+),
> 0; let y E=0 aix and z Y-,i=0 bX; then yz 0. If y R, then

there is an no N such that ye, O, n > no. But this is not the case and
so y q R. Similarly z q R. Therefore, R is not a prime ideal of R.

In order to prove that Q(R) is a VNR, we need to be able to identify
the nonzero divisors in R. For this purpose we make the following definitions.
If a K, we define

Supp a {n N the n-th coordinate of a is not 0}.
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And if y ,i=o aiX/ R, we define Supp y t.Ji=0 Supp ai. Let z
E?=o biX R. Then we shall prove that yz 0 iff Supp y f) Supp z, the empty set.

If Supp y f’l Supp z , then Supp ai N Supp bj for all i,j. Therefore
aibj 0 for all i,j and so yz 0. Conversely, suppose that yz 0. Let
I Annr t-J0 a. Since K is reduced, if a2b 0 in K, then ab 0. An
easy calculation using this fact shows that Annny I[[X]]. Thus b I
for all j, and so

Supp a f’l Supp bj for all i,j.

Hence Supp y f) Supp z . It follows from this fact that y is not a zero-
divisor in R iff Supp y N. By Proposition 1.4, to prove that Q(R) is a
VNR it is sufficient to prove that if y R, then there exists z AnnRy
such that y + z is not a zero divisor in R. But if y E0 aiX, Supp y
A - N; and A’ is the complement of A in N, it is not difficult to find

elements bi K with [,.Ji=0 Supp b A’. If we let z i-_o bisi, then yz
0 and Supp(y + z) N. Hence y + z is not a zero divisor in R, and

therefore, Q(R) is a VNR.
If a K, define n(a) to be the smallest element of N such that the

coordinates of a are constant from n(a) to . If y 20 aX R, define
n(y) sup/n(ai). Let B {y R n(y) < o}. Then B is a subring of R
containing l, and Rd/t C B. Thus R, as a B-module, is an essential extension
of B. We shall prove that B k[[X]](o), and hence by Example 2, B is a
semi-hereditary ring.
Let fn K’-- k be the n-th coordinate function; and define 0 B -->

k[[X]]() as follows: if y 0 aXi B, then O(y) (.q=o fn(ai)Xi), an
element of 1-In kn[[X]], where kn k, n N. If no n(y), then for n >
no we have fn(ai) fno(ai), 0, o. Thus, in fact, O(y) k[[X]]().
It is readily verified that 0 is a ring isomorphism.
By Example (2), E(B) Hkn((X)); and we have already proved that E(R)
Ilkn((X)). Hence E(B) E(R). Since E(B) is a flat B-module by Proposition

2.7, and since w.gl.dim B < and R is a B-submodule of E(B), we see
that R is a flat ring extension of B.
We note that if we extend 0 with the same definition to a ring homomorphism

from R into IIk[[X]], then 0 remains a monomorphism. It is not onto
because the latter ring is a PIP. Thus we have

k[[X]](o) C R k()[[X]] C II. k[[X]]
as essential ring extensions.
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