THE ACTION OF THE STABLE OPERATIONS OF COMPLEX K-THEORY ON COEFFICIENT GROUPS

BY

KEITH JOHNSON

Introduction

A stable operation of degree 0 on complex K-theory is a natural transformation

$$\phi^*: K^*() \to K^*()$$

and may be identified with a map of spectra $\phi: K \to K$. Adams and Clarke [1] showed that the set of such operations is large, in fact uncountable. Since the coefficient groups $K^*(S^0) = \pi_*(K)$ are shown to be Z for * even, 0 for * odd, it is natural to ask what the action of ϕ on these groups might be. The present paper answers this question, both for K-theory and K-theory localized at a prime.

In [4] and [3], Lance and Clarke respectively considered the corresponding unstable question, i.e., the action induced in homotopy by a self *H*-map of *BU* or $BU_{(p)}$. Our results are of the same form as theorem 4 of [3], but in the stable case we must consider $\pi_i(K)$ for i < 0 as well.

We will define integers $\gamma_p(n)$, $\Gamma(n)$, $t_p(n,i)$, v(n,i) for $n \in \mathbb{Z}^+$, $0 \le i \le n$ and show:

THEOREM 1. If the action of $\phi: K_{(p)} \to K_{(p)}$ on $\pi_{2i}(K_{(p)}) = \mathbb{Z}_{(p)}$ is multiplication by λ_i , then

$$\sum_{i=0}^{n} t_{p}(n,i) \cdot \lambda_{i-m} \equiv 0 \mod p^{\gamma_{p}(n)}$$

for all $n \in \mathbb{Z}^+$, $m \in \mathbb{Z}$. Furthermore every sequence $\{\lambda_i\}$ satisfying these congruences for the special cases $m = \lfloor n/2 \rfloor$ arises from a unique map of spectra.

THEOREM 2. If the action of $\phi: K \to K$ on $\pi_{2i}(K) = \mathbb{Z}$ is multiplication by λ_i , then

_ _

$$\sum_{i=0}^{n} v(n,i) \cdot \lambda_{i-m} \equiv 0 \mod \Gamma(n)$$

for all $n \in \mathbb{Z}^+$, $m \in \mathbb{Z}$. Furthermore every sequence $\{\lambda_i\}$ satisfying these congruences for the special cases $m = \lfloor n/2 \rfloor$ arises from a unique map of spectra.

Received October 14, 1981.

[®] 1984 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

The functions γ_p and Γ are easily described:

$$\gamma_{p}(n) = \nu_{p}((n + [n/p - 1])!)$$

where [x] denotes the largest integer less than or equal to x, and $\nu_p(x)$ denotes the *p*-adic valuation, i.e., the largest integer *m* for which p^m divides x; and $\Gamma(n)$ is the unique integer with $\nu_p(\Gamma(n)) = \gamma_p(n)$ for all primes *p*.

The integers $t_p(n,i)$ can be described as follows: For a given prime p, let a_1, a_2, \ldots denote the sequence $1, 2, 3, \ldots, p-1, p+1, \ldots$ of integers prime to p. Then $t_p(n,i)$ is defined by the equation

$$(w-a_1)...(w-a_n) = \sum_{i=0}^n t_p(n,i) \cdot w^i$$

For the integers v(n,i), we first choose a sequence $a_{1,n}, \ldots, a_{n,n}$ of integers subject to the conditions that for each prime p for which $\gamma_p(n) > 0$, we have

$$a_{i,n} \equiv a_i \mod p^m$$

where *m* is the least integer for which $p^m > a_n$. Note that a_i depends on the prime *p* being considered. This is a finite set of conditions, and can always be satisfied, by the Chinese Remainder Theorem. The v(n,i) are defined by the equation

$$(w-a_{1,n})\ldots(w-a_{n,n}) = \sum_{i=0}^{n} v(n,i) \cdot w^{i}.$$

The proof of these theorems is based on the fact that $(K_0K)_{(p)}$ and K_0K are free over $\mathbb{Z}_{(p)}$ and \mathbb{Z} respectively. This was established in [1], and implies that the Kronecker pairing induces an isomorphism. In §1 we construct explicit bases for $(K_0K)_{(p)}$ and K_0K and use this in §2 to prove the theorems.

Section 1

We begin by recalling from [2] the description of the hopf algebra K_*K . There it was pointed out that the natural map $K_*K \rightarrow K_*K \otimes Q$ is an injection, and that $K_*K \otimes Q$ equals $Q[u, v, u^{-1}, v^{-1}]$, i.e., finite Laurent series in two variables [2, Propositions 2.1 and 2.2]. Thus it suffices to describe those series lying in the image of this map, and this was done in [2] by giving a certain integrality condition (Theorem 2.3).

For our purposes it is sufficient to only consider K_0K , and to give a slightly different description. Letting w = v/u, we see that

$$K_0K\otimes Q = Q[w,w^{-1}].$$

Let A denote the ring of polynomials $f \in Q[w]$ which take integral values at the integers. Proposition 5.3 and Theorem 2.3 of [2] can be restated as the following description of K_0K in terms of A:

PROPOSITION 3. The image of $K_0 K$ in $Q[w, w^{-1}]$ equals the union of the subrings $(1/w^n) \cdot A$ for n = 0, 1, 2, In [12], Adams and Clarke show that K_0K is actually a free abelian group. This isn't obvious from the description above, even though A is easily seen to be free. The difficulty is that $K_0K \cap Q[w]$ contains more than just A, for example it contains $(w^2 - 1)/24$.

We will see that this problem does not arise in the *p*-local case, and so we consider it first. Let us fix a prime *p*, and let *B* denote the subring of Q[w] consisting of those polynomials *f* for which $f(k) \in \mathbb{Z}$, if *k* is an integer prime to *p*. Also let us denote by $G_{(p)}$ the *p*-localization of an abelian group *G*.

LEMMA 4. $B \supseteq A$, and for any $f \in B$ there exists an integer n such that $w^n \cdot f \in A_{(p)}$.

PROOF. The first statement is immediate. For the second, take n to be the maximum of the *p*-exponents of the denominators of the coefficients of the polynomial f.

The inclusion $K_0 K \rightarrow Q[w, w^{-1}]$ extends uniquely to an inclusion

$$(K_0K)_{(p)} \to Q[w, w^{-1}].$$

The previous lemma implies the following *p*-local analog of Proposition 3:

PROPOSITION 5. The image of $(K_0K)_{(p)}$ in $Q[w, w^{-1}]$ equals the union of the subrings $(1/w^n) \cdot B_{(p)}$.

In contrast with A, the ring B has the following useful property:

LEMMA 6. If $w^n \cdot f \in B_{(p)}$, and $f \in Q[w]$, then $f \in B_{(p)}$.

Proof. It suffices to show that if $w^n \cdot f \in B$, then there exists a non-zero integer b prime to p for which $b \cdot f \in B$. There certainly exists some non-zero integer for which $b \cdot f \in B$, for example the product of the denominators of the coefficients of f. Order the non-zero integers with this property by divisibility and choose a minimal one, b.

Suppose b were divisible by p, and let $b = p \cdot b'$. If (k,p) = 1, then we have $b \cdot f(k) = p \cdot b' \cdot f(k) \in \mathbb{Z}$ and also $k^n \cdot f(k) \in \mathbb{Z}$. Thus $b' \cdot f(k) \in \mathbb{Z}$, and so $b' \cdot f \in B$, contradicting the minimality of b.

This lemma will allow us to construct a basis for $(K_0K)_{(p)}$ from one for $B_{(p)}$. A basis for $B_{(p)}$ can be constructed as follows:

DEFINITION 7. Define polynomials $q_n(w) \in Q[w]$ by

 $q_o(w) = 1, \quad q_n(w) = (w - a_1) \dots (w - a_n)/(a_{n+1} - a_1) \dots (a_{n+1} - a_n)$

where a_1, a_2, \ldots are as defined in the introduction. Note that the *p*-adic norm of the denominator of $q_n(w)$ is $\gamma_p(n)$.

PROPOSITION 8. $\{q_n | n = 0, 1, 2, ...\}$ is a basis over $\mathbb{Z}_{(p)}$ for $B_{(p)}$.

Proof. Since

- (a) degree $(q_n) = n$,
- (b) $q_n(a_i) = 0$ if $i \le n$ and $q_n(a_i) = 1, i = n + 1$,

it is clear that any polynomial f of degree n in $B_{(p)}$ can be expressed as a $\mathbb{Z}_{(p)}$ linear combination of q_0, \ldots, q_n .

It remains, therefore, to show that $q_n \in B_{(p)}$. For this we note that $B_{(p)}$ can be described as those $f \in Q[w]$ for which $f(k) \in \mathbb{Z}_{(p)}$ for all integers k prime to p. Thus we must show that for such k,

 $\nu_p((k-a_1)\dots(k-a_n)) \geq \nu_p((a_{n+1}-a_1)\dots(a_{n+1}-a_n)).$

Since (k,p) = 1, we note that

$$\nu_p((k-a_1)\dots(k-a_n)) = \nu_p((k-1)\cdot(k-2)\dots(k-a_n)) \\ = \nu_p((k-1)!/(k-a_n-1)!)$$

and

$$\nu_p((a_{n+1}-a_1)\dots(a_{n+1}-a_n)) = \nu_p((a_{n+1}-1)!/(a_{n+1}-a_n-1)!)$$

= $\nu_p((a_{n+1}-1)!).$

Now $(k-1)!/(k-a_n-1)!a_n!$ is a binomial coefficient, and so is an integer. Thus

$$\nu_p((k-1)!/(k-a_n-1)!) \geq \nu_p(a_n!).$$

If a_{n+1} is not congruent to 1 mod p, then $a_{n+1} - 1 = a_n$, and we are finished. If $a_{n+1} \equiv 1 \mod p$, then

$$\nu_p((k-a_1)\dots(k-a_n)) = \nu_p((k-1)!/(k-a_n)!)$$

$$\geq \nu_p((a_n+1)!)$$

$$= \nu_p((a_{n+1}-1)!).$$

PROPOSITION 9. $\{(1/w^{[n/2]}) \cdot q_n | n = 0, 1, 2, ...\}$ is a basis for $(K_0K)_{(p)}$ over $\mathbb{Z}(p)$.

Proof. We make use of the subgroups F(n,m) introduced in [1]. Let

$$F(n,m) = (K_0K)_{(p)} \cap \operatorname{span}(w^n, w^{n+1}, \ldots, w^m)$$

and let $l,t: F(n,m) \to \mathbf{Q}$ be the homomorphisms $l(f) = a_m, t(f) = a_n$ if $f = \sum_{i=n}^{m} a_i w^i$. By Lemma 6, any element of F(n,m) is of the form $w^n \cdot f$ with $f \in B_{(p)}$ of degree m - n. Since f is a linear combination of q_0, \ldots, q_{m-n} we see that image(l) and image(t) are equal to $l(q_{m-n}) \cdot \mathbf{Z}(p)$ and $t(q_{m-n}) \cdot \mathbf{Z}(p)$ respectively. Also, l and t induce isomorphisms

$$F(n,m)/F(n,m-1) \simeq \text{Image}(l), F(n,m)/F(n+1,m) \simeq \text{Image}(l).$$

Thus we see, by induction on n, that

$$q_{\circ},\ldots,(1/w^{[n/2]})\cdot q_{n}$$

is a basis for F(-[n/2], n-[n/2]).

60

We return now to the question of finding a basis for K_0K . Our construction is based on the following observation:

PROPOSITION 10. If $\{x_i | i = 0, 1, 2, ...\}$ is a subset of a torsion free abelian group G with the property that for each prime p it forms a $\mathbb{Z}_{(p)}$ basis for $G_{(p)}$, then it forms a basis for G over \mathbb{Z} .

Our candidates for basis elements for K_0K are the Laurent polynomials

$$(1/w^{[n/2]}) \cdot p_n(w),$$

where we define

$$p_{o}(w) = 1$$
 and $p_{n}(w) = (w - a_{1,n}) \dots (w - a_{n,n}) / \Gamma(n)$

with $\Gamma(n), a_{1,n}, \ldots, a_{n,n}$ as in the introduction.

LEMMA 11. For every prime p and nonnegative integer n, $p_n(w) \in B_{(p)}$.

Proof. If $p > n + \lfloor n/p - 1 \rfloor$, then $\gamma_p(n) = \nu_p(\Gamma(n)) = 0$ and the result is obvious. Otherwise, note that if k is an integer prime to p, then

$$\nu_p(k-a_{i,n}) \geq \nu_p(k-a_i)$$

since $a_{i,n} \equiv a_i \mod p^m$ and $0 \le a_i \le p^m$. Thus

 $\nu_p((k-a_{1,n})...(k-a_{n,n})) \geq \nu_p((k-a_1)...(k-a_n)) \geq \gamma_p(n) = \nu_p(\Gamma(n)).$

LEMMA 12. $\{1/w^{[n/2]} \cdot p_n(x) | n = 0, 1, ...\}$ is a basis for $(K_0K)_{(p)}$ over $\mathbb{Z}_{(p)}$.

Proof. By Lemma 11, the prospective basis elements are actually in $(K_0K)_{(p)}$. Consider the matrix expressing $1/w^{(n/2)} \cdot p_n(w)$ in terms of the basis elements of Proposition 9. Since

$$1/w^{[n/2]} \cdot p_n(w) \in F(-[n/2], n-[n/2]),$$

it is a $\mathbb{Z}_{(p)}$ linear combination of $q_0, \ldots, 1/w^{(n/2)} \cdot q_n(w)$ and so the matrix is upper triangular. Furthermore the leading and trailing coefficients of both $p_n(w)$ and $q_n(w)$ have p-adic norm - $\gamma_p(n)$ so that the diagonal entries of the matrix are all units in $\mathbb{Z}_{(p)}$. Thus, by Cramer's rule, the matrix is invertible. The result follows.

COROLLARY 13. $\{1/w^{[n/2]} \cdot p_n(w) | n = 0, 1, ...\}$ is a basis for $K_0 K$ over Z.

Section 2

Now that we have constructed a basis for $(K_0K)_{(p)}$ and K_0K we may conclude, as in [1], Theorem 2.1:

PROPOSITION 14. The Kronecker Pairing induces isomorphism

$$(K^{0}K)_{(p)} \simeq \operatorname{Hom}_{\pi_{*}K_{(p)}}((K_{*}K)_{(p)}, \pi_{*}(K_{(p)}))^{0} \simeq \operatorname{Hom}(K_{0}K_{(p)}, \mathbb{Z}_{(p)})$$

and

$$K_0K \simeq \operatorname{Hom}_{\pi_*K}(K_*K\pi_*K)^{\circ} \simeq \operatorname{Hom}(K_0K, \mathbb{Z}).$$

PROPOSITION 15. The action of

$$\phi \in \operatorname{Hom}(K_0K, \mathbb{Z}) \text{ or } \phi \in \operatorname{Hom}((K_0K)_{(p)}, \mathbb{Z}_{(p)})$$

on $\pi_{2i}(K)$ or $\pi_{2i}(K)_{(p)}$ is multiplication by $\phi(w^i)$.

Proof. Since $\pi_*(K) = \mathbb{Z}[t,t^{-1}]$, where t is of degree 2, the action of a homomorphism $f: \pi_{2i}(K) \to \pi_{2i}(K)$ is multiplication by $f(t^i)$. Recall from [2] that the elements $w, u, v \in K_*K$ are defined by w = v/u, $v = \eta_R(t)$, $u = \eta_L(t)$ where η_R and η_L are the right and left actions of π_*K on K_*K . If $\phi \in K^0K$, then its action on π_*K is given by

$$\phi(x) = \langle \phi, \eta_R(x) \rangle$$

where <, > denotes the Kronecker product.

In Proposition 14 the isomorphism $\operatorname{Hom}_{\pi_*K}(K_*K, \pi_*K) \to \operatorname{Hom}(K_0K, \mathbb{Z})$ is a restriction to K_0K . Using the fact that K_*K is an extended π_*K module [2] we see that an inverse to this isomorphism is given by

$$\chi(f)(x) = f(u^{-1} \cdot x)$$

if $f \in \text{Hom}(K_0K, \mathbb{Z})$, $x \in K_*K$ is of degree 2*i*. If $\phi \in K^0K$ is the element whose image under the isomorphisms of Proposition 14 is *f*, then the action of ϕ on $\pi_{2i}(K)$ is multiplication by

$$\phi(t^{i}) = \langle \phi, \eta_{R}(t^{i}) \rangle = \langle \phi, v^{i} \rangle = f(u^{-i}v^{i}) = f(w^{i}).$$

The *p*-local case is similar.

Proof of Theorem 1. Identify $\phi \in (K^0K)_{(p)}$ with an element of Hom $((K_0K)_{(p)}, \mathbb{Z}_{(p)})$ via Proposition 14. Since $q_n \in (K_0K)_{(p)}$ for all n, we must have

$$\phi(w^{-m} \cdot q_n) \in \mathbb{Z}_{(p)}$$
 for any m .

In other words,

$$\phi(w^{-m}(w-a_1)\dots(w-a_n)/(a_{n+1}-a_1)\dots(a_{n+1}-a_n)) \in \mathbb{Z}_{(p)}$$

or

$$\phi(w^{-m}(w-a_1)\ldots(w-a_n))\in p^{\gamma_p(n)}\cdot \mathbb{Z}_{(p)}$$

Using the definition of t(n, i), this is

$$\sum t_p(n,i) \cdot \phi(w^{i-m}) \in p^{\gamma_p(n)} \cdot \mathbb{Z}(p)$$

or

$$\sum t_p(n,i) \cdot \lambda_{i-m} \in p^{\gamma_p(n)} \cdot \mathbf{Z}(p).$$

as required.

Conversely suppose that $\{\lambda_i\}$ is a sequence of elements $\mathbb{Z}_{(p)}$ satisfying the congruences for the cases $m = \lfloor n/2 \rfloor$. Then

$$x_i = \left(\sum t(n,i) \cdot \lambda_{i-\lfloor n/2 \rfloor}\right)/(p^{\gamma_p(n)})$$

lies in $\mathbb{Z}_{(p)}$. Define an element ϕ of Hom $((K_0K)_{(p)}, \mathbb{Z}_{(p)})$ by

$$\phi((1/w^{[n/2]}) \cdot q_n) = x_n.$$

Since these elements form a basis for $(K_0K)_{(p)}, \phi$ is uniquely defined, and has the required property.

The proof of Theorem 2 is similar.

BIBLIOGRAPHY

- 1. J.F. ADAMS and F.W. CLARKE, Stable operations on complex K-theory, Illinois J. Math., vol. 21(1977), pp. 826-829.
- 2. J.F. ADAMS, A.S. HARRIS and R.M. SWITZER, Hopf algebras of cooperations for real and complex K-theory, J. London Math. Soc. (3), vol. 23(1971), pp. 385-408.
- 3. F.W. CLARKE, Self-maps of BU, Proc. Cambridge Philos. Soc., vol. 89(1981), pp. 491-500.
- 4. T. LANCE, Local H-Maps of classifying spaces, Trans. Amer. Math. Soc., vol. 254(1979), pp. 195-215.

Dalhousie University Halifax, Nova Scotia, Canada