PREDICTION FROM PART OF THE PAST OF A STATIONARY PROCESS

BY

Eric Hayashi

1. Introduction

Let w be the spectral density of a stationary process X(t) ($-\infty < t <$ ∞). It will be assumed that $(\log w)/(1 + x^2)$ is integrable on R with respect to Lebesgue measure. Thus $w(x) = |h(x)|^2$ where h is an outer function in H^2 , the Hardy space for the upper half-plane. Let Z denote the space of measurable functions which are square-integrable against the measure w(x)dx, and let Z(a, b) denote the closed subspace of Z generated by $\{e_t : a \le t \le b\}$ $(e_t(x) \equiv e^{itx})$. The obvious meanings will be ascribed if a or b is $\pm \infty$. The problem studied here is that of approximating orthogonal projection on Z(-a, a). In [5], Dym and McKean worked out a recipe for projection on Z(-a, a), but their solution is difficult to apply. A less general approach was adopted by Segier [10] to work out a projection formula in the case $w = |P|^2/|B|^2$ where P is a polynomial and B is an entire function of finite exponential type. The latter approach will be followed here: under mild assumptions, $Z(-a, a) = Z(-a, \infty) \cap Z(-\infty, a)$, so the desired projection may be approximated by "projecting back and forth" on $Z(-a, \infty)$ and $Z(-\infty, a)$; projection onto these last subspaces is straightforward. How good this scheme is depends upon structural properties of the weight w. This is discussed in Sections 3 and 4; a connection between these approximations and strong mixing is given in Section 5.

2. Preliminaries

Let L^2 denote the Hilbert space of functions on R which are squaresummable with respect to Lebesgue measure. Then the map $S: f \to hf$ is an isometry of Z into L^2 . Moreover, since h is outer, S is surjective (See [5], p. 97) and maps $Z(-\infty, a)$ and $Z(a, \infty)$ respectively onto $(e_ah/\bar{h})\bar{H}^2$ and e_aH^2 (where the bar denotes complex conjugation). The following notation will be used:

- (1) P_a is projection onto $e_a H^2$ in L^2 ;
- (2) Q_a is projection onto $(e_a h/\overline{h})\overline{H}^2$;

Received August 17, 1981.

© 1983 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

- (3) $M_a = e_{-a}H^2 \cap (e_ah/\overline{h})\overline{H}^2;$
- (4) π_a is projection onto M_a ;
- (5) H^{∞} is the space of essentially bounded functions on R whose Poisson extensions to the upper half-plane are analytic.

Then $S^{-1}\pi_a S$ is the projection from Z onto $Z(-\infty, a) \cap Z(-a, \infty)$. This is the projection which will be studied in light of the following theorem due to Dym [3].

THEOREM. If 1/w is locally integrable and $||e_{2s}h/\overline{h} - F||_{\infty} < 1$ for some s > 0 and $F \in H^{\infty}$, then $Z(-a, a) = Z(-\infty, a) \cap Z(-a, \infty)$ for every a > s.

For a fixed outer function h and a real number T let r(T) and $r_*(T)$ be the numbers defined by

$$r(T) = \operatorname{dist}(e_T \overline{h}/h, H^{\infty}) = \inf\{\|e_T \overline{h}/h - g\|_{\infty} : g \in H^{\infty}\}$$

and

$$r_*(T) = \operatorname{dist}(e_T h/\overline{h}, H^\infty).$$

A well-known duality argument of Helson-Szego [7] shows that

$$r(2a) = \cos_{Z}(Z(-\infty, -a), Z(a, \infty))$$

and

$$r_*(2a) = \cos_{L^2}(e_{-a}\overline{H}^2, (e_ah/\overline{h})H^2)$$

where $\cos_{H}(A, B)$ denotes the cosine of the angle between the subspaces A and B of H.

3. Approximation of π_a

The operator studied here is $Q_a P_{-a}$. The number $r_*(2a)$ gives an estimate of $||(Q_a P_{-a})^n - \pi_a||$.

THEOREM 1. Let w^{-1} be locally integrable. Then the following are equivalent:

(i) $r^*(2a) < 1;$

(ii) $(Q_a P_{-a})^n \to \pi_a$ exponentially fast in operator norm;

(iii) w may be written in the form

$$w(x) = |B(x)|^{-2} \exp[u(x) + \tilde{v}(x)] \quad (-\infty < x < \infty);$$

where B is entire of exponential type at most a, and where u and v are real functions in L^{∞} with $\|v\|_{\infty} < \pi/2$ (\tilde{v} denotes the harmonic conjugate of v).

Proof. First, note (as in [4]) that

$$M_a = [e_{-a}\overline{H}^2 + (e_a h/\overline{h})H^2]^{\perp}.$$

If (i) is true, then the bracketed summands above are at a positive angle so their sum is closed. Thus,

$$L^{2} = M_{a} \oplus \left[e_{-a} \overline{H}^{2} + (e_{a} h/\overline{h}) H^{2} \right].$$

Next note that the bracketed summands may also be identified with $(e_{-a}H^2/M_a)^{\perp}$ and $[(e_ah/\overline{h})\overline{H}^2/M_a]^{\perp}$, respectively, in L^2/M_a . Hence,

$$1 > r_{*}(2a) = \cos((e_{-a}H^{2}/M_{a})^{\perp}, [(e_{a}h/\overline{h})\overline{H}^{2}/M_{a}]^{\perp})$$
$$= \cos(e_{-a}H^{2}/M_{a}, (e_{a}h/\overline{h})\overline{H}^{2}/M_{a})$$

(see [6]). The last quantity is just the norm of the operator

$$(Q_a - \pi_a)(P_{-a} - \pi_a).$$

Thus,

$$\|(Q_a P_{-a})^n - \pi_a\| = \|(Q_a P_{-a} - \pi_a)^n\|$$

= $\|[(Q_a - \pi_a) (P_{-a} - \pi_a)]^n|$
 $\leq r_* (2a)^n,$

so (ii) follows. If, on the other hand, $||(Q_a P_{-a})^n - \pi_a|| < 1$ for some *n*, so is the norm of the positive operator $(P_{-a}Q_a P_{-a} - \pi_a)^n$, so

$$\|Q_a P_{-a} - \pi_a\| = \|P_{-a} Q_a P_{-a} - \pi_a\|^{1/2} < 1$$

and (i) is true.

The equivalence of (i) and (iii) relies on a standard analytic continuation argument. If (i) holds, it is possible to write $h/\overline{h} = e_{-2a} \ b \ \exp[i(\overline{u} - v)]$ where b is an inner function and where u and v are real functions in L^{∞} with $\|v\|_{\infty} < \pi/2$ (see [7]). It then follows that

$$F = e_{-2a} b \exp \left[(u + \tilde{v}) + i(\tilde{u} - v) \right] / h^2 \ge 0 \quad \text{a.e.}$$

on R and extends analytically into the upper half-plane. Since $1/h^2$ is locally integrable on R, and the other factor is essentially in H^1 , it is possible to continue F analytically into the lower half-plane (see [8]). Furthermore, F is of bounded type $\leq 2a$ in both half-planes, so by a theorem of Krein, F has exponential type $\leq 2a$. (See [1, p. 38] for a discussion of this). Also, F may be factored: $F(x) = |B(x)|^2$ ($-\infty < x < \infty$) where B is entire and of exponential type $\leq a$. Thus, $w = |h|^2 = |B|^{-2} \exp(u + \tilde{v})$ as desired. Conversely, if (iii) holds, then

$$h/h = e_{-2\tau}b \exp[i(\tilde{u} - v)]$$

where $\tau \leq a$ and b is a Blaschke product whose zeroes arise from the zeroes of B. Then

$$e_{2a}h/\overline{h} = e_{2(a-\tau)}b \exp[i(\overline{u} - v)]$$

whose distance to H^{∞} is less than unity so $\rho_{*}(2a) < 1$, and the theorem is proved.

4. The Compactness of $Q_a P_{-a} - \pi_a$

The result of this section relies on properties of Toeplitz operators and functions on the unit circle T. If ϕ is an essentially bounded function on R, let $W(\phi)$ denote the Wiener-Hopf operator on H^2 defined by $W(\phi)f =$ $P(\phi f)$ where P is the orthogonal projection from L^2 onto H^2 . For each function f on R let Vf denote the function on T given by

$$Vf(e^{i\theta}) = f[i(1 + e^{i\theta})/(1 - e^{i\theta})].$$

Then V induces an isometry from $L^{\infty}(R) \to L^{\infty}(T)$ which maps $H^{\infty}(R)$ + $C_0(R)$ onto $H^{\infty}(T) + C(T)$, where $C_0(R)$ denotes the continuous functions on R which vanish at ∞ , and C(T) denotes the continuous functions on T. Devinatz [2, p. 83] showed that $W(\phi)$ is unitarily equivalent to the Toeplitz operator on $H^2(T)$ with symbol $V(\phi)$. Thus, properties of Toeplitz operators can be carried over to Wiener-Hopf operators. The following facts will be needed: Let ϕ be a unimodular function on R.

- (4.1) (Nehari's Theorem) $||I W(\overline{\phi})W(\phi)||^{1/2} = \text{dist } (\phi, H^{\infty}).$ (4.2) (Hartman) $I W(\overline{\phi})W(\phi)$ is compact if and only if $\phi \in H^{\infty} + C_0$.
- (4.3) $W(\phi)$ is left invertible if and only if dist $(\phi, H^{\infty}) < 1$.
- $W(\phi)$ is left Fredholm if and only if dist $(\phi, H^{\infty} + C_0) < 1$. (4.4)
- (4.5) (Wolff) $\phi \in H^{\infty} + C_0$ if and only if ϕ can be written as

$$\phi = [(x+i)/(x-i)]^n \cdot b \cdot \exp[i(v-\tilde{u})]$$

where b is an inner function, and u, v are real functions in C_0 (n a positive integer).

- (4.6) (Coburn) $W(\phi)$ and $W(\overline{\phi})$ cannot both have nontrivial kernels.
- (4.7) A function of the form $\exp(u + \tilde{v})$ with u and v in C_0 is locally in L^p for every finite p.

Wolff's factorization can be found in [11]; a nice discussion including the rest of the results can be found in [9].

THEOREM 2. A necessary and sufficient condition for $Q_a P_{-a} - \pi_a$ to be compact is that w can be written in the form

(4.8)
$$w(x) = |B(x)|^{-2} \exp(u + \tilde{v}) (-\infty < x < \infty)$$

where B is entire of exponential type \leq a and where u and v are real functions in $C_0(R)$.

Proof. Let $\phi = e_{2a}h/\overline{h}$ and suppose that $Q_aP_{-a} - \pi_a$ is compact. If $||Q_aP_{-a} - \pi_a|| = 1$, then there is a function f in M_a^{\perp} with unit norm such that $||Q_aP_{-a}f|| = 1$. Since Q_a and P_{-a} are projections, $f \in e_{-a}H^2 \cap (e_ah/\overline{h})\overline{H}^2 = M_a$. This is absurd, so it follows that $||Q_aP_{-a} - \pi_a||$ and hence $\rho_*(2a)$ are less than unity so by 4.3, $W(\phi)$ is left invertible. Because $(e_ah/\overline{h})H^2$ is contained in the kernel of π_a , $P_{-a}Q_aP_{-a} | (e_ah/\overline{h})H^2$ is compact. For a function f in L^{∞} , let the symbol f also denote the multiplication operator $g \to fg$ on l^2 . Then we have

$$P_{-a}Q_{a}P_{-a} \mid (e_{a}h/\overline{h})H^{2} = e_{-a}Pe_{a}(e_{a}h/\overline{h})(I-P)(e_{-a}\overline{h}/h)e_{-a}Pe_{a} \mid (e_{a}h/\overline{h})H^{2}$$

so that $P\phi(I - P)\overline{\phi} P \phi \mid H^2$ is compact. This last operator equals

$$W(\phi)[I - W(\overline{\phi})W(\phi)];$$

since $W(\phi)$ is left invertible, it follows that $I - W(\overline{\phi})W(\phi)$ is compact. By (4.2), $\phi \in H^{\infty} + C_0$, so

$$e_{2a}h/\overline{h} = [(x+i)/(x-i)]^n \cdot b \cdot \exp[i(v-\widetilde{u})]$$

where b is inner, and where u and v are real functions in C_0 . An application of (4.7) allows the analytic continuation argument of Theorem 1 to be carried out and we get

$$w(x) = (1 + x^2)^n e^{u+v} / |B|^2$$

The factor $(1 + x^2)^n$ may be absorbed into the exponent with no harm at the expense of the required number of zeroes from the denominator, $|B|^2$. (B must have at least n + 1 zeroes, or

$$(1 + x^2)^n e^{u+v}/|B|^2$$

would not be integrable.)

Suppose, conversely, that w is of the form (4.8). Then

$$\phi = e_{2a}h/\overline{h} = e_s b \exp[i(v - \tilde{u})]$$
 where $s \ge 0$;

b is a Blaschke product whose zeroes arise from the zeroes of B. Thus, $\phi \in H^{\infty} + C_0$ so $W(\phi)$ is left Fredholm by (4.4) so has closed range. Note also that h is in the kernel of $W(\overline{\phi})$ so, by (4.6), $W(\phi)$ is one to one and hence left invertible. Therefore, $dist(\phi, H^{\infty}) < 1$. This last condition implies that

$$L^{2} = M_{a} \oplus \left[(e_{a}h/\overline{h})H^{2} + e_{-a}\overline{H}^{2} \right]$$

where the bracketed summands are at a positive angle. Now, $M_a + e_{-a}\overline{H}^2$ is contained in the kernel of $Q_a P_{-a} - \pi_a$ and

$$[W(\phi) - W(\phi)W(\overline{\phi})W(\phi)]$$

is compact, so $P_{-a}Q_aP_{-a} | (e_ah/\overline{h})H^2$ is also compact. Thus $P_{-a}Q_aP_{-a} - \pi_a$ is compact on L^2 . This last operator is just $(Q_aP_{-a} - \pi_a)^*(Q_aP_{-a} - \pi_a)$, so $Q_aP_{-a} - \pi_a$ is compact as well. This completes the proof of Theorem 2.

Remark. The above proof also shows that $Q_a P_{-a} - \pi_a$ is trace-class if and only if

$$\int_T^\infty t |(\overline{h}/h)^{\check{}}(t)|^2 dt < \infty$$

for some finite T (see [5, p. 135]).

Example. If $w = 1/(x^2 + 1)^{3/2}$, then $h/\overline{h} = (x - i)^{3/2}/(x + i)^{3/2}$. It is not hard to see that r_* $(2a) = e^{-2a}$ but that $e_{2a}h/\overline{h}$ is not in $H^2 + C_0$ for any a. Thus, $(Q_a P_{-a})^n$ provides a good approximation of π_a for all positive a, but the remainder is never compact.

5. The relation between r_* and strong mixing

The quantity r(a) measures the dependence of the "future" of the process from time *a* upon the "past" of the process. If $r(a) \rightarrow 0$ as $a \rightarrow \infty$, then the process is said to be strongly mixing or completely regular (see [7]). It was shown in [6] that if either r(a) or $r_*(a)$ tends to zero and the other is eventually less than unity, then both quantities tend to zero. It turns out that a quantitative relation exists between the rates of decay of *r* and r_* . The following lemma generalizes a result proved by Dym [5, p. 132].

LEMMA. If a, b, and c are positive real numbers, then $r(a + b + c) \leq r(a)r(c) + r_*(b).$

Proof. Let f and g belong to the unit spheres of $Z(a + b + c, \infty)$ and $Z(-\infty, 0)$ respectively. Let $\pi_{a,b}$ denote the orthogonal projection on $e_a H^2 \cap (e_{a+b}h/\bar{h})\bar{H}^2$ in L^2 . Then if \langle , \rangle_w and \langle , \rangle respectively denote the inner products in Z and L^2 , we have

$$\begin{split} |\langle f, g \rangle_w | &= |\langle fh, gh \rangle| \\ &= |\langle P_a fh, Q_{a+b} gh \rangle| \\ &= |\langle fh, P_a Q_{a+b} gh \rangle| \\ &\leq |\langle fh, (P_a Q_{a+b} - \pi_{a,b}) gh \rangle| + |\langle fh, \pi_{a,b} gh \rangle| \\ &\leq r_*(b) + r(a) r(c). \end{split}$$

Since r(a + b + c) is the supremum of all such quantities, the lemma is proved.

As a consequence, we have the following theorem.

THEOREM 3. If $\lim_{t\to\infty} r_*(t) = 0$ and r(a) < 1, then there exist constants K and c such that

$$r(n^2a) \leq K(e^{-cn} + r_*(cn))$$

for every positive integer n.

Proof. Let $\alpha = r(a)$. Then from the preceding lemma,

$$r(3a) \leq \alpha^2 + r_*(a),$$

$$r((3 + 2 + 1)a) \leq r(3a)r(a) + r_*(2a) \leq \alpha^3 + \alpha r_*(a) + r_*(2a),$$

and, inductively,

$$r\left(\sum_{k=1}^{n} ka\right) \leq \alpha^{n} + \alpha^{n-2}r_{*}(a) + \alpha^{n-3}r_{*}(2a) + \cdots + \alpha r_{*}(n-2)a + r_{*}((n-1)a).$$

Since $r_*(t)$ is a non-increasing function of t,

$$\begin{split} r \bigg(\frac{n^2 + n}{2} \cdot a \bigg) &\leq \{ \alpha^n + \alpha^{n-2} + \dots + \alpha^{[n/2]} \} + r_*([n/2]a) \{ \alpha^{[n/2]} \\ &+ \alpha^{[n/2]-1} + \dots + 1 \} \\ &\leq \alpha^{[n/2]} \frac{1}{1 - \alpha} + r_*([n/2]a) \frac{1}{1 - \alpha}. \end{split}$$

This proves the theorem with $K = (1 - \alpha)^{-1}$ and $c = 3^{-1} \cdot \min(1, -\ln\alpha)$.

REFERENCES

- 1. L. DE BRANGES, *Hilbert spaces of entire functions*, Prentice Hall, Englewood Cliffs, New Jersey, 1968.
- 2. A. DEVINATZ, "On Wiener-Hopf operators" in Functional analysis, B. Gelbaum, ed., Thompson, Washington, D.C., 1967, pp. 81–118.
- 3. H. DYM, A problem in trigonometric approximation theory, Illinois J. Math., vol. 22 (1978), pp. 401-403.
- Trace formulas for a class of Toeplitz-like operators II., J. Functional Analysis, vol. 28 (1978), pp. 33-57.
- 5. H. DYM and H. P. MCKEAN, Gaussian processes, function theory, and the inverse spectral problem, Academic Press, New York, 1976.
- E. HAYASHI, The spectral density of a strongly mixing stationary Gaussian process, Pacific J. Math., vol. 96 (1981), pp. 343-359.
- 7. H. HELSON and D. SARASON, Past and future, Math. Scand., vol. 21 (1967), pp. 5-16.
- 8. P. Koosis, Moyennes quadratiques de transformée de Hilbert et fonctions de type exponentiel, C.R. Acad. Sci. Paris, vol. 276 (1973), pp. 1201–1204.
- 9. D. SARASON, Function theory on the unit circle, Lecture notes, Conference at Virginia Polytechnic and State Univ., Blacksburg, Virginia, 1978.
- 10. A. SEGHIER, Prediction d'un processus stationnaire du second ordre de covariance connue sur une intervalle fini, Illinois J. Math., vol. 22 (1978), pp. 389-401.
- 11. T. WOLFF, Two algebras of bounded functions, to appear.

FORDHAM UNIVERSITY

NEW YORK