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A PROPERTY OF ATRIODIC CONTINUA

BY

W. DWAYNE COLLINS

O. Introduction

A compact metric continuum M is a triod provided M contains a sub-
continuum H such that M- H has at least three components. If M contains
no triod, then it is atriodic.

In [1], T. Makowiak and E. D. Tymchatyn proved that each non-
unicoherent subcontinuum of a compact, metric, atriodic continuum has void
interior and is terminal. This paper proves this result also,, but uses a differ-
ent technique that displays useful properties of atriodic continua. Continua
whose non-unicoherent proper subcontinua have void interior are said to
have property IUC. Hence the class of IUC continua generalizes the classes
of atriodic and hereditarily unicoherent continua.
Throughout this paper M will denote a compact metric continuum. The

notation M A w B denotes that M is the sum of two proper subcontinua
A and B unless otherwise stated.

1. Atriodic continua

We first begin with a useful lemma.

LEMMA 1.1. If M is atriodic and M A B then M- A is connected.

Proof Suppose that M- A is not connected. Hence M- A has exactly
two components X and Y. Now c = , for if not, M A w )? w "would contain a triod by [3, Theorem 1.8, page 443]. Also, A is irreducible
about

(A c ) (A c .
For if there exists a proper subcontinuum P of A containing

(A c ) (A c I7}
and H is a component of A P then (/-/w P) w (X w P) w (w P) would
contain a triod.
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Let Q be a subcontinuum of B irreducible about (A c X) (A . If
A Q then A w Q w X must contain a triod. Hence A

_
Q __. B, a contra-

diction, and the lemma is proved.

Observe that if M is atriodic and M A B then M A w M- A,
where A M- A is connected only in case A c B is connected. Likewise

M=M-A M-(M-A)

where the coherence of the intersectiondepends on A c B.

LEMMA 1.2. IfM is atriodic and M A B, where each of A and B is the
closure of the complement of the other, then A and B are unicoherent.

Proof Suppose that A At w A2 where At c A2 is the sum of the two
mutually exclusive closed sets P and Q. Now At c A2 c B 0 since M is
atriodic. Hence each of P and Q misses B. We will assume that A2 inter-
sects B.

Let U and V be open sets in M containing P and Q respectively such that
t.7 c ’= 0 and each of L7 and " misses B. Let D and D2 be components of
U c A and V c At which intersect P and Q respectively. Hence no one of
/St w A2,/52 w A2, and B w A2 is contained in the union of the other two,
and hence their union contains a triod. Hence A, and correspondingly B, is
unicoherent.

It is noted as a corollary to Lemma 1__.:2 that if M is atriodic and A is a
proper subeontinuum of M with A A then A is unicoherent, where A
denotes the interior of A.

THEOREM 1.3.
M is unicoherent.

If M is atriodic, M A w B, and A c B is connected, then

Proof It can be assumed that A M- B, B M- A, and by Lemma
1.2 that each of A and B is unicoherent. Suppose that M H w K where
H c K is the sum of the disjoint continua Ca and C2. If H

_
A and K B

then A H and B K, a contradiction since A c B 4: H c K. Suppose
then that H intersects M- A and M- B.

Case I. K B. Then A
_
H and each of Ca and C2 is in B. Now H A

is connected, for if not, let E and F denote two components of H A. Hence
/ w (A c B) and b w (A c B) are continua and

A [/(A B)] [/(A B)]

forms a triod.
But then B=KwH-A and KoH-A=KH=Ct w C2. Hence

B is not unicoherent, a contradiction.
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Case II. K intersects M- A and M- B. We suppose that H and K dif-
fer in M- B. Note again that each of H-(B H) and K- (B K) is
connected. Hence

Bg [H-(Bc H) (A c B)] [K-(B K)(A c B)]

contains a triod by [3]. Therefore M is unicoherent and the theorem is
established.

COROLLARY 1.4. If M is atriodic, A is a proper subcontinuum of M, and
M A is not connected then M is unicoherent.

Proof Suppose M- A is the sum of the two disjoint open sets C and D.
Then M=(CwA) u(D uA) and (C w A) (D w A)=A and hence Mis
unicoherent.

THEOREM 1.5. If M is atriodic then each proper subcontinuum of M with
interior is unicoherent.

Proof Let H be a proper subcontinuum of M with interior. If M- H is
not connected then, by Corollary 1.4, M is unicoherent, and by [2] the
theorem is proved.

Suppose then that M- H is connected. Now H M- (M- H) is con-
nected and hence H is unicoherent. Also K M H is connected since

M=H M-H.

If the boundary of H, bdy H, is connected then bdy H H c M- H and
by Th___eorem 1.3 M is unicoherent, which completes the proof. Likewise if
bdy H is connected M is unicoherent and therefore so is H.
Hence we may su.__ppose that bdy H is the sum of the disjoint continua B1

and B2, and bdy H is the sum of the disjoint continua D and D2 where
D1

_
B and D2 B2.

If D=Bx and D2=B2 then H=H and hence H is unicoherent. So
suppose that D is a proper subcontinuum of B1. But then

H=(H w B2) w Bx and (H w B2) c Bx =Dx
and again H is unicoherent by Theorem 1.3.

2. IUC continua

The definition of property IUC is motivated by Theorem 1.5.

DEFINITION. The continuum M is said to have property IUC (M is an
IUC continuum) provided each proper subcontinuum of M with interior is
unicoherent. If M has property IUC hereditarily, M is said to be an HIUC
continuum.
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Clearly the class of IUC continua contains the class of hereditarily uni-
coherent continua (HUC), and by Theorem 1.5 also contains all atriodic con-
tinua. The next example easily shows that it is proper containment.

Example 1. Let K denote the sum of a circle and an arc whose intersec-
tion is an endpoint of the arc. Let M be the sum of K and a half-ray which
limits on K. Hence M has property IUC and is neither atriodic nor heredi-
tarily unicoherent.

Theorem 1.3 did not depend on the atriodicity of M, but rather the IUC
property of M, as is now shown.

THEOREM 2.1. If M has property IUC and M A B where A B is
connected, then M is unicoherent.

Proof. Let C=A BandsupposethatM=A1 w B1 whereA c B is
the sum of two disjoint closed sets C and C2. Let A’ be minimal with
respect to M A’w B. Note that since M has property IUC, A’ is unique
and A B

_
A’. Also A’ B A’ c C and hence is a continuum. Let B’ be

the unique subcontinuum of B minimal with respect to M A’ w B’. Now
A’c B’= C’ is a continuum and hence, without loss of generality, we
suppose that A’= A, B’= B, and C’= C.

It will now be shown that each of A and B1 intersects both A and B.
Suppose rather that A M- B. Hence B intersects both A and B. Let X
be a component of B (M- B) from C1 to bdy (M-B) and X2 be a
component of B (M- B) from C2 to bdy (M- B) and X2 be a com-
ponent of B (M- B) from C2 to bdy (M- B). Now D ) w C w -,2
is a continuum. But A w D is a proper subcontinuum of M with interior
and A1 D is not connected. Hence ,4 intersects both A and B.

Also each component of C and C2 intersects C. For suppose the com-
ponent D of C misses C. Hence we may suppose that D_ M- A. Let X
be a component of A1 A from D to the boundary of A A and let X2 be
a component of B B from D to the boundary of B B. Hence one of

A w X w D w X2 or C w X1 w D w X2

is a proper subcontinuum of M with interior which is not unicoherent, a
contradiction.
Now if A

_
A and B

_
B then, by the minimality of ,4 and B, A

_
A1

and B
_
B. But C A B

_
A B1 and since each component of A

B intersects C we have that A c B is connected. So we may suppose that
A:AI.

If B B then B
_
B, but A w B is then a proper subcontinuum of M

with interior, and A c B is the union of the disjoint sets C1 B and C2
B. Hence B does not contain B.
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Now C does not lie wholly in either A or B1, and each of A n C and
B n C is connected since M has property IUC. But A w (B C) is a
proper subcontinuum of M with interior and

A1 (B, C)=(A, B,)c C=(C C)(C. C)

and hence is not connected, a contradiction. Hence M is unicoherent.

COROLLARY 2.2. If M has property IUC, M is not unicoherent, and A is a
proper subcontinuum ofM then M- A is connected.

Proof If M A is the union of two disjoint open sets X and Y then each
of A w X and A w Y is a continuum and M (A w X)w (A w Y) where
the intersection is A. Hence by Theorem 2.1, M is unicoherent, a contradic-
tion.

DEFINITION. The subcontinuum H of M is terminal provided that if K is a
subcontinuum of M which intersects H then K

_
H or H

_
K.

The following theorem and its proof was noted by Professor W. T. Ingram,
and completes theproof of the theorem of Mackowiak and Tymchatyn.

THEOREM 2.3. If M is an H IUC continuum then each non-unicoherent sub-
continuum ofM is terminal.

Proof. If H is a non-unicoherent subcontinuum of M, K is a sub-
continuum of M intersecting H, and K H then H

_
K. For otherwise, H

would be a non-unicoherent subcontinuum with interior with respect to
H w K, a contradiction.
Example 1 shows that Theorem 2.3 is not true for IUC continua in

general.
In regards to the structure of IUC continua we make the following obser-

vation.

COROLLARY 2.4. If M has property IUC and is not unicoherent, then M is
the sum of two irreducible subcontinua with non-connected intersection.

Proof. If M A w B where A B is not connected then

M=M-A w M-(M-A).

3. ICT continua

DEFINITION. The continuum M has property ICT provided each triod of
M has void interior.
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Hence property ICT seems to be a more natural generalization of atriodic
continua. In fact we show that property ICT is stronger than property IUC.

Theorem 3.1. Property ICT implies IUC.

Proof. Suppose M has property ICT and K is a proper subcontinuum of
M with interior which is not unicoherent. Hence K K1 K2 where K1
K2 is the sum of two continua C and C2. Since K has interior we may
assume that K2 has interior with respect to M. We now show that K2 is
irreducible about C w C2.

Suppose A is a proper subcontinuum of K2 containing C w C2. Since K2
is not a triod K2- A has one or two components. Hence either A or a
component of K2 A has interior with respect to M. Let ’ and be open
in M containing C and C2 respectively such that q c 7- is void. Let D1
and D2 be components of q/ K and c K intersecting C and C2
respectively. Let X be a component of K2 A, choosing X to have interior
in case A has void interior. Then A w/ w/32 w . is a triod with interior,
a contradiction.
Now K2 -(C1 w C2) is connected, so define/(2 K2 -(C1 w C2). Hence

K=K wK2
and K c /(2 is the sum of the two continua C c/(2 and C2 c/(2 with
void interior with respect to K. Hence we may assume that K2 =/(2. If K1
has interior we may duplicate the above and redefine K1 correspondingly.

Consider now M-K. Since M is not a triod M-K has one or two
components. If M- K is connected then bdy (M- K) has only one or two
components, and if M- K has two components B1 and B2 then necessarily
bdy (B) and bdy (B2) are continua. Hence we consider three cases"

(I) M K and bdy (M K) are continua.
(II) M K is a continuum and bdy (M K) has two components.

(III) M- K has two components B1 and B2.
Suppose (I). If bdy (M K) misses C1 w C2 then we may assume

bdy (M K) K 1.

Let q/ and / be open sets containing C and C2 respectively such that q/

misses /. Let D and D2 be components of K2 and K2 intersect-
ing C and C2 respectively. Hence

M-KwKwDwD2
is a triod with interior.

Suppose then that bdy (M- K) intersects C1 w C2 and K2 has interior.
Now K1 w bdy (M K) is a proper subcontinuum of K. But

E=K-[K1 bdy(M-K)]
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is connected since M has property ICT. Now the boundary of E with respect
to K, bdyr (E), has only one or two components. If bdyr (E) is a continuum
then so is

Q [bdy (M K) w K1] K2.
But Q is a proper subcontinuum of K2 containing C1 and C2, contradicting
the irreducibility of K2. Also, if bdyr(E-) has two components, one can easily
construct a triod using K1 w bdy (M- K) as the core and M- K as one leg
with interior.

Suppose (II). Let bdy (M- K) D1 u D2 where each of D1 and D2 is a
continuum. There are three subcases to consider.

(1) D1 u D2 misses C1 w C2. Without loss of generality we may assume

D1 - K1. One can boundary bump from each of C1 and C2 into K2 missing
D2 and construct a triod with the core K1, and M-K as one leg. Boundary
bumping refers to the technique used in the proof of Lemma 1.2.

(2) D1 intersects C1 w C2 and D2 misses C1 w C2. We may suppose that
DE

___
K2. Since K is not a triod K -(D1 w K1) has one or two components.

If there are two components one can construct a triod with interior using
each component as leg of the triod.
Hence K (D1 u K1) is connected. Now bdyr [K (D1 K1)] is not

connected, for if so, K2 (Dx K1) is a proper subcontinuum of K2 con-
taining C1 C2. So let bdyr [K- (D1 w K1)] be the sum of the two dis-
joint closed sets B and B2. Once again, boundary bumping from B1 and B2

into K -(D1 w K1) missing D2 helps us to build a triod with interior.
(3) Each of D1 and D2 intersects C1 C2. Now

K- (D1 w K w D2)= E

is connected since M has property ICT. But now an argument analogous to
(2) applies.

Case (III) is analogous to Case (I) and hence the proof is omitted.
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