NONRECTIFIABLE LEVEL SETS FOR UNIVERSAL COVERING MAPS

BY

Charles Belna, ${ }^{1}$ William Cohn and Lowell Hansen

Let Δ denote the open unit disk in the complex plane, and let K be a relatively closed subset of Δ such that $0 \notin K$ and $\Delta \backslash K$ is connected. Let ϕ denote the universal covering map of Δ onto $\Delta \backslash K$ with $\phi(0)=0$, and let

$$
\left\{T_{n}(z)=e^{i \theta_{n}}\left(a_{n}-z\right) /\left(1-\bar{a}_{n} z\right)\right\}_{n=1}^{\infty}
$$

be the group of automorphisms of Δ under which ϕ is invariant. Finally, let γ denote an arbitrary compact rectifiable Jordan arc in $\Delta \backslash\{0\}$, and let $l(\cdot)$ denote linear Lebesgue measure.

Belna and Piranian [1] showed that the equivalence

$$
l\left(\phi^{-1}(\gamma)\right)=\infty \quad \text { if and only if } \gamma \text { meets } K
$$

is valid when K is a singleton set; subsequently, Belna, Cohn, Piranian, and Stephenson [2] proved that it remains valid when K is of capacity 0. However, the characterization may fail when K has positive capacity; for example, if $K=[0,1 / 2]$, then each "level set" $\phi^{-1}(\gamma)$ is rectifiable.

Here we shall present for the general case a condition that implies the nonrectifiability of $\phi^{-1}(\gamma)$.

Theorem. If γ contains an irregular boundary point of $\Delta \backslash K$, then $l\left(\phi^{-1}(\gamma)\right)=\infty$.

We note that the converse is not necessarily true. Let

$$
K=(-1,0] \cup\{1 / 2,1 / 3, \ldots\}
$$

According to our theorem, $\phi^{-1}([1 /(n+1), 1 / n])$ has infinite length for each integer $n \geq 2$. Choose numbers a_{n} and b_{n} that satisfy $1 /(n+1)<a_{n}<b_{n}<$ $1 / n$ and for which $\phi^{-1}\left(\left[a_{n}, b_{n}\right]\right)$ has length greater than 1 . For each index n connect the segment $\left[a_{n}, b_{n}\right]$ to the segment $\left[a_{n+1}, b_{n+1}\right]$ by an arc in $\Delta \backslash K$ in such a way that the resulting arc τ is rectifiable. If $\gamma=\tau \cup\{0\}$, then $\gamma \cap K=\{0\}$ and 0 is a regular boundary point of $\Delta \backslash K$.

[^0]Proof of the theorem. Because $0 \notin \gamma$, the non-euclidean version of Schwarz's lemma implies that for some $\lambda \in(0,1)$ the set

$$
\Lambda=\left\{z:\left|z-a_{n}\right| /\left|1-\bar{a}_{n} z\right| \leq \lambda \text { for some } n=1,2, \ldots\right\}
$$

satisfies $\gamma \cap \phi(\Lambda)=\emptyset$. If G is the Green function for $\Delta \backslash K$ with singularity at 0 , then

$$
(G \circ \phi)(z)=-\sum_{n=1}^{\infty} \log \left(\left|z-a_{n}\right| /\left|1-\bar{a}_{n} z\right|\right)
$$

(see [4; p. 210]). Since there exists a positive number A such that

$$
-\log x<A\left(1-x^{2}\right) \text { for } \lambda<x<1
$$

and since

$$
1-\left(\left|z-a_{n}\right| /\left|1-\bar{a}_{n} z\right|\right)^{2}=\left(1-|z|^{2}\right)\left(1-\left|a_{n}\right|^{2}\right) /\left|1-\bar{a}_{n} z\right|^{2}
$$

we have

$$
\begin{equation*}
(G \circ \phi)(z)<A\left(1-|z|^{2}\right) \sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|^{2}\right) /\left|1-\bar{a}_{n} z\right|^{2} \quad(z \in \Delta \backslash \Lambda) \tag{1}
\end{equation*}
$$

For each $p \in \Delta \backslash \Lambda$, the function $G \circ \phi$ is positive and harmonic in the disk $|z-p| /|1-\bar{p} z|<\lambda$; thus it readily follows from Harnack's inequality [3; p. 29] that there exists a universal constant $\lambda_{0} \in(0, \lambda)$ such that
(2) $(G \circ \phi)(z) \leq 2(G \circ \phi)(p)$ for $p \in \Delta \backslash \Lambda$ and $|z-p| /|1-\bar{p} z|<\lambda_{0}$.

Now suppose $w \in \gamma$ and w is an irregular boundary point of $\Delta \backslash K$. Then G has a fine limit at w that is greater than 2ε for some $\varepsilon>0$ [3; combine Theorems 10.11, 10.15 and 10.16]. Set $Q=\{z:(G \circ \phi)(z) \leq \varepsilon\}$. Let $\gamma_{1}, \gamma_{2}, \ldots$ be the components of $\gamma \backslash K$, and for each index n let α_{n} be a Jordan arc in Δ that is mapped homeomorphically onto γ_{n} by ϕ. (Each α_{n} reaches $\partial \Delta$.) Let β_{1}, β_{2}, \ldots be the components of the set $\left(\bigcup_{n} \alpha_{n}\right) \backslash Q$. Then

$$
\begin{equation*}
l\left(\phi^{-1}(\gamma)\right) \geq \sum_{j} \sum_{n=1}^{\infty} l\left(T_{n}\left(\beta_{j}\right)\right) \tag{3}
\end{equation*}
$$

Because of the identities

$$
l\left(T_{n}\left(\beta_{j}\right)\right)=\int_{\beta_{j}}\left|T_{n}^{\prime}(z)\right||d z|=\int_{\beta_{j}}\left[\left(1-\left|a_{n}\right|^{2}\right) /\left|1-\bar{a}_{n} z\right|^{2}\right]|d z|
$$

it follows from (1) and (3) that

$$
\begin{equation*}
l\left(\phi^{-1}(\gamma)\right)>(\varepsilon / A) \sum_{j} \int_{\beta_{j}}\left(1-|z|^{2}\right)^{-1}|d z| \tag{4}
\end{equation*}
$$

Thus $l\left(\phi^{-1}(\gamma)\right)=\infty$ if some β_{j} reaches $\partial \Delta$.
It remains to consider the case when each β_{j} fails to reach $\partial \Delta$. In this case there must be infinitely many components β_{j}. If not, there would exist a
nondegenerate subarc γ^{*} of γ with $w \in \gamma^{*}$ and $G \leq \varepsilon$ on $\gamma^{*} \backslash K$, and since $\gamma^{*} \backslash K$ is not thin at w this would contradict the fact that G has a fine limit greater than 2ε at w.

Each β_{j} must have at least one endpoint p_{j} in Q. If $\chi\left(Z, p_{j}\right)$ denotes the non-euclidean hyperbolic distance between p_{j} and a point $Z \in \beta_{j}$, then we have the identities

$$
\chi\left(Z, p_{j}\right)=\tanh ^{-1}\left(\left|Z-p_{j}\right| /\left|1-\bar{p}_{j} Z\right|\right)=\inf _{\sigma} \int_{\sigma}\left(1-|z|^{2}\right)^{-1}|d z|
$$

where σ varies over all rectifiable Jordan arcs in Δ that join Z to p_{j}. Therefore

$$
\begin{equation*}
\int_{\beta_{j}}\left(1-|z|^{2}\right)^{-1}|d z| \geq \chi\left(Z, p_{j}\right) \quad \text { for each } \quad Z \in \beta_{j} \tag{5}
\end{equation*}
$$

and because of (4) and (5), we can conclude the proof by showing that for infinitely many indices j there exists a point $Z_{j} \in \beta_{j}$ for which $\chi\left(Z_{j}, p_{j}\right) \geq$ $\tanh ^{-1} \lambda_{0}$.

To the contrary, suppose there exists a positive integer J such that

$$
\left|Z-p_{j}\right| /\left|1-\bar{p}_{j} Z\right|<\lambda_{0} \quad \text { for each } \quad Z \in \beta_{j}(j>J) .
$$

By (2) we would have

$$
(G \circ \phi)(Z) \leq 2(G \circ \phi)\left(p_{j}\right)=2 \varepsilon \quad \text { for each } \quad Z \in \beta_{j} \quad(j>J) .
$$

Consequently there would exist a nondegenerate subarc γ^{*} of γ with $w \in \gamma^{*}$ and $G \leq 2 \varepsilon$, on $\gamma^{*} \backslash K$. But this would contradict the fact that G has a fine limit greater than 2ε at w, and the proof is complete.

Belna would like to express his gratitude to Guy Johnson, Jr. for many valuable conversations concerning the concepts of fine limit and local thinness.

References

1. C. Belna and G. Piranian, A Blaschke product with a level-set of infinite length, Studies in Pure Mathematics, To the memory of Paul Turán, Akadēmiai Kiadó, Budapest, 1983, pp. 79-81.
2. C. Belna, W. Cohn, G. Piranian and K. Stephenson, Level-sets of special Blaschke products, Michigan Math. J., vol. 29 (1982), pp. 79-81.
3. L. L. Helms, Introduction to potential theory, Krieger, Huntington, 1975.
4. R. Nevanlinna, Analytic functions, Springer-Verlag, New York, 1970.

[^0]: Received April 16, 1982.
 ${ }^{1}$ The first author gratefully acknowledges support from the National Science Foundation.

