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SPHERES AND CYLINDERS: A LOCAL GEOMETRIC
CHARACTERIZATION

BY
HaroLDp P. Boas

This note characterizes the smooth hypersurfaces in Euclidean space which
satisfy locally the following geometric condition.

(*) For each two points of the surface, the chord joining them meets the
normal to the surface in equal angles at the two points.

This condition arose in the study of the Bochner-Martinelli integral for-
mula, which is a higher-dimensional analogue of Cauchy’s integral formula in
the complex plane. In [1] the author proved that the Bochner-Martinelli
operator, viewed as a bounded singular integral operator acting on the Hilbert
space of square-integrable functions on the boundary of a smooth bounded
domain, is self-adjoint if and only if the domain is a ball. The proof hinged on
the following geometrical result, which has nothing to do with complex
analysis.

GLoBAL CHARACTERIZATION THEOREM. Let G be a bounded C* smooth do-
main in R*,k = 2. Then the boundary of G satisfies (*) if and only if G is a
ball.

The proof of the Global Characterization Theorem in [1] uses a compact-
ness argument, and therefore does not address the question, asked by N. Kerz-
man, of which surfaces satisfy (*) locally. It is easy to see that, in addition to
subsets of spheres S, subsets of planes R* and subsets of spherical cylinders
S" x R™ do satisfy (x). Our result in this article is that there are no other
possibilities.

LocaL CHARACTERIZATION THEOREM. Let M be a connected smooth C*
local hypersurface in R*, k = 2. Then M satisfies (») if and only if M lies in a
surface of the form

S¥1x R, 0=j=<k-1.
Our hypotheses are, more explicitly, that there is an open set U C R*and a
continuously differentiable normalized defining function
r: U-R
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such that
M= {xeU:rx) =0}

and the gradient Vr has unit length on M, M is connected, and for all points x
andy of M

x=y)-Vr(x) = (y—x) - Vr(y), 0y
where the dot denotes the usual Euclidean scalar product.

Proof. 1t is enough to show that M has the required form in some neigh-
borhood of an arbitrary point p € M, for the theorem then follows by an ob-
vious connectedness argument. Therefore we may shrink U without loss of
generality, and since condition (x) is preserved by conformal coordinate
transformations, we are also free to carry out translations, rotations, and dila-
tions. Making a rigid motion we may assume that p = 0 and that the unit nor-
mal Vr(p) is the k-th basis vector e, = (0,..., 0, 1), and shrinking U we may
assume that U is a cube centered at the origin such that

vr(x) - e. > 1/2

for all x € U. The latter choice, which invokes the continuity of the derivatives
of r, in particular ensures by the implicit function theorem that M may be
realized as the graph of a function of the first kK — 1 variables.

For reference we list two direct consequences of (*): If x and y are two points
of M with corresponding unit normals » and g, then

VeX = —@€- X, )
peX—=v-y=e-x-y). 3)

Equation (2) results from (1) by setting y = 0. Equation (3) follows by sub-
tracting (2) from (1) and then adding equation (2) with x replaced by y.

The theorem is proved by induction on the dimension k. The case k = 2 is
in essence known [2], with a geometric demonstration. We give here an
analytic proof. Let (¥, v) denote any point of M other than the origin, and let
(m,~ 1 — m?*) denote the corresponding unit normal. Then

mu + l-m?* v= -y

by equation (2). Hence m = 0if and only if v = 0. In any case it follows that
u? — v > 0 and that

m = —2uv/(u*+ v?.
Since the slope of the curve M at (4, v) is —m/ v 1 —m? , M satisfies the
differential equation

dv _  2uv @)

du uz—v?
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in the domain {(#, v) € U: u?> > v?}. The substitution w = v/u transforms (4)
into

u dw _ w(l+w)
du 1-w?

which has the integrals cu = w/(1 + w?), cE€R arbitrary, that is,
v = c(u?*+ v¥. Thus both to the right and to the left of the origin M has the
form of a circle (if we regard the line v = 0 as a degenerate circle). Since the
hypothesis (*) holds at all points, it is clear that M is the same circle on both
sides of the origin.

The basis step of the induction being established, we now assume the result
for dimension k — 1, where k > 2. The proof divides into two cases, depend-
ing on whether or not the tangent plane intersects M at points other than the
origin,

Casel. M\ (0} intersects the tangent plane {x:x - e, = 0}. After arota-
tion about the e,-axis and a uniform dilation of the coordinates, we may
assume that a point of intersection is the first basis vector e,= (1, 0, ..., 0).
Let » denote the corresponding unit normal. The planar slice

MNix:x-¢ =0,j + 1, k}

is a differentiable curve passing through the origin and the point e,. By Rolle’s
theorem it follows that there is a point y on the curve, 0 < y - e, < 1, with unit
normal u = Vr(y) satisfying u - e, = 0. By (2) we have

—e-y=pu-y=(u-e)e-y).

By assumption p - e, > 1/+/2, so this forces y - e, = 0. Thus y lies on the
e,-axis, sayy = ce;, 0 < c < 1.
Let x be an arbitrary point of M, with unit normal w. By (3),

wee—v-x=¢e--(e—-xX)= —e-x,
W Cli—pX=¢-(c;—x) = —e-X
whence
l-dw-e,—-(r—w-x=0, 5)
(w—cv)-x=(1-0e.- x. ©6)

If M lies in a (k — 1)-dimensional hyperplane there is nothing to prove. Other-
wise, there are k linearly independent points in M, and since (6) holds for all
X € M, it follows that

p—cv = (1 -c)e;.

Then p = » = e, since all three are unit vectors. Equation (5) then reduces to
w- e, = 0. Thus the component of the gradient of r in the e,-direction
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vanishes everywhere on M; M is independent of the e,-direction. Hence M is
the cartesian product of an interval I of the e,-axis with the slice

M, =MN{x:x-e = 0}.

The slice M, inherits condition (*), so by the induction hypothesis M, has the
required form. Then so does M = I X M,. This completes the proof of Case 1.

Case 2. M intersects the tangent plane {x:x-:-e. = 0} only at the
origin. In this case, M \ {0} lies entirely on one side of the tangent plane, say
below. It follows from (2) that if x € M \ {0} then » - e, # 1; since the k-th
component of the normal v by assumption is also different from —1, this
means that the other components of » do not all vanish. Therefore relatively
open subsets of horizontal slices

MNix:x.e = —aj
are smooth. For0 < ¢ < inf [—x - e, : x€E M N 3G U)}, the slice
M. =MOx:x-e = —e}ﬂ%U

is a compact set which we view as the boundary of a smooth C* bounded do-
main in the affine subspace

R'={x:x-e = —¢€l.

There is a chord through M. of maximal length, and this chord necessarily
meets M, orthogonally at both endpoints g, and g,. Equation (1) then implies
that the k-th components of the unit normals to M are equal at ¢, and g,, and
the remaining components are equal in magnitude and opposite in sign. Since
e« g, = —¢€ = e - @, equation (3) implies

(@2-q) - (@:1+q) = 0.

In other words, the hyperplane H = {x : x - (¢ — q,) = 0} through the origin
orthogonal to the chord g, — ¢, also bisects this chord.

Let y be any point of the normal slice M N H. By symmetry, the chords
¢, — y and ¢, — y make equal angles with the normals to M at g, and g,. Hence
the chords y — g, and y — ¢, make equal angles with the normal to M at y. This
means that the normal at y lies in H, so the slice M N H, viewed as a surface in
H = R*!, inherits condition (*). By the induction hypothesis M N H lies in a
(k — 1)-sphere, which has the e,-direction as an axis of symmetry. (This slice is
neither planar nor cylindrical because it contacts the tangent plane {x :
x - e, = 0} only at the origin.)

Via a rotation about the e,-axis and a uniform dilation, we may assume that
H={x:x-e=0},q,+-e =1,andg,-e, = —1. Let

me,+~N1—-m? e

denote the unit normal at g,, where
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m—eNI—m = )

by equation (2), so that m = 2¢/(1 + €?). Since M N H is spherical, there is
a > Osuch that for allj # 1, k, the points + ae, — ee, lie in M, N H and have
unit normals

tne,+V1-n?e,
where
an—evV1-—n*=e ®

By (3), we have
(xne,+v1-n%e)-q, = (me,+v1-mte)- -(tae—ce), j+1,k

Therefore e;- ¢, = 0,j # 1,k, and m = n. Hence a = 1 by (7) and (8). In
sum, the points + ¢, — ee,,j # k, lie in M, and the corresponding unit nor-
mals are

+me,+V 1—-—mie,.
Now let x be any point of M, with corresponding unit normal ». By (3)

v-(te—ce)—(xtme+V1—-—m2e) - x=e-(te—ce.—x), j+k,

whence
V'ej=mej'x, j¢k, (9)
ev-e+V1l—mle,-x=¢c+e-x. (10)

Inserting the value of m from (7) into (10) we find
V'e;,=l+me,,-x. (11)

Combining (2), (9), and (11) yields mx?+ 2e, - x = 0, which is the equation
of a sphere of radius 1/ m centered at (0,...,0, — 1/m). This completes the
proof.
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