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WEAKLY TRANSITIVE MATRICES

BY

Josl BARRA AND P. R. HALMOS

Introduction. A set of matrices is transitive if every number occurs as
the (1, 1) entry in at least one of them. (This is a tentative definition; in
what follows it will be modified and quantified.) Question: is the conjugate
class of a matrix transitive? (The conjugate class of a square matrix A is
the set of all matrices SAS- similar to A.) Answer: not always. Example:
(0 0), and, more generally, ( 0) for each a. Sharper question: can the
conjugate class of a matrix ever be transitive, and, if so, when? Special
case: is the conjugate class of (01 ) transitive?
The purpose of this paper is to raise and answer a suitably general form

of these questions. A set of matrices (square matrices, of size n, say, with
entries in an arbitrary field) will be called weakly k-transitive (1 < k < n)
if every square matrix of size k occurs as the top left corner in at least one
of them. (Strong transitivity is something else and will be studied on another
occasion; it has to do not with k k squares in a corner but with n k
rectangles on a side.) The main problem is to determine when the conjugate
class of a matrix is weakly k-transitive. Since weak transitivity is the only
kind that will be considered, and since conjugate classes are the only sets
for which the question will be raised, we propose to express the problem
in the following abbreviated form: when is a matrix k-transitive? Explicitly:
for which n n matrices A is it true that corresponding to every k k
matrix X (1 < k < n) there exists an invertible n n matrix S such that
SAS- is of the form (.x **)? It is sometimes convenient to express the
relation between SAS- and X by saying that X is the compression (k-
compression) of SAS-. In that language the question becomes: for which
A (of size n) does every X (of size k) occur as the compression of some
matrix similar to A?
The question is suggested by facts and problems about the weak density

of certain sets of operators on infinite-dimensional spaces (see for instance
[1]), but it seems to be interesting and will be studied here in its own right
as a part of pure linear algebra.
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Simple transitivity. If k 1, the answer is easy" the only matrices that
are not 1-transitive are the scalars. (This answers the questions in the first
paragraph of the introduction.)
The core of the proof is the observation that if A is not a scalar, then

there exists a vector f such that f and Af are linearly independent. (We
identify each matrix of size n with the linear transformation it induces on
the naturally corresponding n-dimensional coordinate space.) The observation
is an exercise. It is easy, but not automatic; a small idea is needed. Since
a suitable generalization is basic in the sequel, we do not leave the exercise
to the reader but proceed to offer two proofs.
A direct proof attacks the contrapositive head on. To say that f and Af

are always linearly dependent means that Af (f)f for all f. It follows
that

h(af)af A(af) aAf ah(f)f,

and hence that h(af) h(f) whenever af # O; similarly,

h(f + g)(f + g) A(f + g) Af + Ag h(f)f + h(g)g,

and hence

h(f) h(f + g)= h(g)

whenever f and g are, linearly independent. For each non-zero f and g,
either g is a scalar multiple of f, or f and g are linearly independent, and,
in either case, h(f) h(g). That is: the function h isa constant, and
therefore A is a scalar.
The alternative proof is completely conceptual; the price is the use of a

powerful theorem. Recall that a matrix A of size n (linear transformation
on an n-dimensional space) is cyclic if there exists a vector f such that the
vectors f, Af, An-if span the whole space. (Equivalently: they .are
linearly independent.) Clearly for every cyclic matrix A of size 2 or greater
there exists a free vector (i.e., a vector f such that f and Af are linearly
independent.) The powerful theorem is the assertion (a consequence of the
theory of the rational canonical form) that every matrix is the direct sum
of cyclic ones [2, Section 6.7].
Here then is the alternative proof. Write A as a direct sum of cyclic

matrices. If any of the direct summands is of size 2 or greater, a free vector
exists. If they are all of size 1, then A is diagonal. Since it is not a scalar,
it has eigenvectors g and h corresponding to distinct eigenvalues; in that
case the sumf g + h is free.
Granted now that there exists a free vector f for A, form a basis whose

first two elements arefand Af. With respect to such a basis the first column
of A becomes

(0, 1, 0, 0)t.
(The superscript stands for "transpose"; it is used for typographical con-
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venience, to avoid the display of a column. Observe that if A is not a
scalar, then the size of A is at least 2.) In other words A is similar to a
matrix with the indicated first column, and there is, therefore, no loss of
generality in assuming that A itself has that first column. Once that is
assumed, let x be an arbitrary element of the underlying field and write

x 0
0

S= 0

0 0

note that S is invertible, with

-x 0
0

S-l= 0

0 0

and vertify that the (1, 1) entry of SAS- is x.

0

Non-transitivity. It is not obvious how to generalize either the statement
or the proof of the result of the preceding section to k-transitivity when
k > 1. The assertion nearest the surface is a negative one: if n < 2k, then,
over an infinite field, no matrix of size n is k-transitive.
Approach the proof by contradiction; assume that n < 2k and A is a k-

transitive matrix of size n. The k-transitivity of A implies in particular that
A is similar to (.0 **), where the size of the top left 0 is k. We proceed to
derive two statements that turn out to be contradictory: (1) a property of
all matrices of the form just indicated, and (2) a property of all k-transitive
matrices.

(1) If n < 2k and if a matrix A of size n has a zero compression of size
k, then A is singular. Reason: A maps a subspace of dimension k into one
of dimension n k, and n k < k. (Alternative proof: every term in the
expansion of the determinant of A must be 0.)

(2) Every scalar translate of a k-transitive matrix is k-transitive. Proof:
if A is k-transitive and X is an arbitrary matrix of size k, then, for each
scalar k, some conjugate of A has the compression X + k, and, consequently,
some conjugate of A k has the compression X.
The statements (1) and (2) imply that under the present assumptions

det(A k) 0 for all ), which is impossible (since the underlying field
is infinite).

Main theorem. The condition on a matrix A that ensures that every
matrix of size occurs as the compression of some conjugate of A, namely
that A be non-scalar, can be expressed this way:

rank(A X) > for allX.
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This suggests consideration of the condition

rank(A h) > k for allh.

In geometric terms the latter condition says that, for each X, the geometric
multiplicity of h as an eigenvalue of A is not more than n k (where n
is, as always, the size of A). If k is 1, only the most "concentrated" matrices
(the scalars) can fail to satisfy it; to increase k tends to have the effect of
making A less like a scalar, more scattered. Proposed technical term" A is
k-scattered.
Our principal result about transitivity is the following necessary and

sufficient condition.

THEOREM. A matrix A ,of size n over an infinite field is k-transitive if
and only if n > 2k and A is k-scattered.

The condition is usable. Sample non-obvious application’ a truncated
shift

0 0 0 0 0
O 0 010 0

0 0 0
0 0

of size n is k-transitive if and only if n > 2k.
The necessity of the condition n > 2k was proved in the preceding section.

The necessity of the scattering condition is also easy to prove. Indeed: if
A is k-transitive, then some conjugate of A has a compression that is
invertible (e.g., the identity matrix of size k), and therefore rank A > k.
Since both k-transitivity and k-scattering are invariant under scalar translation
(for k-transitivity this was proved in the preceding section and for k-scattering
it is obvious), the proof of necessity is complete.
Observe that the two parts of the condition (which between them are

necessary and sufficient for k-transitivity) are almost independent of each
other. Indeed: if k and

A-
0

then n 2k, but A is not 1-scattered; if k 2 and

A= 0

then A is 2-scattered, but n < 2k. The only implication along these lines
is a trivial one" if A is 1-scattered, then its size must be at least 2.
The remainder of this paper is devoted to the proof that the condition



374 JOSI BARRiA AND P. R. HALMOS

stated in the theorem is sufficient as well as necessary; that is the part that
takes the most work.

Free sets. With hindsight we can say that the sufficiency proof could
have been discovered as a generalization of the case k 1. The idea is,
assuming that A is k-scattered, to think of A as a block matrix consisting
of blocks of size k as far as possible, allowing some smaller pieces at the
bottom and at the right. The major difficulty is to show that A is similar
to a matrix whose first column (in the block sense) is

(0, 1, 0

From there the last step is trivial. The similarity of a matrix with the
indicated first column to a matrix with arbitrarily prescribed compression
is formally the same as for k 1: use the same transforming matrix S,
but interpret the entries as blocks (matrices) rather than as elements of the
field.
The problem of showing that A is similar to a matrix with "first" column

(0, 1, 0, 0)’ (in reality the symbol indicates the first k columns) is the
same as the problem of showing that there exists a set

of vectors such that the set

{f fk, af afk}

is linearly independent. Indeed, given such a set, extend it to a basis, and
then express A as a matrix with respect to that basis. We propose to call
such sets free (or, more precisely, A-free). If k 1, then the singleton {fl}
is free in this sense exactly when the vector f is free in the sense used
above. The rest of the proof assumes that n > 2k and A is k-scattered, and
shows that under these conditions a free set of size k always exists; that
is exactly what the proof for k did.

If the matrix A happens to be cyclic, the conclusion is near at hand.
Indeed, in that case (by definition) there exists a vector f such that the
vectors

f, Af, A"-’T
form a basis; the desired free set consists of the first k vectors of the
sequence

f, A2f, A4f,
To see that, note that

{f, A2f, A2(k-lf} C {f, Af, An-2f},
and hence that the union of the set and its image under A is included in a
basis.
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The reasoning in the cyclic case contains the germ of the idea in every
case. The point is that since every matrix is the direct sum of cyclic ones,
a free set of the appropriate size can be obtained by stitching together
smaller free sets contributed by the direct summands. ("Stitching" will
turn out to mean something different from just forming unions.) The cyclic
argument above did not use the scattering assumption; that will be needed
for a part of the stitching only.

Eigenvalues. The proof will be achieved by successive reductions to
more and more simple cases; the first reduction embeds most of the visible
eigenvalues into larger cyclic pieces.

Write A as a direct sum of cyclic matrices, and consider the ones of size
1; they are given by eigenvectors, which, from the point of view of the
construction of free sets, are obstacles. How many distinct eigenvalues do
the direct summands of size correspond to? If the answer is more than
one, choose an eigenvector corresponding to each eigenvalue and form the
span of the chosen eigenvectors; the result is a cyclic direct summand of
A of size 2 or greater. (It is cyclic because all its eigenvalues have multiplicity
1.) If the remaining direct summands of size still correspond to more than
one eigenvalue, the steps just described can be repeated. The process so
begun can be continued so long as there remain direct summands of size
corresponding to more than one eigenvalue. When the process terminates,

A is exhibited as the direct sum of a scalar multiple of the identity matrix
and cyclic summands of size 2 or greater. If, moreover, the scalar in
question is k, we replace A by A h and thus assume that the scalar
summand is 0. The effect of the latter reduction is a small but helpful
simplification of notation.

Stitching. After the preceding reductions A is the direct sum of a zero
matrix (possibly absent) and cyclic matrices of size 2 or greater. The next
step is to show how nullvectors (eigenvectors of the zero summand) can
be "absorbed" by the cyclic summands. The word, used here as an informal
abbreviation, means "to use a non-zero cyclic summand together with some
nullvectors to constuct a large free set". Absorption in this sense is a part
of the "stitching" promised before.
To be specific, let a vector f be the generator of one of the cyclic direct

summands of A, of size rn say, so that the vectors

 ,Af,

form a basis for an m-dimensional subspace invariant under A. Suppose to
begin with that rn is odd (so that in particular rn > 3) and that g is a
nullvector; note that the set {f, Af, Am-f, g} is linearly independent.
Assertion" the set

f, A:f, Am-3f, A"-f + g
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is free. (If rn 3, the set consists ofjustfand Af + g.) Reason: the image
of the set under A is

Af, A3f, Am-2f, Am-If.
The span of the union contains all AJf (j 0, 1, rn 2) as well as
A fand Am-2f --b g, and, therefore, it contains each of the rn + vectors
f, Af, Am-f, g. Since the union consists of rn + vectors and spans
an (m + 1)-dimensional space, it is necessarily linearly independent.

This shows how to absorb one nullvector (if rn is odd); it is just as easy
to absorb any odd number of them, up to and including rn 2. If, for
instance, rn 9 and three nullvectors are to be absorbed, then the way
to make a free set (of the maximal size 1/2(9 + 3)) out of the linearly
independent set

f, Af, A2f, A3f, A4f, ASf, A6f, A7f, ASf, g, g2, g3

is to form

f, Aaf, A4f, ASf + g,, A6f + g, ATf + g3.

(Use even powers of A at the beginning and the sums of all powers of A
with given nullvectors at the end.) The proof of freedom is the same as in
the preceding paragraph, and, in fact, the construction and the argument
remain the same in general.

If the restriction of A to the cyclic subspace generated by f happens to
be invertible, then the number of nullvectors that can be absorbed can be
raised to m. If, for a typical instance, rn 5, then a free set (of the maximal
size 5) in the span of

f, Af, A2f, A3f, A4f, g, g2, g3, g4, g5

is given by

f + g,, Af + g2, A2f + g3, A3f + g4, A4f + gs.

The argument that proves freedom has one extra feature this time. The
image of the set to be proved free is

Af, A2f, A3f, a4f, ASf.
The invertibility of A on the span of {f, Af, A2f, Aaf, A4f} implies that f
itself is in the span of that image, and hence that the span of the union of
the set with its image contains all Af’s (i 0 ,4) and all gj’s (j 1,

5); since the union consists of 10 (= 2m) vectors and spans a space of
dimension 10, it is necessarily linearly independent.
There is no real difference between the even m’s and the odd ones; the

facts and the proofs are the same.
There is one more stitching step. Suppose that two of the cyclic direct

summands (invertible or not) are of odd size, 2p + and 2q + say. To
"stitch" them together means, again, "to put them together so as to construct
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a large free set (of size p + q + to be precise)". The process goes like
this. Given vectors f and g that generate two direct summands, so that

f, Af, A2pf and g, Ag, A2qg

span disjoint invariant subspaces of dimensions 2p + and 2q / l, form
the set

f, AEf, AEp-Ef, AEp-’f + g, Ag, Aag, AEq-lg.

The image under A is

Af, A3f, AE’-f, AEpf / Ag, AEg, A4g AEqg.
Verify that the span of the union contains all Af’s and all AJg’s; it follows
that the 2(p / q / l) vectors span a space of that dimension and are,
therefore, linearly independent.

Counting. The proof ,will now be concluded by a careful count of the
free sets that absorption and stitching can produce.
Suppose that p is the size of the "invertible part" of A (that is the total

size of the invertible direct summands put together), q is the size of the
"singular part" of A (that is the total size of the non-zero singular direct
summands), and r is the size of the "zero part" of A (that is the size of
the zero direct summand). Suppose, moreover, that there are rn non-zero
singular direct summands, of sizes q, qm. (The case m 0 is not
excluded.) Note that

n =p + q + r and q q.
j=l

Since the nullity of A is r + rn (a contribution of r from the zero part and
a contribution of from each of the rn singular summands), it follows that

rank A =p + q- m.

Nullvectors are a source of difficulty; what is the maximum number of
them that can be absorbed? The invertible part can absorb at most p of
them. A singular direct summand of size q can absorb at most q 2,
and, therefore, the number of nullvectors that the entire singular part can
absorb is at most Z’=l(qj 2) q 2m. The "absorption maximum" of
A is p + q- 2m.

If the zero part is small, smaller than the absorption maximum,

r<p+q-2m,

then all (or, in case of parity conflict, all but one) of the nullvectors can
be absorbed. The following special case is almost completely typical. Suppose
that

p + (q 2) + (q2 2)< r<p + (q- 2) + (q2- 2) + (q3- 2),
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and suppose that r- (p + (q 2) + (q2 2))is odd and q3, qm
are all even. Let the invertible part absorb p nullvectors, and absorb

(ql- 2) + (q2- 2)

in the first two direct summands of the singular part. Of the remaining

r- (p + (ql 2) + (q2 2))

nullvectors the third singular direct summand can absorb all but one. It
follows that there exists a free set of size

p + (q 1) + (q2 1) + (r- (p + (ql 2) + (q2- 2)) + q3 1)

+-(q4 + + qm) =’(P + q + r- 1) >k.

The only possibility that the preceding almost completely typical case
does not indicate is the one in which there is no early parity conflict, the
nullvectors are all absorbed, but some of untouched direct summands (in-
vertible or singular) are of odd size. In that case use stitching; the result
will always be a free set of size n/2 or (n 1)/2, depending on parity.

If the zero part is large, large enough to make full use of the absorption
maximum, the proof is easy. AsSume, indeed, that r > p + q 2m. Absorb
p nullvectors in the invertible part and q 2m in the singular part; the
result is a free set of size

((p + p) + (q + (q 2m))) p + q m rank A > k.

Note the essential use of the scattering assumption.
The proof is complete.
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