PREDICTION FROM PART OF THE PAST OF A STATIONARY PROCESS

BY
Eric Hayashi

1. Introduction

Let w be the spectral density of a stationary process $X(t)(-\infty<t<$ $\infty)$. It will be assumed that $(\log w) /\left(1+x^{2}\right)$ is integrable on R with respect to Lebesgue measure. Thus $w(x)=|h(x)|^{2}$ where h is an outer function in \boldsymbol{H}^{2}, the Hardy space for the upper half-plane. Let Z denote the space of measurable functions which are square-integrable against the measure $w(x) d x$, and let $Z(a, b)$ denote the closed subspace of Z generated by $\left\{e_{t}: a \leqslant t \leqslant b\right\}$ $\left(e_{t}(x) \equiv e^{i t x}\right)$. The obvious meanings will be ascribed if a or b is $\pm \infty$. The problem studied here is that of approximating orthogonal projection on $Z(-a, a)$. In [5], Dym and McKean worked out a recipe for projection on $Z(-a, a)$, but their solution is difficult to apply. A less general approach was adopted by Segier [10] to work out a projection formula in the case $w=|P|^{2} /|B|^{2}$ where P is a polynomial and B is an entire function of finite exponential type. The latter approach will be followed here: under mild assumptions, $Z(-a, a)=Z(-a, \infty) \cap Z(-\infty, a)$, so the desired projection may be approximated by "projecting back and forth" on $Z(-a, \infty)$ and $Z(-\infty, a)$; projection onto these last subspaces is straightforward. How good this scheme is depends upon structural properties of the weight w. This is discussed in Sections 3 and 4; a connection between these approximations and strong mixing is given in Section 5.

2. Preliminaries

Let L^{2} denote the Hilbert space of functions on R which are squaresummable with respect to Lebesgue measure. Then the map $S: f \rightarrow h f$ is an isometry of Z into L^{2}. Moreover, since h is outer, S is surjective (See [5], p. 97) and maps $Z(-\infty, a)$ and $Z(a, \infty)$ respectively onto $\left(e_{a} h / \bar{h}\right) \bar{H}^{2}$ and $e_{a} H^{2}$ (where the bar denotes complex conjugation). The following notation will be used:
(1) P_{a} is projection onto $e_{a} H^{2}$ in L^{2};
(2) Q_{a} is projection onto $\left(e_{a} h / \bar{h}\right) \bar{H}^{2}$;

Received August 17, 1981.
(3) $\quad M_{a}=e_{-a} H^{2} \cap\left(e_{a} h / \bar{h}\right) \bar{H}^{2}$;
(4) π_{a} is projection onto M_{a};
(5) H^{∞} is the space of essentially bounded functions on R whose Poisson extensions to the upper half-plane are analytic.
Then $S^{-1} \pi_{a} S$ is the projection from Z onto $Z(-\infty, a) \cap Z(-a, \infty)$. This is the projection which will be studied in light of the following theorem due to Dym [3].

Theorem. If $1 / w$ is locally integrable and $\left\|e_{2 s} h / \bar{h}-F\right\|_{\infty}<1$ for some $s>0$ and $F \in H^{\infty}$, then $Z(-a, a)=Z(-\infty, a) \cap Z(-a, \infty)$ for every $a>s$.

For a fixed outer function h and a real number T let $r(T)$ and $r_{*}(T)$ be the numbers defined by

$$
r(T)=\operatorname{dist}\left(e_{T} \bar{h} / h, H^{\infty}\right)=\inf \left\{\left\|e_{T} \bar{h} / h-g\right\|_{\infty}: g \in H^{\infty}\right\}
$$

and

$$
r_{*}(T)=\operatorname{dist}\left(e_{T} h / \bar{h}, H^{\infty}\right)
$$

A well-known duality argument of Helson-Szego [7] shows that

$$
r(2 a)=\cos _{Z}(Z(-\infty,-a), Z(a, \infty))
$$

and

$$
r_{*}(2 a)=\cos _{L^{2}}\left(e_{-a} \bar{H}^{2},\left(e_{a} h / \bar{h}\right) H^{2}\right)
$$

where $\cos _{H}(A, B)$ denotes the cosine of the angle between the subspaces \boldsymbol{A} and \boldsymbol{B} of \boldsymbol{H}.

3. Approximation of π_{a}

The operator studied here is $Q_{a} P_{-a}$. The number $r_{*}(2 a)$ gives an estimate of $\left\|\left(Q_{a} P_{-a}\right)^{n}-\pi_{a}\right\|$.

Theorem 1. Let w^{-1} be locally integrable. Then the following are equivalent:
(i) $r^{*}(2 a)<1$;
(ii) $\left(Q_{a} P_{-a}\right)^{n} \rightarrow \pi_{a}$ exponentially fast in operator norm;
(iii) w may be written in the form

$$
w(x)=|B(x)|^{-2} \exp [u(x)+\tilde{v}(x)] \quad(-\infty<x<\infty)
$$

where B is entire of exponential type at most a, and where u and v are real functions in L^{∞} with $\|v\|_{\infty}<\pi / 2$ (\widetilde{v} denotes the harmonic conjugate of $v)$.

Proof. First, note (as in [4]) that

$$
M_{a}=\left[e_{-a} \bar{H}^{2}+\left(e_{a} h / \bar{h}\right) H^{2}\right]^{\perp}
$$

If (i) is true, then the bracketed summands above are at a positive angle so their sum is closed. Thus,

$$
L^{2}=M_{a} \oplus\left[e_{-a} \bar{H}^{2}+\left(e_{a} h / \bar{h}\right) H^{2}\right]
$$

Next note that the bracketed summands may also be identified with $\left(e_{-a} H^{2} / M_{a}\right)^{\perp}$ and $\left[\left(e_{a} h / \bar{h}\right) \bar{H}^{2} / M_{a}\right]^{\perp}$, respectively, in L^{2} / M_{a}. Hence,

$$
\begin{aligned}
1>r_{*}(2 a) & =\cos \left(\left(e_{-a} H^{2} / M_{a}\right)^{\perp},\left[\left(e_{a} h / \bar{h}\right) \bar{H}^{2} / M_{a}\right]^{\perp}\right) \\
& =\cos \left(e_{-a} H^{2} / M_{a},\left(e_{a} h / \bar{h}\right) \bar{H}^{2} / M_{a}\right)
\end{aligned}
$$

(see [6]). The last quantity is just the norm of the operator

$$
\left(Q_{a}-\pi_{a}\right)\left(P_{-a}-\pi_{a}\right)
$$

Thus,

$$
\begin{aligned}
\left\|\left(Q_{a} P_{-a}\right)^{n}-\pi_{a}\right\| & =\left\|\left(Q_{a} P_{-a}-\pi_{a}\right)^{n}\right\| \\
& =\left\|\left[\left(Q_{a}-\pi_{a}\right)\left(P_{-a}-\pi_{a}\right)\right]^{n}\right\| \\
& \leqslant r_{*}(2 a)^{n},
\end{aligned}
$$

so (ii) follows. If, on the other hand, $\left\|\left(Q_{a} P_{-a}\right)^{n}-\pi_{a}\right\|<1$ for some n, so is the norm of the positive operator $\left(P_{-a} Q_{a} P_{-a}-\pi_{a}\right)^{n}$, so

$$
\left\|Q_{a} P_{-a}-\pi_{a}\right\|=\left\|P_{-a} Q_{a} P_{-a}-\pi_{a}\right\|^{1 / 2}<1
$$

and (i) is true.
The equivalence of (i) and (iii) relies on a standard analytic continuation argument. If (i) holds, it is possible to write $h / \bar{h}=e_{-2 a} b \exp [i(\tilde{u}-v)]$ where b is an inner function and where u and v are real functions in L^{∞} with $\|v\|_{\infty}<\pi / 2$ (see [7]). It then follows that

$$
F=e_{-2 a} b \exp [(u+\widetilde{v})+i(\tilde{u}-v)] / h^{2} \geqslant 0 \quad \text { a.e. }
$$

on R and extends analytically into the upper half-plane. Since $1 / h^{2}$ is locally integrable on R, and the other factor is essentially in H^{1}, it is possible to continue F analytically into the lower half-plane (see [8]). Furthermore, F is of bounded type $\leqslant 2 a$ in both half-planes, so by a theorem of Krein, F has exponential type $\leqslant 2 a$. (See [1, p. 38] for a discussion of this). Also, F may be factored: $F(x)=|B(x)|^{2}(-\infty<x<\infty)$ where B is entire and of exponential type $\leqslant a$. Thus, $w=|h|^{2}=|B|^{-2} \exp (u+\widetilde{v})$ as desired. Conversely, if (iii) holds, then

$$
h / \bar{h}=e_{-2 \tau} b \exp [i(\tilde{u}-v)]
$$

where $\tau \leqslant a$ and b is a Blaschke product whose zeroes arise from the zeroes of B. Then

$$
e_{2 a} h / \bar{h}=e_{2(a-\tau)} b \exp [i(\bar{u}-v)]
$$

whose distance to H^{∞} is less than unity so $\rho_{*}(2 a)<1$, and the theorem is proved.

$$
\text { 4. The Compactness of } Q_{a} P_{-a}-\pi_{a}
$$

The result of this section relies on properties of Toeplitz operators and functions on the unit circle T. If ϕ is an essentially bounded function on R, let $W(\phi)$ denote the Wiener-Hopf operator on H^{2} defined by $W(\phi) f=$ $P(\phi f)$ where P is the orthogonal projection from L^{2} onto H^{2}. For each function f on R let $V f$ denote the function on T given by

$$
V f\left(e^{i \theta}\right)=f\left[i\left(1+e^{i \theta}\right) /\left(1-e^{i \theta}\right)\right]
$$

Then V induces an isometry from $L^{\infty}(R) \rightarrow L^{\infty}(T)$ which maps $H^{\infty}(R)+$ $C_{0}(R)$ onto $H^{\infty}(T)+C(T)$, where $C_{0}(R)$ denotes the continuous functions on R which vanish at ∞, and $C(T)$ denotes the continuous functions on T. Devinatz [2, p. 83] showed that $W(\phi)$ is unitarily equivalent to the Toeplitz operator on $H^{2}(T)$ with symbol $V(\phi)$. Thus, properties of Toeplitz operators can be carried over to Wiener-Hopf operators. The following facts will be needed: Let ϕ be a unimodular function on R.
(4.1) (Nehari's Theorem) $\|I-W(\bar{\phi}) W(\phi)\|^{1 / 2}=\operatorname{dist}\left(\phi, H^{\infty}\right)$.
(4.2) (Hartman) $I-W(\bar{\phi}) W(\phi)$ is compact if and only if $\phi \in H^{\infty}+C_{0}$.
(4.3) $W(\phi)$ is left invertible if and only if $\operatorname{dist}\left(\phi, H^{\infty}\right)<1$.
(4.4) $W(\phi)$ is left Fredholm if and only if $\operatorname{dist}\left(\phi, H^{\infty}+C_{0}\right)<1$.
(4.5) (Wolff) $\phi \in H^{\infty}+C_{0}$ if and only if ϕ can be written as

$$
\phi=[(x+i) /(x-i)]^{n} \cdot b \cdot \exp [i(v-\widetilde{u})]
$$

where b is an inner function, and u, v are real functions in $C_{0}(n$ a positive integer).
(4.6) (Coburn) $W(\phi)$ and $W(\bar{\phi})$ cannot both have nontrivial kernels.
(4.7) A function of the form $\exp (u+\tilde{v})$ with u and v in C_{0} is locally in L^{p} for every finite p.
Wolff's factorization can be found in [11]; a nice discussion including the rest of the results can be found in [9].

Theorem 2. A necessary and sufficient condition for $Q_{a} P_{-a}-\pi_{a}$ to be compact is that w can be written in the form

$$
\begin{equation*}
w(x)=|B(x)|^{-2} \exp (u+\tilde{v})(-\infty<x<\infty) \tag{4.8}
\end{equation*}
$$

where B is entire of exponential type $\leqslant a$ and where u and v are real functions in $C_{0}(R)$.

Proof. Let $\phi=e_{2 a} h / \bar{h}$ and suppose that $Q_{a} P_{-a}-\pi_{a}$ is compact. If $\left\|Q_{a} P_{-a}-\pi_{a}\right\|=1$, then there is a function f in M_{a}^{\perp} with unit norm such that $\left\|Q_{a} P_{-a} f\right\|=1$. Since Q_{a} and P_{-a} are projections, $f \in e_{-a} H^{2} \cap$ $\left(e_{a} h / \bar{h}\right) \bar{H}^{2}=M_{a}$. This is absurd, so it follows that $\left\|Q_{a} P_{-a}-\pi_{a}\right\|$ and hence $\rho_{*}(2 a)$ are less than unity so by $4.3, W(\phi)$ is left invertible. Because $\left(e_{a} h / \bar{h}\right) H^{2}$ is contained in the kernel of $\pi_{a}, P_{-a} Q_{a} P_{-a} \mid\left(e_{a} h / \bar{h}\right) H^{2}$ is compact. For a function f in L^{∞}, let the symbol f also denote the multiplication operator $g \rightarrow f g$ on l^{2}. Then we have

$$
P_{-a} Q_{a} P_{-a}\left|\left(e_{a} h / \bar{h}\right) H^{2}=e_{-a} P e_{a}\left(e_{a} h / \bar{h}\right)(I-P)\left(e_{-a} \bar{h} / h\right) e_{-a} P e_{a}\right|\left(e_{a} h / \bar{h}\right) H^{2}
$$

so that $P \phi(I-P) \bar{\phi} P \phi \mid H^{2}$ is compact. This last operator equals

$$
W(\phi)[I-W(\bar{\phi}) W(\phi)] ;
$$

since $W(\phi)$ is left invertible, it follows that $I-W(\bar{\phi}) W(\phi)$ is compact. By (4.2), $\phi \in H^{\infty}+C_{0}$, so

$$
e_{2 a} h / \bar{h}=[(x+i) /(x-i)]^{n} \cdot b \cdot \exp [i(v-\widetilde{u})]
$$

where b is inner, and where u and v are real functions in C_{0}. An application of (4.7) allows the analytic continuation argument of Theorem 1 to be carried out and we get

$$
w(x)=\left(1+x^{2}\right)^{n} e^{u+\tilde{v}} /|B|^{2}
$$

The factor $\left(1+x^{2}\right)^{n}$ may be absorbed into the exponent with no harm at the expense of the required number of zeroes from the denominator, $|B|^{2}$. (B must have at least $n+1$ zeroes, or

$$
\left(1+x^{2}\right)^{n} e^{u+\tilde{v}} /|B|^{2}
$$

would not be integrable.)
Suppose, conversely, that w is of the form (4.8). Then

$$
\phi=e_{2 a} h / \bar{h}=e_{s} b \exp [i(v-\widetilde{u})] \quad \text { where } s \geqslant 0
$$

b is a Blaschke product whose zeroes arise from the zeroes of B. Thus, $\phi \in H^{\infty}+C_{0}$ so $W(\phi)$ is left Fredholm by (4.4) so has closed range. Note also that h is in the kernel of $W(\bar{\phi})$ so, by (4.6), $W(\phi)$ is one to one and hence left invertible. Therefore, $\operatorname{dist}\left(\phi, H^{\infty}\right)<1$. This last condition implies that

$$
L^{2}=M_{a} \oplus\left[\left(e_{a} h / \bar{h}\right) H^{2}+e_{-a} \bar{H}^{2}\right]
$$

where the bracketed summands are at a positive angle. Now, $M_{a}+e_{-a} \bar{H}^{2}$ is contained in the kernel of $Q_{a} P_{-a}-\pi_{a}$ and

$$
[W(\phi)-W(\phi) W(\bar{\phi}) W(\phi)]
$$

is compact, so $P_{-a} Q_{a} P_{-a} \mid\left(e_{a} h / \bar{h}\right) H^{2}$ is also compact. Thus $P_{-a} Q_{a} P_{-a}-$ π_{a} is compact on L^{2}. This last operator is just $\left(Q_{a} P_{-a}-\pi_{a}\right) *\left(Q_{a} P_{-a}-\right.$ π_{a}), so $Q_{a} P_{-a}-\pi_{a}$ is compact as well. This completes the proof of Theorem 2.

Remark. The above proof also shows that $Q_{a} P_{-a}-\pi_{a}$ is trace-class if and only if

$$
\int_{T}^{\infty} t\left|(\bar{h} / h)^{\vee}(t)\right|^{2} d t<\infty
$$

for some finite T (see [5, p. 135]).
Example. If $w=1 /\left(x^{2}+1\right)^{3 / 2}$, then $h / \bar{h}=(x-i)^{3 / 2} /(x+i)^{3 / 2}$. It is not hard to see that $r_{*}(2 a)=e^{-2 a}$ but that $e_{2 a} h / \bar{h}$ is not in $H^{2}+C_{0}$ for any a. Thus, $\left(Q_{a} P_{-a}\right)^{n}$ provides a good approximation of π_{a} for all positive a, but the remainder is never compact.

5. The relation between $\boldsymbol{r}_{\boldsymbol{*}}$ and strong mixing

The quantity $r(a)$ measures the dependence of the "future" of the process from time a upon the "past" of the process. If $r(a) \rightarrow 0$ as $a \rightarrow \infty$, then the process is said to be strongly mixing or completely regular (see [7]). It was shown in [6] that if either $r(a)$ or $r_{*}(a)$ tends to zero and the other is eventually less than unity, then both quantities tend to zero. It turns out that a quantitative relation exists between the rates of decay of r and r_{*}. The following lemma generalizes a result proved by Dym [5, p. 132].

Lemma. If a, b, and c are positive real numbers, then

$$
r(a+b+c) \leqslant r(a) r(c)+r_{*}(b)
$$

Proof. Let f and g belong to the unit spheres of $Z(a+b+c, \infty)$ and $Z(-\infty, 0)$ respectively. Let $\pi_{a, b}$ denote the orthogonal projection on $e_{a} H^{2} \cap\left(e_{a+b} h / \bar{h}\right) \bar{H}^{2}$ in L^{2}. Then if \langle,\rangle_{w} and \langle,$\rangle respectively denote$ the inner products in Z and L^{2}, we have

$$
\begin{aligned}
\left|\langle f, g\rangle_{w}\right| & =|\langle f h, g h\rangle| \\
& =\left|\left\langle P_{a} f h, Q_{a+b} g h\right\rangle\right| \\
& =\left|\left\langle f h, P_{a} Q_{a+b} g h\right\rangle\right| \\
& \leqslant\left|\left\langle f h,\left(P_{a} Q_{a+b}-\pi_{a, b}\right) g h\right\rangle\right|+\left|\left\langle f h, \pi_{a, b} g h\right\rangle\right| \\
& \leqslant r_{*}(b)+r(a) r(c) .
\end{aligned}
$$

Since $r(a+b+c)$ is the supremum of all such quantities, the lemma is proved.

As a consequence, we have the following theorem.
Theorem 3. If $\lim _{t \rightarrow \infty} r_{*}(t)=0$ and $r(a)<1$, then there exist constants K and c such that

$$
r\left(n^{2} a\right) \leqslant K\left(e^{-c n}+r_{*}(c n)\right)
$$

for every positive integer n.
Proof. Let $\alpha=r(a)$. Then from the preceding lemma,

$$
\begin{gathered}
r(3 a) \leqslant \alpha^{2}+r_{*}(a) \\
r((3+2+1) a) \leqslant r(3 a) r(a)+r_{*}(2 a) \leqslant \alpha^{3}+\alpha r_{*}(a)+r_{*}(2 a),
\end{gathered}
$$

and, inductively,

$$
\begin{aligned}
r\left(\sum_{k=1}^{n} k a\right) \leqslant \alpha^{n}+\alpha^{n-2} r_{*}(a)+\alpha^{n-3} r_{*} & (2 a) \\
& \\
& \left.+\cdots+\alpha r_{*}(n-2) a\right)+r_{*}((n-1) a)
\end{aligned}
$$

Since $r_{*}(t)$ is a non-increasing function of t,

$$
\begin{aligned}
r\left(\frac{n^{2}+n}{2} \cdot a\right) & \leqslant\left\{\alpha^{n}+\alpha^{n-2}+\cdots+\alpha^{[n / 2]}\right\}+r_{*}([n / 2] a)\left\{\alpha^{[n / 2]}\right. \\
& \left.+\alpha^{[n / 2]-1}+\cdots+1\right\} \\
& \leqslant \alpha^{[n / 2]} \frac{1}{1-\alpha}+r_{*}([n / 2] a) \frac{1}{1-\alpha}
\end{aligned}
$$

This proves the theorem with $K=(1-\alpha)^{-1}$ and $c=3^{-1} \cdot \min (1,-\ln \alpha)$.

References

1. L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs, New Jersey, 1968.
2. A. Devinatz, "On Wiener-Hopf operators" in Functional analysis, B. Gelbaum, ed., Thompson, Washington, D.C., 1967, pp. 81-118.
3. H. Dym, A problem in trigonometric approximation theory, Illinois J. Math., vol. 22 (1978), pp. 401-403.
4. —_, Trace formulas for a class of Toeplitz-like operators II., J. Functional Analysis, vol. 28 (1978), pp. 33-57.
5. H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Academic Press, New York, 1976.
6. E. Hayashi, The spectral density of a strongly mixing stationary Gaussian process, Pacific J. Math., vol. 96 (1981), pp. 343-359.
7. H. Helson and D. Sarason, Past and future, Math. Scand., vol. 21 (1967), pp. 5-16.
8. P. Koosis, Moyennes quadratiques de transformée de Hilbert et fonctions de type exponentiel, C.R. Acad. Sci. Paris, vol. 276 (1973), pp. 1201-1204.
9. D. Sarason, Function theory on the unit circle, Lecture notes, Conference at Virginia Polytechnic and State Univ., Blacksburg, Virginia, 1978.
10. A. Seghier, Prediction d'un processus stationnaire du second ordre de covariance connue sur une intervalle fini, Illinois J. Math., vol. 22 (1978), pp. 389-401.
11. T. Wolff, Two algebras of bounded functions, to appear.

Fordham University

New York

