THE ACTION OF THE STABLE OPERATIONS OF COMPLEX K-THEORY ON COEFFICIENT GROUPS

BY
Keith Johnson

Introduction

A stable operation of degree 0 on complex K-theory is a natural transformation

$$
\phi^{*}: K^{*}() \rightarrow K^{*}()
$$

and may be identified with a map of spectra $\phi: K \rightarrow K$. Adams and Clarke [1] showed that the set of such operations is large, in fact uncountable. Since the coefficient groups $K^{*}\left(S^{0}\right)=\pi_{*}(K)$ are shown to be \mathbf{Z} for $*$ even, 0 for $*$ odd, it is natural to ask what the action of ϕ on these groups might be. The present paper answers this question, both for K-theory and K-theory localized at a prime.

In [4] and [3], Lance and Clarke respectively considered the corresponding unstable question, i.e., the action induced in homotopy by a self H-map of $B U$ or $B U_{(p)}$. Our results are of the same form as theorem 4 of [3], but in the stable case we must consider $\pi_{i}(K)$ for $i<0$ as well.

We will define integers $\gamma_{p}(n), \Gamma(n), t_{p}(n, i), v(n, i)$ for $n \in \mathbf{Z}^{+}, 0 \leq i \leq n$ and show:

Theorem 1. If the action of $\phi: K_{(p)} \rightarrow K_{(p)}$ on $\pi_{2 i}\left(K_{(p)}\right)=\mathbf{Z}_{(p)}$ is multiplication by λ_{i}, then

$$
\sum_{i=0}^{n} t_{p}(n, i) \cdot \lambda_{i-m} \equiv 0 \quad \bmod p^{\gamma_{p}(n)}
$$

for all $n \in \mathbf{Z}^{+}, m \in \mathbf{Z}$. Furthermore every sequence $\left\{\lambda_{i}\right\}$ satisfying these congruences for the special cases $m=[n / 2]$ arises from a unique map of spectra.

Theorem 2. If the action of $\phi: K \rightarrow K$ on $\pi_{2 i}(K)=\mathbf{Z}$ is multiplication by λ_{i}, then

$$
\sum_{i=0}^{n} v(n, i) \cdot \lambda_{i-m} \equiv 0 \quad \bmod \Gamma(n)
$$

for all $n \in \mathbf{Z}^{+}, m \in \mathbf{Z}$. Furthermore every sequence $\left\{\lambda_{i}\right\}$ satisfying these congruences for the special cases $m=[n / 2]$ arises from a unique map of spectra.

[^0]The functions γ_{p} and Γ are easily described:

$$
\gamma_{p}(n)=\nu_{p}((n+[n / p-1])!)
$$

where $[x]$ denotes the largest integer less than or equal to x, and $\nu_{p}(x)$ denotes the p-adic valuation, i.e., the largest integer m for which p^{m} divides x; and $\Gamma(n)$ is the unique integer with $\nu_{p}(\Gamma(n))=\gamma_{p}(n)$ for all primes p.

The integers $t_{p}(n, i)$ can be described as follows: For a given prime p, let a_{1}, a_{2}, \ldots denote the sequence $1,2,3, \ldots, p-1, p+1, \ldots$ of integers prime to p. Then $t_{p}(n, i)$ is defined by the equation

$$
\left(w-a_{1}\right) \ldots\left(w-a_{n}\right)=\sum_{i=0}^{n} t_{p}(n, i) \cdot w^{i}
$$

For the integers $v(n, i)$, we first choose a sequence $\mathrm{a}_{1, n}, \ldots, a_{n, n}$ of integers subject to the conditions that for each prime p for which $\gamma_{p}(n)>0$, we have

$$
a_{i, n} \equiv a_{i} \bmod p^{m}
$$

where m is the least integer for which $p^{m}>a_{n}$. Note that a_{i} depends on the prime p being considered. This is a finite set of conditions, and can always be satisfied, by the Chinese Remainder Theorem. The $v(n, i)$ are defined by the equation

$$
\left(w-a_{1, n}\right) \ldots\left(w-a_{n, n}\right)=\sum_{i=0}^{n} v(n, i) \cdot w^{i} .
$$

The proof of these theorems is based on the fact that $\left(K_{0} K\right)_{(p)}$ and $K_{0} K$ are free over $\mathbf{Z}_{(p)}$ and \mathbf{Z} respectively. This was established in [1], and implies that the Kronecker pairing induces an isomorphism. In §1 we construct explicit bases for $\left(K_{0} K\right)_{(p)}$ and $K_{0} K$ and use this in $\S 2$ to prove the theorems.

Section 1

We begin by recalling from [2] the description of the hopf algebra $K_{*} K$. There it was pointed out that the natural map $K_{*} K \rightarrow K_{*} K \otimes Q$ is an injection, and that $K_{*} K \otimes Q$ equals $Q\left[u, v, u^{-1}, v^{-1}\right]$, i.e., finite Laurent series in two variables [2, Propositions 2.1 and 2.2]. Thus it suffices to describe those series lying in the image of this map, and this was done in [2] by giving a certain integrality condition (Theorem 2.3).

For our purposes it is sufficient to only consider $K_{0} K$, and to give a slightly different description. Letting $w=v / u$, we see that

$$
K_{0} K \otimes Q=Q\left[w, w^{-1}\right]
$$

Let A denote the ring of polynomials $f \in Q[w]$ which take integral values at the integers. Proposition 5.3 and Theorem 2.3 of [2] can be restated as the following description of $K_{0} K$ in terms of A :

Proposition 3. The image of $K_{0} K$ in $Q\left[w, w^{-1}\right]$ equals the union of the subrings $\left(1 / w^{n}\right) \cdot A$ for $n=0,1,2, \ldots$.

In [12], Adams and Clarke show that $K_{0} K$ is actually a free abelian group. This isn't obvious from the description above, even though A is easily seen to be free. The difficulty is that $K_{0} K \cap Q[w]$ contains more than just A, for example it contains $\left(w^{2}-1\right) / 24$.

We will see that this problem does not arise in the p-local case, and so we consider it first. Let us fix a prime p, and let B denote the subring of $Q[w]$ consisting of those polynomials f for which $f(k) \in \mathbf{Z}$, if k is an integer prime to p. Also let us denote by $G_{(p)}$ the p-localization of an abelian group G.

Lemma 4. $B \supseteq A$, and for any $f \in B$ there exists an integer n such that $w^{n} \cdot f \in A_{(p)}$.

Proof. The first statement is immediate. For the second, take n to be the maximum of the p-exponents of the denominators of the coefficients of the polynomial f.

The inclusion $K_{0} K \rightarrow Q\left[w, w^{-1}\right]$ extends uniquely to an inclusion

$$
\left(K_{0} K\right)_{(p)} \rightarrow Q\left[w, w^{-1}\right]
$$

The previous lemma implies the following p-local analog of Proposition 3:
Proposition 5. The image of $\left(K_{0} K\right)_{(p)}$ in $Q\left[w, w^{-1}\right]$ equals the union of the subrings $\left(1 / w^{n}\right) \cdot B_{(p)}$.

In contrast with A, the ring B has the following useful property:
Lemma 6. If $w^{n} \cdot f \in B_{(p)}$, and $f \in Q[w]$, then $f \in B_{(p)}$.
Proof. It suffices to show that if $w^{n} \cdot f \in B$, then there exists a non-zero integer b prime to p for which $b \cdot f \in B$. There certainly exists some non-zero integer for which $b \cdot f \in B$, for example the product of the denominators of the coefficients of f. Order the non-zero integers with this property by divisibility and choose a minimal one, b.

Suppose b were divisible by p, and let $b=p \cdot b^{\prime}$. If $(k, p)=1$, then we have $b \cdot f(k)=p \cdot b^{\prime} \cdot f(k) \in \mathbf{Z}$ and also $k^{n} \cdot f(k) \in \mathbf{Z}$. Thus $b^{\prime} \cdot f(k) \in \mathbf{Z}$, and so $b^{\prime} \cdot f \in B$, contradicting the minimality of b.

This lemma will allow us to construct a basis for $\left(K_{0} K\right)_{(p)}$ from one for $B_{(p)}$. A basis for $\boldsymbol{B}_{(p)}$ can be constructed as follows:

Definition 7. Define polynomials $q_{n}(w) \in Q[w]$ by

$$
q_{0}(w)=1, \quad q_{n}(w)=\left(w-a_{1}\right) \ldots\left(w-a_{n}\right) /\left(a_{n+1}-a_{1}\right) \ldots\left(a_{n+1}-a_{n}\right)
$$

where a_{1}, a_{2}, \ldots are as defined in the introduction. Note that the p-adic norm of the denominator of $q_{n}(w)$ is $\gamma_{p}(n)$.

Proposition 8. $\quad\left\{q_{n} \mid n=0,1,2, \ldots\right\}$ is a basis over $\mathbf{Z}_{(p)}$ for $B_{(p)}$.
Proof. Since
(a) degree $\left(q_{n}\right)=n$,
(b) $\quad q_{n}\left(a_{i}\right)=0$ if $i \leq n$ and $q_{n}\left(a_{i}\right)=1, i=n+1$,
it is clear that any polynomial f of degree n in $B_{(p)}$ can be expressed as a $\mathbf{Z}_{(p)}$ linear combination of q_{o}, \ldots, q_{n}.

It remains, therefore, to show that $q_{n} \in B_{(p)}$. For this we note that $B_{(p)}$ can be described as those $f \in Q[w]$ for which $f(k) \in \mathbf{Z}_{(p)}$ for all integers k prime to p. Thus we must show that for such k,

$$
\nu_{p}\left(\left(k-a_{1}\right) \ldots\left(k-a_{n}\right)\right) \geq \nu_{p}\left(\left(a_{n+1}-a_{1}\right) \ldots\left(a_{n+1}-a_{n}\right)\right)
$$

Since $(k, p)=1$, we note that

$$
\begin{aligned}
\nu_{p}\left(\left(k-a_{1}\right) \ldots\left(k-a_{n}\right)\right) & =\nu_{p}\left((k-1) \cdot(k-2) \ldots\left(k-a_{n}\right)\right) \\
& =\nu_{p}\left((k-1)!/\left(k-a_{n}-1\right)!\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{p}\left(\left(a_{n+1}-a_{1}\right) \ldots\left(a_{n+1}-a_{n}\right)\right) & =\nu_{p}\left(\left(a_{n+1}-1\right)!/\left(a_{n+1}-a_{n}-1\right)!\right) \\
& =\nu_{p}\left(\left(a_{n+1}-1\right)!\right) .
\end{aligned}
$$

Now $(k-1)!/\left(k-a_{n}-1\right)!a_{n}$! is a binomial coefficient, and so is an integer. Thus

$$
\nu_{p}\left((k-1)!/\left(k-a_{n}-1\right)!\right) \geq \nu_{p}\left(a_{n}!\right)
$$

If a_{n+1} is not congruent to $1 \bmod p$, then $a_{n+1}-1=a_{n}$, and we are finished. If $a_{n+1} \equiv 1 \bmod p$, then

$$
\begin{aligned}
\nu_{p}\left(\left(k-a_{1}\right) \ldots\left(k-a_{n}\right)\right) & =\nu_{p}\left((k-1)!/\left(k-a_{n}\right)!\right) \\
& \geq \nu_{p}\left(\left(a_{n}+1\right)!\right) \\
& =\nu_{p}\left(\left(a_{n+1}-1\right)!\right) .
\end{aligned}
$$

Proposition 9. $\left\{\left(1 / w^{[n / 2]}\right) \cdot q_{n} \mid n=0,1,2, \ldots\right\}$ is a basis for $\left(K_{0} K\right)_{(p)}$ over $\mathbf{Z}(p)$.

Proof. We make use of the subgroups $F(n, m)$ introduced in [1]. Let

$$
F(n, m)=\left(K_{0} K\right)_{(p)} \cap \operatorname{span}\left(w^{n}, w^{n+1}, \ldots, w^{m}\right)
$$

and let $l, t: F(n, m) \rightarrow \mathbf{Q}$ be the homomorphisms $l(f)=a_{m}, t(f)=a_{n}$ if $f=\sum_{i=n}^{m} a_{i} w^{i}$. By Lemma 6, any element of $F(n, m)$ is of the form $w^{n} \cdot f$ with $f \in B_{(p)}$ of degree $m-n$. Since f is a linear combination of q_{o}, \ldots, q_{m-n} we see that image (l) and image (t) are equal to $l\left(q_{m-n}\right) \cdot \mathbf{Z}(p)$ and $t\left(q_{m-n}\right) \cdot \mathbf{Z}(p)$ respectively. Also, l and t induce isomorphisms

$$
F(n, m) / F(n, m-1) \simeq \operatorname{Image}(l), \quad F(n, m) / F(n+1, m) \simeq \operatorname{Image}(t)
$$

Thus we see, by induction on n, that

$$
q_{0}, \ldots,\left(1 / w^{[n / 2]}\right) \cdot q_{n}
$$

is a basis for $F(-[n / 2], n-[n / 2])$.

We return now to the question of finding a basis for $K_{0} K$. Our construction is based on the following observation:

Proposition 10. If $\left\{x_{i} \mid i=0,1,2, \ldots\right\}$ is a subset of a torsion free abelian group G with the property that for each prime p it forms a $\mathbf{Z}_{(p)}$ basis for $G_{(p)}$, then it forms a basis for G over \mathbf{Z}.

Our candidates for basis elements for $K_{0} K$ are the Laurent polynomials

$$
\left(1 / w^{[n / 2]}\right) \cdot p_{n}(w)
$$

where we define

$$
p_{o}(w)=1 \text { and } p_{n}(w)=\left(w-a_{1, n}\right) \ldots\left(w-a_{n, n}\right) / \Gamma(n)
$$

with $\Gamma(n), a_{1, n}, \ldots, a_{n, n}$ as in the introduction.
Lemma 11. For every prime p and nonnegative integer $n, p_{n}(w) \in B_{(p)}$.
Proof. If $p>n+[n / p-1]$, then $\gamma_{p}(n)=\nu_{p}(\Gamma(n))=0$ and the result is obvious. Otherwise, note that if k is an integer prime to p, then

$$
\nu_{p}\left(k-a_{i, n}\right) \geq \nu_{p}\left(k-a_{i}\right)
$$

since $a_{i, n} \equiv a_{i} \bmod p^{m}$ and $0 \leq a_{i} \leq p^{m}$. Thus

$$
\nu_{p}\left(\left(k-a_{1, n}\right) \ldots\left(k-a_{n, n}\right)\right) \geq \nu_{p}\left(\left(k-a_{1}\right) \ldots\left(k-a_{n}\right)\right) \geq \gamma_{p}(n)=\nu_{p}(\Gamma(n)) .
$$

Lemma 12. $\left\{1 / w^{[n / 2]} \cdot p_{n}(x) \mid n=0,1, \ldots\right\}$ is a basis for $\left(K_{0} K\right)_{(p)}$ over $\mathbf{Z}_{(p)}$.

Proof. By Lemma 11, the prospective basis elements are actually in $\left(K_{0} K\right)_{(p)}$. Consider the matrix expressing $1 / w^{[n / 2]} \cdot p_{n}(w)$ in terms of the basis elements of Proposition 9. Since

$$
1 / w^{[n / 2]} \cdot p_{n}(w) \in F(-[n / 2], n-[n / 2])
$$

it is a $\mathbf{Z}_{(p)}$ linear combination of $q_{o}, \ldots, 1 / w^{[n / 2]} \cdot q_{n}(w)$ and so the matrix is upper triangular. Furthermore the leading and trailing coefficients of both $p_{n}(w)$ and $q_{n}(w)$ have p-adic norm - $\gamma_{p}(n)$ so that the diagonal entries of the matrix are all units in $\mathbf{Z}_{(p)}$. Thus, by Cramer's rule, the matrix is invertible. The result follows.

Corollary 13. $\left\{1 / w^{[n / 2]} \cdot p_{n}(w) \mid n=0,1, \ldots\right\}$ is a basis for $K_{0} K$ over \mathbf{Z}.

Section 2

Now that we have constructed a basis for $\left(K_{0} K\right)_{(p)}$ and $K_{0} K$ we may conclude, as in [1], Theorem 2.1:

Proposition 14. The Kronecker Pairing induces isomorphism

$$
\left(K^{0} K\right)_{(p)} \simeq \operatorname{Hom}_{\pi_{*} K_{(p)}}\left(\left(K_{*} K\right)_{(p)}, \pi_{*}\left(K_{(p)}\right)\right)^{0} \simeq \operatorname{Hom}\left(K_{0} K_{(p)}, \mathbf{Z}_{(p)}\right)
$$

and

$$
K_{0} K \simeq \operatorname{Hom}_{\pi_{*} K}\left(K_{*} K \pi_{*} K\right)^{0} \simeq \operatorname{Hom}\left(K_{0} K, \mathbf{Z}\right)
$$

Proposition 15. The action of

$$
\phi \in \operatorname{Hom}\left(K_{0} K, \mathbf{Z}\right) \text { or } \phi \in \operatorname{Hom}\left(\left(K_{0} K\right)_{(p)}, \mathbf{Z}_{(p)}\right)
$$

on $\pi_{2 i}(K)$ or $\pi_{2 i}(K)_{(p)}$ is multiplication by $\phi\left(w^{i}\right)$.
Proof. Since $\pi_{*}(K)=\mathbf{Z}\left[t, t^{-1}\right]$, where t is of degree 2 , the action of a homomorphism $f: \pi_{2 i}(K) \rightarrow \pi_{2 i}(K)$ is multiplication by $f\left(t^{i}\right)$. Recall from [2] that the elements $w, u, v \in K_{*} K$ are defined by $w=v / u, v=\eta_{R}(t)$, $u=\eta_{L}(t)$ where η_{R} and η_{L} are the right and left actions of $\pi_{*} K$ on $K_{*} K$. If $\phi \in K^{0} K$, then its action on $\pi_{*} K$ is given by

$$
\phi(x)=\left\langle\phi, \eta_{R}(x)\right\rangle
$$

where $<, \quad>$ denotes the Kronecker product.
In Proposition 14 the isomorphism $\operatorname{Hom}_{\pi_{*^{K}}}\left(K_{*} K, \pi_{*} K\right) \rightarrow \operatorname{Hom}\left(K_{0} K, \mathbf{Z}\right)$ is a restriction to $K_{0} K$. Using the fact that $K_{*} K$ is an extended $\pi_{*} K$ module [2] we see that an inverse to this isomorphism is given by

$$
\chi(f)(x)=f\left(u^{-1} \cdot x\right)
$$

if $f \in \operatorname{Hom}\left(K_{0} K, \mathbf{Z}\right), x \in K_{*} K$ is of degree $2 i$. If $\phi \in K^{0} K$ is the element whose image under the isomorphisms of Proposition 14 is f, then the action of ϕ on $\pi_{2 i}(K)$ is multiplication by

$$
\phi\left(t^{i}\right)=\left\langle\phi, \eta_{R}\left(t^{i}\right)\right\rangle=\left\langle\phi, v^{i}\right\rangle=f\left(u^{-i} v^{i}\right)=f\left(w^{i}\right)
$$

The p-local case is similar.
Proof of Theorem 1. Identify $\phi \in\left(K^{0} K\right)_{(p)}$ with an element of Hom $\left(\left(K_{0} K\right)_{(p)}, \mathbf{Z}_{(p)}\right)$ via Proposition 14. Since $q_{n} \in\left(K_{0} K\right)_{(p)}$ for all n, we must have

$$
\phi\left(w^{-m} \cdot q_{n}\right) \in \mathbf{Z}_{(p)} \quad \text { for any } m
$$

In other words,

$$
\phi\left(w^{-m}\left(w-a_{1}\right) \ldots\left(w-a_{n}\right) /\left(a_{n+1}-a_{1}\right) \ldots\left(a_{n+1}-a_{n}\right)\right) \in \mathbf{Z}_{(p)}
$$

or

$$
\phi\left(w^{-m}\left(w-a_{1}\right) \ldots\left(w-a_{n}\right)\right) \in p^{\gamma_{p}(n)} \cdot \mathbf{Z}_{(p)} .
$$

Using the definition of $t(n, i)$, this is

$$
\sum t_{p}(n, i) \cdot \phi\left(w^{i-m}\right) \in p^{\gamma_{p}(n)} \cdot \mathbf{Z}(p)
$$

or

$$
\sum t_{p}(n, i) \cdot \lambda_{i-m} \in p^{\gamma_{p}(n)} \cdot \mathbf{Z}(p)
$$

as required.
Conversely suppose that $\left\{\lambda_{i}\right\}$ is a sequence of elements $\mathbf{Z}_{(p)}$ satisfying the congruences for the cases $m=[n / 2]$. Then

$$
x_{i}=\left(\sum t(n, i) \cdot \lambda_{i-[n / 2]}\right) /\left(p^{\gamma_{p}(n)}\right)
$$

lies in $\mathbf{Z}_{(p)}$. Define an element ϕ of $\operatorname{Hom}\left(\left(K_{0} K\right)_{(p)}, \mathbf{Z}_{(p)}\right)$ by

$$
\phi\left(\left(1 / w^{[n / 2]}\right) \cdot q_{n}\right)=x_{n} .
$$

Since these elements form a basis for $\left(K_{0} K\right)_{(p)}, \phi$ is uniquely defined, and has the required property.

The proof of Theorem 2 is similar.

Bibliography

1. J.F. Adams and F.W. Clarke, Stable operations on complex K-theory, Illinois J. Math., vol. 21(1977), pp. 826-829.
2. J.F. Adams, A.S. Harris and R.M. Switzer, Hopf algebras of cooperations for real and complex K-theory, J. London Math. Soc. (3), vol. 23(1971), pp. 385-408.
3. F.W. Clarke, Self-maps of BU, Proc. Cambridge Philos. Soc., vol. 89(1981), pp. 491-500.
4. T. Lance, Local H-Maps of classifying spaces, Trans. Amer. Math. Soc., vol. 254(1979), pp. 195-215.

Dalhousie University
Halifax, Nova Scotia, Canada

[^0]: Received October 14, 1981.

