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FUNCTIONS
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Introduction

This paper is a continuation of a study of the following problem. Let f
be a domain in C with V a subvariety of f. Assume : is a space of
holomorphic functions (on fD which satisfy a given property. If one is given
a function f holomorphic on I\V what conditions on the growth off and
what geometric properties of V will permit us to extend f to a function f
holomorphic on f and such that is in :. In [2] we solved this problem
for the ball in C and the space represented by the Hardy space. In this
paper we pursue this line of investigation and prove the following theorem.

THEOREM 1. Let be a bounded domain in C and let V be a subvariety
of 1). Assume a function f is holomorphic on f\V, with f satisfying the
area bounded mean oscillation (BMO) condition on ON,V. Assume further
that V satisfies condition A (see Section 4). Then f extends to a function
f holomorphic on 1) and f satisfies the area BMO condition.

Definitions will be given in detail in Section 2. If f is strictly pseudo
convex then the BMO condition referred to in the theorem coincides with
the Bloch condition. A special case of this theorem which motivates the
geometric condition on V is the following.

THEOREM 2. Let B1 be the unit disc in C and let V {ctj} be a discrete
set satisfying the sparsity condition

(1) X(aj, ak)
1 "jak

>8>0, j k.
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Assume f is holomorphic on Bt\V and satisfies
(2) [f’(z)l c[min{p(z, V), 0(, 0BI)}] -I 2; BIV
for c and positive constants and O the distance from z to V (in the
Euclidean norm). Thenfextends holomorphically to afunction f, holomorphic
on B, and f is a Bloch function, i.e. there exists c > 0 such that

c (o(z, on,)) z

An example of R. Timoney shows that condition (2) alone is not suffi-
cient to obtain the result of Theorem 2. More detailed comments concerning
the one variable case will follow after the proofs of these theorems. Our
condition A is in part a covering condition of Whitney type. We note that
conditions on the Whitney decomposition of a domain fl C_ R" have been
used by Peter Jones [6] in his work on extending BMO functions from the
domain I in R" into all of R". Some of the research in this paper was
carried out while the second author was on sabbatical leave at the University
of California, Berkeley.

2. Area BMO functions and Bloch functions

Let 12 be a bounded domain in R and let f be in L’(). For Q 1) and
r > 0, (a, r) --= {x R": [Ix[I < r} and let h. h denote Lebesgue measure
on Rn. The function f is said to have bounded mean oscillation if there is
a number M > 0 such that

1 f ,f(x)_( 1 f(y)dh(y))ldh(x).M(3) I(Q, r)l ,r) I(a, r)[ ,)

for all f and r > 0 such that (, r) fl and where h((, r))
I (a, r)l.
A function f holomorphic on B is said to be a Bloch function if there is

a constant M such that

If’(z)l-< M(1 Izl ) z

In general if II is a bounded symmetric domain in C and f is holomorphic
on C then f is a Bloch function (on ll) if

(4) suPH x# 0, xC",zII < +

where Hz(x, Y.) denotes the Bergman metric on II. If II is strictly pseudo
convex this definition is equivalent to requiring that

(4’) IVf(z)l M(to(z, 01))-1, Z n.
For the unit disc, as well as strictly pseudo convex domains in C the set
of holomorphic BMO functions on fl coincides with the space of Bloch
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functions on I. This follows from the Basic Lemma proven below. For
the n 1 case (and with a slightly different BMO condition) this corre-
spondence is noted in the paper of Coiffman, Rochberg and Weiss [3, p.
47]. For n > 1, the proof given here is based on written correspondence
with R. Timoney.

BASIC LEMMA. Let fI be a bounded domain in R and let f be harmonic
on fI. The function f satisfies the BMO condition (3) if and only if there
is a constant M’ such that

(5) [Vf(x)[ < M’(p(x, Off))-’, x 12.

Proof.
R and that

Then

Let us assume that g is a function harmonic on the unit ball of

IVg(x)l < c(1 Ix[)-’.

g(tx))dt Vg(tx) x dt.g(x) g(o)

It follows then that

[g(x) g(0)l-<
1 tlxl

and

dt c In(1 -Ix[)

As we have shown above the right side of this inequality is uniformly
bounded and this proves that f is in BMO(II).
Assume for the converse that f is a harmonic function on II and satisfies

If(x) f(a)ldh(x)= y[<l [g(y) g(O)ldX(y).
r (a,r)

fll- [g(x) g(O)ldh(x) < c | log(1 [xl)dh(x) c’.

Now assume f is harmonic on l’I and satisfies (5). Let a f, r < o(a, Ofl).
Define g(y) f(a + ) for lY[ < 1. Observe that

r(1 ly[) p(a + , O(a, r)),

hence

IVg(y)l(1 -[yl) r(1 -lyl)lVf(a + )l M’.

With this notation (x a + ),

1
If(x)- l(a r)l (.f(t)dt IdX(x)I(a, r)[ (a,r)
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the BMO condition. Let a f, r 1/2p(a, OlD and for [Yl < 1 set g(y)
f(a + ry). There is a smooth kernel K(y, rl) such that, for lyl < 1/2,

1 K(y, )(g() g(O))dh(’o).g(y) g(0)
/2<101<3/4

Hence, there is a constant c such that

IVg(O)l VyK(y, r/)(g(r/) g(0))dX(r/)

By the earlier part of the proof,

p(a, oZ)lVf(a)l 21x7g(o)l c’

< c f,l<l Ig() g(O)ldh(r).

Ig() g(0)[dh() c"[Ifll,o.

3. Proof of Theorem 2

Condition (1) on the pseudo-hyperbolic metric for the set V {aj} is
called a sparsity condition (See Vinogradov and Khavin [10], Sarason
[7, p. 22]). It is equivalent to the following, there is a 8’ > 0 such that

(6) [ctj- 1 > ’(1 -Il), J " k.

For if j :/: k and condition (6) is satisfied,

1 1]
> (’)

I1 n,l:
The equality

implies

a-b
1 b

2

1
(1 lal)( Ibl)

I1 bl
b 1,

or

The inequality

2

(1 + (8,)2) > (8,)2.

yields the other half of the equivalence.
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We proceed now to the proof of Theorem 2. Assume thatf and V satisfy
the hypothesis of Theorem 2. For z near a our hypothesis implies that f’
has an expansion of the form

A_
f’(z)

(z a)
+ Ao + A(z- a) +

for z near a. A standard argument shows that f can be continued to a
holomorphic function f in a neighborhood of a. Hence, f extends to f
holomorphic on B.

LEMMA 1. Let D denote the Euclidean disc, center a and radius

c(1 -lajl)= r
(where c is a constant smaller than ’/2) and let f B/OD. Then for
Z f 1, /9(Z, OB1) < c’(/9(Z, V)).

Proof. Assume not and that z BI\LIDj and t V with

irn \i -Iz’/ 0.

Under this assumption the inequalities

1 -Itl 1 + It zl
-Izl -Izl

and

imply that

1 -Itl1
[tn Znl
1--1ZI --IzI

lim(IZ,,- 1
--,oo\ 1 -Itl/

0.

This is inconsistent with our hypothesis and so the lemma is valid.
Lemma 1 shows there is a constant d > 0 such that, for z

B1N I,.JDj

If’(z)l-< d,(19(z, OBI)) -l.

Also, for j fixed and z D,

I’(z)l < max {1 ’(Ol" OD} =- M.
Note that, for OD,

dI’(01 d,(o(, OB1)) -l -r
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and so Mj < dl/rj for all j 1, 2, 3,

LEMMA 2. For WI, W2 in Dj we have constants ct and C2 which satisfy

0 < c < P(W, B) < c2p(w2, OB)

where the constants are independent ofj.

Proof.

Similarly,

For W1, W2 in Dj, we have

l+c1 -Iw,l_< (1 -lajl) + c(1 -Ictjl) <
-[WE[ (1 --[aj[)- c(1 --[aj[) 1 C’

1 c 1
+ c 1 -Iw=l

The proof of Theorem 2 is completed by observing that for z

d all(1 + ;) 1I]"(Z)[ < mj < 1-1 l"
The following example of R. Timoney [9] shows the condition (2) of

Theorem 2 is not sucient and so some geometric condition must be imposed
on V to obtain the result. Take f(z) (1 z)- which is not in the Bloch
space. For V, choose the sequence

V a2.. where 2, 1 exp n2 ] i.
j=l

V is the zero set of some function holomohic on B. The points a, are
evenly distributed on a system of circles centered at 0. The distance between
consecutive circles is approximately ()l/n2. There are n2 points on the
circle of radius 1 1/n so the distance between adjacent points on the
circle is also approximately 1In2. Hence for

1_1 1
- lzl l- ,, l/n
n nl

But, for

1_1 1
n n+l’

we have

If’(z)l
2

<
(1 Izl)2

< (n + 1)2 (p(Z, V))-1.
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Hence, [f’(z)l satisfies the growth condition (2) but can not be (is not)
extended to a Bloch function.

4. Generalization to domains in Cn

The purpose of this section is to generalize the ideas of the previous
section. In particular, since the zeros (and poles) of holomorphic functions
of several complex variables are not isolated the separation property of
Theorem 2 must be replaced by a more refined covering argument in the
n (> 1) dimensional case. In the following ll is a bounded domain in C
and V is a subvariety of II.

DEFINITION. The subvariety V satisfies the A coveting condition if the
following conditions are satisifed.

(a) There are polydiscs P with centers z and polyradii r (rl(a),
rn(Ot)) such that P,, C II and V C_ LI P.

(b) There are constants d and d2 such that

drg(a) < p(P, Ofl) < d2rj(a), j 1, 2, n.

(3) There is a constant d3 > 0 such that

p(V, 0oP) > dp(P, 0fl) for all a.

The distinguished boundary of a polydisc P is written O0P.
(d) There is a constant d4 > 0 such that for any w V there exists a

with w P and

p(w, OPt) > d4p(e,

Examples of such varieties are given by subvarieties of bounded domains
which extend across the boundary of II and are smooth near the boundary.
More details will be given in the next section. In view of the Basic Lemma,
Theorem 1 may be stated in the following form.

THEOREM 1’. fl is a bounded domain in C and V is a subvariety of fl
satisfying the A covering condition. Suppose f is holomorphic on fl/V and

IVf(z)l < c[min(p(z, ofl), p(z, v))]-, z ll\v

then f has a holomorphic extension f to II andf satisfies

Hence, if [1 is strictly pseudo convex f is a Bloch function.

Proof of Theorem 1’. We use the Weierstrass Preparation Theorem to
reduce the extension problem to the one variable argument given in the
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last section (also, see [2, p. 25]). Henceforth, assume f extends f holo-
morphically to all of

LEMMA 2. /f W1, W2 are in P there are constants cl and C2 such that

p(w, aft)
< c2an)

where the ci are independent of a.

Proof. The assumption on V states that each rg(a) is equivalent to
p(P, Ofl) (condition (b) of A). Hence

p(w:, a) p(w:, all)
1 + c

P(P’’af)" < + c.
p(w, aft)

Similarly, it follows that

p(w, old > 1
p(W2, 0,) 1 + c

LEMMA 3. For z 1’ [l\t.J P there is a constant kl such that

p(z, V) > k p(z, Oil).

Proof. Suppose the conclusion is false and that there exists sequences
{zj} in II’ and {Wj} in V such that

(7) lim O(z# w) 0.
oo p(z, a)

Let PI be a polycylinder associated to wi according to condition (d) of the
A-covering property. We note that

(8)
p(z, a)

p(z, w) + p(zj, a) p(wj, af) p(zj, af) p(zj, wj)"

Inequality (8) and equality (7) imply that

(9) lira p(z, Ofl)
1

j_,oo p(wj, af)

Since zj is not in Pj it follows from Lemma 2 and (9) that

lira p(w, aP) O.

This contradicts condition (d) of the A-covering property.
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From Lemma 3 it follows that IVf(z)l k’(p(z, ofl))- all z in fl’. It
remains to estimate Ivl for z in P (independent of a). For any polydisc
P with z0 in the distinguished boundary (OoP,O we have

Also, from Lemma 2,

P(Zo, V) > d3 P(ea, 0).

p(Zo, ) > co(P,, o).

The assumption on Vf implies

IVf(z)l < c’[p(e, 0)]-’ z 00e.
By the maximum principle applied to Of/Oz (j 1, 2, n),

Using Lemma 3 again, [V(z)l c’"(p(z, aD))-. This completes the proof.

Recall the example of Timoney presented in Section 3. We can exploit
it for an n-dimensional example. Let

z (Z,Z,...,Zn)B and f(z) (1 z)-

with

S {ZBn Z V}.

V is the sequence {a,n} defined in that example. As in C the function f is
not in the Bloch space of B yet

IIf(z)ll c{min[p(z, S), p(z, OB)]}-.

It suffices to prove the stronger inequality

1
1 Iz,I c[min(p(z, s)), p(z, OB))]-.

For

we have

Hence,

1_1 1
n n+l’

p(z, s) p(z, s {Iz,I 1 _.1}) < c/n2"
n

c
min[p(z, S), p(z, OB,)] < p(z, V) < n2
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and

min[p(z, S), p(z, OB)]-1 .- C’
c 1" ’lll2

5. The A-covering property

In this section we shall consider the A-covering property in more detail.
We shall show that if V V’ II where V’ is a submanifold of a neighborhood
of fl then V has the A-covering property. An open question is whether a
subvariety of the form V V’ f’l fl, where V’ is a subvariety of a neighborhood
of [l, has the A-covering property. We begin with the following pointwise
result.

PROPOSITION 1. Let V {z U h(z) 0} be the zero set of a
holomorphic function h on an open set U C C. Let zo be in V. There exists

eo > 0 and there exist constants q, q2, qg3 such that the following is true:

for all e < eo there is a polycylinder P,(zo) centered at Zo such that

(1) Ce rj C2e j 1, 2, n,

(where rg is the j-th polyradius of P,(zo)) and

(2) p(V, 0oPs(zo)) > C3e.

Proof. Take the origin of coordinates at z0 and choose the z, coordinate
so that h(0, 0, Zn) vanishes to minimal order at z0. Write h $ q where

is a unit and q is a Weierstrass polynomial in z,:

Ol. Eq(z) Z- + q-(Z )Zn S.n j--I

Here, z’ (z, z_) and this representation is valid for Iz’l
[zl < e2. Because of the choice of the z coordinate, the coefficient q_fiz’)
of z- vanishes to order at least j at 0 forj 1, 2, a. Thus there exists
K > 0 such that

(11) Ig-(z’)l glz’l forj 1, 2, a, and Iz’] < e.

Now for z :k 0 we may write

q(z) Z(
Choose c such that KY,% c-j < 1; we may assume that c > 1. Choose e0
small enough that
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and also so that b(z) 4:0 when z lies in the polycyiinder

P(zo) {z C [z.l < 2e0, j 1, n 1, and Iz l < 2c.}.

Now if e < 2co and z’ is fixed so that Iz’l < we claim that the a roots
 ot(Z’) of q(z’, Zn) 0 satisfy < c j 1, oz. This

is a consequence of Rouche’s Theorem: using the estimates (11) and the
choice of c we see that for fixed z’ the polynomials q(z’, z) and z have
the same number of roots inside the circle [Znl C . NOW if we restrict
e so that e < e0 we may be sure that for Iz’l < e, the equation h(z’, z,,)
0 has no roots : which satisfy ce < [l < 2ce.

It suffices therefore to set c 1, c2 3/2c, c3 1/2c and

e (zo) {z Iz l < 1, 2, n 1 and Iz l
Properties 1 and 2 then hold for P,(zo), 0 < e < Co.

In order to use Proposition 1 to show that a given subvariety of II satisfies
the A-covering property, we need to know that the constants e0, c, c2 and
c3 depend continuously on the point z0. We can establish this only in special
cases.

LEMMA 4. Let M be a complex submanifold of an open set U of Cn.
Then in Proposition 1 we may take Cl c2 1 (i.e., each radius of 8(zo)
is precisely e), and the constants eo and c3 may be taken to the locally
independent of Zo.

Proof. Suppose dimc(M) n k. Let z0 M. Choose orthonormal
coordinates at z0 (using the standard inner product on C) so that the Zn-/ ,

Zn axes are tangential to M at z0. By considering local defining functions
hi, h2 hk for M near zo such that h(z) z2 + qi(z) where b2(z) vanishes
to order greater than one at z0, j 1, 2, k, we see that there exists
0 > 0 such that for 0 < < e0 the polycylinder

e,(zo) {z Iz l < 1, n}

satisfies p(M, OoP,(zo)) e. It is clear that this family of polycylinders may
be translated to nearby points without destroying property (2) of Theorem
3.
Using this lemma we can show:

PROPOSITION 2. Suppose fl CC C" has smooth boundary. Suppose V’ is
an analytic subvariety of a neighborhood II’ of II such that V’ is smooth
in a neighborhood U of Oil. Let V V’ N fl. Then V has the A-covering
property.

Remark. V can have at worst point singularities in II.

Proof. Let M V’ N U. Lemma 4 applies to M. Let W be a neighborhood
of 0fl such that W C_ U. Referring to the construction in Lemma 4, we set
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inf{e0 > 0, z0 M f3 W}. For each z0 M W, the polycylinder
P,(Zo) is defined by the construction in Lemma 4. All radii of this polycylinder
are equal to r/, but the direction of the axes depends on z0. Let

V {z V fq w e(z) O }, V2 {z V O W p(z, O) }.

The set V2 is compact. Hence it has a finite covering by polycylinders P,
P2, Pm such that ff C and O0Py V . (We make use of the
construction in Proposition 1 at each point of V2, and then use compactness
to extract a finite subcovering.) Also it is not hard to see that part (d) of
the A-covering property is satisfied for z V2. At this point we just have
to cover VV2 in the desired way. It is not hard to see that if z VV2
then z V. The polycylinder P(z) obtained from Lemma 4 with

e
2p(z,

has closure contained in . Clearly p(z, ) e and p(OoP(z), V)
Hence the covering of V V2 consists of one polycylinder centered at
each point z V V2 with radii

and suitably chosen axes. Part (d) of the A-covering propey is satisfied
since each point z V V2 is actuly the center of one of the polycylinders.
This completes the proof of Proposition 2.

It would be of interest to see whether Proposition 2 holds under the
assumption that V V’ where V’ is an arbitrary subvariety of a
neighborhood of . This amounts to determining whether the constants in
Proposition are locally independent of z0. We shall indicate how this may
be proved if U is a neighborhood of 0 C2 and V {z U z z2
0}. This illustrates some of the considerations which will be relevant to the
case of more general singularities. (It follows that Proposition 2 holds when
fl is any smoothly bounded domain in C2 such that 0 00 and V
{z a z 0}.)
For each value of z2 0 there are two values of z such that (z, z2)

V. In modulus they are given by [zl Iz l For each e < eo where eo is
some number we want to constct a polycylinder P(z, z2) centered at
(z, z2) with sides equivalent to (=) and p(V, OoP(z, z2) e. Now the
distance from (z, z2) to the other sheet of the variety is equivalent to
It is much less than Iz t if (z, z2) is near 0. For e > kizl where k is some
constant we choose the polycylinder P(z, z2) to have fixed proportions,
axes parallel to the coordinate axes, and such that both sheets of the variety
are contained in the polycylinder. For e < k]zl we change the proportions
of the polycylinders, choosing a smaller multiple of e for the z radius, so
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that the polycylinder just includes one sheet of the variety. (Of course when
z 0 each polycylinder P(O) contains both sheets of the variety).
What is involved here is that the local representation of the variety at a

given point must be used to construct the family of polycylinders at nearby
points.
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