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BANACH’S CLOSED RANGE THEOREM AND FREDHOLM
ALTERNATIVE THEOREM IN NON-ARCHIMEDEAN

BANACH SPACES

BY

TAKEMITSU KIYOSAWA

1. Let K be a field with a non-trivial non-Archimedean valuation
Let E be a Banach space over K with norm [I, The unit ball

is the valuation ring of K. Let E be a module over this ring. A nonempty
subset A of E is called absolutely convex if it is a V-module of E; that is,
if a, b A and h,/z V, then ha + /zb A. A coset of an absolutel3)
convex subset is said to be convex. A subset A ofE is said to be compactoid
if for every e > 0 there exists a finite set X C E such that A C {x E
Ilxll -< } / CX, where C---X denotes the closed convex hull of X (A. van
Rooij [5], p. 134). The problem which we consider in this section is the
following.

Let A and B be closed convex subsets of E. Under what circumstances
is the subset A + B closed? It is well known that if A is compact, then
A + B is closed. Further, A. van Rooij [5] has shown that if K is spherically
complete and A is compactoid, A + B is closed. By applying the results
in this section to continuous linear operators, we can obtain Banach’s closed
range theorem and the Fredholm alternative theorem in non-Archimedean
Banach space. In L. Narici, E. Beckenstein and G. Bachman [3, p. 91],
the Fredholm alternative theorem is mentioned for the completely continuous
operator. In Section 3, we shall extend it to compact operators as defined
by A. van Rooij [6, p. 142]. The existence of the nonzero completely
continuous linear operator implies that K is locally compact. However,
even if K is not locally compact, there exists a nonzero compact linear
operator of E to F, when E and F are Banach spaces [6, p. 182].

First we show the following result.

LEMMA 1. Let A and B be subsets of E. IfA is open and convex, then
A + B is closed. In particular, every open convex subset of E is closed.
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Proof. We may assume that A is absolutely convex. If x A + B,
then the subset x + A is a neighborhood of x and (x + A) (A + B)

Let X and Ybe subsets of E and let 0 < t =< 1. We say that Xis
t-orthogonal to Y if for each x X and each y Y,

IIx / Yll -> max(llxll, IlYlI).

The following statement shows that sums of t-orthogonal closed convex
sets are closed.

PROPOSITION 2. Let A and B be closed convex subsets of E. If A is
t-orthogonal to B, then A + B is closed.

Let A and B be closed absolutely convex subsets ofE and let B(0) denote
the unit ball {x E jlxlJ =< 1}. We make the following definitions:

p(A, B) sup{levi c v, orB1(0) o (A + B) C (A 71 BI(0)) + B},

q(A, B) sup{la[ a

_
V, aB,(O) 71 (A + B) c (A 71 B,(0)) + B},

r(A, B) sup{lal a V, aB,(O) 71 (A + B) C (A 71 B,(O)) + B}.

These quantities have been defined by R. Mennicken and B. Sagraloff [3]
for closed linear subspaces of Banach spaces over the real number field.
By modifying their proof we have the following lemma.

LEMMA 3. IfA and B are closed linear subspaces of E, then we obtain
the equalities p(A, B) q(A, B) r(A, B).

Proof. To prove p(A, B) <= q(A, B), take a V\{0} such that

aBe(O) 71 (A + B) C (A 71 B(0)) + B.

For any /3 K such that 1/31 < 1, /3 : 0, a subset aB(O) 71 (A + B)
is a neighborhood of 0 in the normed space A + B. Then we have the
inclusion

aBe(O) 71 (A + B) C (A 71 B(0)) + B + (aB(O) 71 (A + B)).

Let Yo aBe(O) 71 (A + B). Then we can choose

Xo (A 71B(0)) + B and y aB(O) 71 (A + B)

such that Yo Xo + Yl. By induction we have two sequences Xo, x,
x2, and Yo, Y, Y2, such that, for each i,

Ye exi + Yi+, x (A 71B(0)) + B

and

Yi+ ai+B(O) 71 (A + B).
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Since Yi tends to O, Yo Eo flix. Choose ue A fq B(O) and v; B such
that x u -- oi. Since [Ixll I/{ - [lyi yi+l[ <- Iflil - I ’1 and Ilull
=< 1, it follows that IIvll --< 1. Hence there exist Ei=o ffui and 0 [3iv. Let
u i=O iui and v X=o flivi. Then we have Yo u + v (A fq B(0)) +
B and it follows that

aBe(O) (A + B) C (A 71 B(0)) + B.

Therefore p(A, B) <- q(A, B).
Next, by an elementary argument, we have

pB(O) (q (A + B) pB(O) fq (a + B) (p V)

from which we conclude that r(A, B) <= p(A, B). The inequality q(A, B) <=
r(A, B) is trivial.

In particular, letting a in the above argument we obtain:

PROPOSITION 4. Let A and B be closed linear subspaces of E. Then the
following conditions are equivalent.

(1)
(2)
(3)

B(0) f) (A + B) C (A f3 Bl(0)) + B.
B(0) f3 (A + B) C (A f3 B(0)) + B.
B,(0) f’l (A + B) C (A Bl(0)) + B.

Further it is easy to see the following lemma.

LEMMA 5. Let A be an absolutely closed convex subset and let B be a
closed linear subspace ofE. For any K, O, thefollowing conditions
are equivalent.

(1)
(2)

ctB(0) fq (A + B) C (B(0) f)A) + B.
c(B(0) + B)fq A C B(0) + (A tq B).

IfA and B are closed absolutely convex subsets ofE and A is t-orthogonal
to B, then by Proposition 2 we have the same equality as in Lemma 3.
Further we obtain the following theorem.

THEOREM 6. Let A and B be closed absolutely convex subsets of E. If
A .is t-orthogonal to B, then r(A, B) >-_ t.

Proof. Takea Vsuchthatlal =< t. Letx + yaB(O) f3 (A + B),
x a and y B. Then ->- Ilx / yll >= max(llxll, Ilyll). Hence Ilxll -< 1.
So

It follows that

x + y (A f3 B1(0)) + B.

cB(0) fq (A + B) C (A tq B(0)) - B.

Therefore t <- r(A, B).
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We have the following theorem by a proof analogous to that in [4,
p. 462].

THEOREM 7. Let A and B be closed linear subspaces. Then r(A, B) > 0
if and only ifA + B is closed.

Proof. If r(A, B) > 0, then by Lemma 3 we may choose/3 K such
that

q(A,B)-> I/31 > 0 and /3Bl(0) N (A + B) CA + B.

Hence it follows that

(A + B) [,.J ’(flBI(0) fq(A /B))CA + B.
-K

Conversely, if A / B is closed, then A / B is a Banach space and it
follows that

A + B [,.J a{(Bl(0) fqA) +B}.
otK

Hence there exists an ao K such that ao{(Bl(0) tq A) + B} has an interior
point Xo. Therefore we may take/3 K, 1/31 > 0 such that

Xo + fl{Bl(0) f’) (A + B)} C a0{(Bl(0) N A) / B}.

It follows that

flBl(0) N (A + B) fl{B(0) N (A + B)} C ao{(B(0) fq A) + B}.

Therefore p(A, B) > O.

THEOREM 8. Let A and B be closed linear subspaces such that A f)

B {0}. Then the following conditions are equivalent.

(1)
(2)
(3)

A / B is closed.
r(A, B) >0.
There exists t, 0 < <-_ such that A is t-orthogonal to B.

Proof. By Theorems 6 and 7 we have (3) :), (2) and (2) :> (1). We now
show that (1) ::> (3). Since A fq B {0} and A + B is closed, the closed
linear subspaces are complementary to each other in the Banach space
A + B. Therefore by Theorem [6, p. 63], there exists a positive number
t such that

t max(llx[I, Ily[I) IIx + yll for any x E A and y B.

2. From now on we suppose that K is spherically complete and A, B
are closed linear subspaces of E.

LEMMA 9.
we have:

Let 7r be a fixed element in K such that 0 < 17r < 1. Then



BANACH’S CLOSED RANGE THEOREM 357. A +/- + (BI(0)) C (A f3 (B1(0))) CA+/- + 7r-l(B(0)).
2. r(B,(0)) C B[(0) C (B,(0)),

where B(O) denotes the subset {x’ E’ ltx’ll <= 1} of E’.
In particular, if ]K] is dense, then we have:

3 B(0) (BI(0)).
Proof. 1. The inclusion

a +/- + (BI(0)) C (A 71 (a(0)))

is clear. Let x (A 71 B(0)). For any x A there exists an integer
n such that lT’/’ln+l < Ilxll--< I*rl. Therefore IX(Tl’-nx)l and [x(x)[ <
I1-’ Ilxll. Let be the restriction of x to A. Then, by Ingleton’s ver-
sion of Hahn-Banach theorem, we can define an extension x’ of to E
such that x’ satisfies the inequality

[x’(x)l <-Irl- Ilxll for each x E.

Hence we obtain zrx’ (B(0)) and x’ 7r-l(B(0)), so

x x’ + (x x’) 7r-l(B(0)) + A +/-.

2. It is clear that B(0) C (B(0)). Let x’ (B(0)). Then for any
e > 0 there exists Xo E such that

Ix’(x0)l
Ilxoll

Further there exists an integer n -> 0 such that Izr[n+ < Ilxoll -< Ir[n. Hence
(llx’ll )II(zr-’)nx011 < IXt((’I’I’-I)nxo)] 1.

Then

SO

Since e is arbitrary, it follows that IIx’ll ]-1 and 7rx’ B(0). This means
that zr(B(0)) C B(0).

3. If IKI is dense, then the reverse inclusion B(0) D (B(0)) is shown
using IIx’ll sup{tx’(x)l; 0 < Ilxll -< 1),

THEOREM 10.
is closed in E’.

The subset A + B is closed in E if and only if Ax + B"

Proof. If Ax + B+/- is closed in E’, then by Theorem 7 we can take
K such that r(B’, A) > I1 > 0. It follows that

aBe(O) 71 (B +/- + A’) C (B(O) 71 B’) + A’.
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We suppose that K is discrete. By Lemma 5 and Lemma 9.2 it follows that

aTr((B(0) + A +/-) f"l Bt C (B(0)) + (Ax f3 B+/-).

Hence

aTr((B(O) fq A) + B) aTr((B(O) fq A) f3 B+/-)
C aTrZ((A- + rr-(B(0))) fq B’) (by Lemma 9.1)

arr(A +/- + BI(0)) CI Bx

C ((Bl(0)) + (A +/- fq B+/-))
C (B(0) fq (A + e)).

Hence we have

(BI(0) /’) (a + B)) (oTr2)-l((Bl(0) I’ A) + B).
Since K is discrete, by J. van Tiel [7, p. 280] we have

(BI(0) ("1 (a + a)) C (o2) -l((al(0 A) + B)

and

Then

(B(0) fq (A + B)) B(0) fq (A + B).

(a2)(Bl(0) (a + B)) C (B(0) fq A) + B.

Thus we conclude that

(aTr2)Bl(0) f"l (A + B) C (BI(0) A) + B.

Therefore 0 < lazr21 <- p(A, B).

If IKI is dense, then by using Lemma 9.3 and arguing as in the case
where K is discrete, we have

(Bl(0) (A + B)) C (o2)-l((Bl(0) A) + B).
By J. van Tiel [7, p. 281],

((al(0) i"1 A) + B) C 7r-l((Bl(0) A) + B).

Hence

Bl(0 f"l (A + B) C (Bl(0) (a + B))

C (Tr2a)-((B(0) A) + B)

(Tr-30-l)(al(0) f A) + a).

Then it follows that

7/’3aBl(0) I"1 (a + B) C (B(0) f3 A) + B.
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This means that 0 < 17/’3o[ p(A, B). Thus by Theorem 7, A + B is closed.
Since (A)+/- A, the converse is trivial.
From this proof we can induce the inequality

[zrlZp(B +/-, A +/-) < p(A, B) < ]zr p(B, A-).

Moreover the following result can be also proved by Lemmas 5 and 9.

THEOREM 11. The following are equivalent.

(1) A + B is closed.
(2) A +/- + B+/- (A t B) +/-.
(3) A + B (A +/- N B+/-) +/-.

Proof. First we prove (1) :> (2). If A + B is closed, then by Theorem
7 we have r(A, B) > 0. Hence there is an a K, a # 0, such that

aB,(O) f3 (A + B) C (B(0) f3 A) + B.

Then

((Bl(0)) A B-) + A +/-

Thus
A +B-

(Bl(0) + B) + A +/-

rr((Bl(0) + B) A)

7r(a- (Bl(O) + (A fq B)))

zr(a-lBl(0) + (A f’l B))

rr((a-lel(0)) (3 (A B))
(Tra(Bl(O))) (A t3 B) +/-.

(by Lemma 5)

I,.J fl((Bl(0)) B+/-) - Ax

[,..J fl((Bl(0)) ") B+/-) + Aa-)

23 [,.J (Tra(Bl(0)) CI (A fq B) +/-)
BK

(A riB)I.
The reverse inclusion A +/- + B+/- C (A fq B) +/- is trivial.

Conversely, if A +/- + B+/- (A fq B), then.A +/- + B- is closed. Hence
by Theorem 10 A + B is closed.

Using Theorem 10 and the relation (1) :> (2) in this theorem, we can
prove (1) :> (3).

3. In this section we apply the preceding results to the space of linear
maps. Throughout this section let E and F be Banach spaces and L(E, F)
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be the continuous linear maps taking E into F. The product space E F
can be normed by [[(x, y)[[ max([[x[[, [[y[[) for x E and y F. Then
E x F is a Banach space. The dual space (E x F)’ is the product space
E’ x F’ and it is a Banach space with the norm

II(x’, y’)ll max(llx’ll, lly’ll) for x’ E’ and y’ F’.

Let T be a linear closed map (in the sense that it has a closed graph)
between E and F with a dense domain D(T) in E. We set A G(T), where
G(T) denotes the graph of T. Then A is a closed linear subspace of
E x F. Let T’ be the conjugate of T. Then T’ is closed. The set R(T) is
the range set of T.

THEOREM 12 (Banach’s closed range theorem).
are equivalent.

(1) R(T) is closed.
(2) R(T’) is closed.

The following conditions

Proof LetB E x {0}. We haveA+/- G(-T’)andB+/- {0} x F’.
Then A +/- and B+/- are closed in E’ x F’. Since

A + B E x R(T) and Ax + B+/- R(T’) x F’,

the theorem is seen to follow from Theorem 10.
If T is a continuous linear map and D(T) E, then T is closed. So the

next corollary follows from the previous results.

COROLLARY 13. Let T L(E, F), A G(T), B E {0}, A’
and B’ F’ {0}. Then we obtain the following diagram.

G(T’)

(i) T’ is open

(ii) T’ is onto.

(iii) There exists a real number
t, 0 < t <- such that

IIr(x)ll -> Ilxll (x E).

(iv) There exists a real number
t, 0 < <- such that A
and B are t-orthogonal.

(v) r(A, B) > O.

(i)’ T is open.

(ii)’ T is onto.

(iii)’ There exists a real number
s, 0 < s <- such that
IIT’(y’)[I->- s Ily’ll (y’ f’).

(iv)’ There exists a real number
s, 0 < s <- such that A’
and B’are s-orthogonal.

(v)’ r(A’, B’) > O.
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(vi) A + B is closed. (vi)’ A’ + B’ is closed.

(vii) R(T) is closed. (vii)’ R(r’) is closed.

(viii) T is open. (viii)’ T’ is open.

In particular, if T is injective, then (i)-(viii) are equivalent and if T’ is
injective, then (i)’-(viii)’ are equivalent.

Proof. The equivalences (ii) :> (iii) and (ii)’ :> (iii)’ are proved by
R. Ellis [2]. The implications (ii) ::> (i) and (ii)’ ::> (i)’ are instances of the
open mapping theorem. The eqivalences (v) :> (viii) and (v)’ : (viii)’ can
be easily shown [4, p. 464]. The implications (iv) ::> (v) and (iv)’ :ff (v)’
are proved by Theorem 6. We prove (v) :> (vi) and (v)’ :> (vi)’ using
Theorem 7. Since A + B E R(T)and A’ + B’ F’ R(T’), (vi)
(vii) and (vi)’ => (vii)’ are trivial. Theorem 10 proves that (vi) :> (vi)’. We
now show that (iii) :ff (iv). For all (x, T(x)) A and for all (y, 0) B, we
have

and

II(x, Z(x)) + (y, 0)11 max(llx + YlI, IIZ(x)ll)

max(ll(x, T(x))ll, lilY, 0)11) max(llxll, IlYlI, IIT(x)ll).

If Ilxll IlYlI, then IIx / Yll max(llxll, IlYlI). Hence it is trivial that for
eacht, O < t-< 1,

II(x, T(x)) + (y, 0)ll => max(ll(x, T(xll, II(Y, 0)11).

If Ilxll Ilyll, then by (iii) there exists a real number t, 0 < =< 1, such
that IIZ(x)ll --> t max(llxll, Ilyll, IIZ(x)ll) and it follows that

II(x, T(x)) + (y, 0)11--> max(ll(x, Z(x))ll, II(Y, 0)11).

Thus (iii) ::), (iv).
Conversely, if there exists a real number t, 0 < =< such that A and

B are t-orthogonal, then we have

II(x, Z(x)) + (-x, 0)11--> max(ll(x, Z(x))ll, II(-x, 0)11)

max(llxll, IIZ(x)ll) (x E).

Hence it follows that for all x E IIZ(x)ll ->- Ilxll,

The proof of (iii)’ (iv)’ is similar. In particular, if T is injective, then
A fq B {0}. Hence by Theorem 8 we can prove (iv) :> (v). Thus it follows
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that (ii) <=> (iii) <=> (iv) <=> (v) <=> (vi) <=> (vii) <=> (viii) <=> (viii)’
proof of the case where T’ is injective is also similar.

(i). The

DEFINITION. A linear map T" E --> F is called completely continuous if
for any bounded sequence of vectors {xn} in E, then the sequence {T(xn)}
contains a convergent subsequence.

However, if there exists a nontrivial completely continuous linear map,
then K must be locally compact. A. van Rooij [6] has extended this concept
as follows.

DEFINITION. A linear map T" E -- F is called compact if the subset
T(B(O)) is compactoid in F.

If T is compact, then T is continuous. And if K is locally compact, then
T is completely continuous if and only if T is compact [6, p. 142]. The
following conclusions are extensions of results for the completely continuous
operator to results for the compact operator. Let T L(E, E). Then it is
obvious that for h K such that ]ITI] < ]hi, h T is injective and
R(h T) is closed, where the operator h is defined by h(x) hx for x
E. Let N(T) be the null space of T and R(T) be the range space of T. The
linear span of subset X of E is indicated by [X].

THEOREM 14. Let T L(E, E) be compact and h K, h # O. If
T is surjective, then h T is injective.

Proof. Let S h T and suppose x # 0 satisfies the equation
S(x) 0. Since S is surjective, there exists x2 such that S(x2) x and
$2(x2) 0. By induction we can construct a sequence {x,} such that
Xn O, S(xn) Xn-1 and S(xn) 0. Thus we may also conclude that
N(Sn-) C N(Sn) and the inclusion is proper. By the Riesz theorem
[3, p. 72] there exist Yn - N(Sn) (n 2, 3 and a constant real number
a > such that Ilyll --< a and d(Yn, N(Sn-l)) >= 1/2. Since

N(S) C N(S2) C C N(Sn-l) C N(S")

y, q N(S"-l) and Yn N(S"), the elements Y2, Y3, Yn, of E are
linearly independent and T(Y2), T(Y3), T(yn), are also linearly independent.
For if T(yz), T(y) T(y,) are not linearly independent, then there
exists an rn such that

T(ym) azT(yz) + + Om_T(ym_) (o K, 2, rn 1).

Hence T(ym) o2(hy S(y2)) + + Om-l(XYm-i S(Ym-l)). Since Y2,

Y3, Ym- N(S 1), it follows that S(y2), S(y3), S(y,,_ ) N(sm-2).
Therefore we have T(Ym) N(Sm-). This means that Ym N(Sm-l) This
contradicts Ym N(sm-I) Thus T(Y2), T(y3), T(yn), can constitute
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the base of the closed linear span of a countable set T(yn); n 2, 3, ....
Therefore there exists a positive number such that T(Y2), T(y3), is a
t-orthogonal sequence [6, p. 62]. Since T(Ba(O)) is compactoid, where Ba(0)
denotes the subset {x E Ilxll -< a}, T(y,,) tends to 0 [6, p. 139]. For
n > m it follows that

IIT(yn) T(ym) >- Ixl/2 [3, p. 871.
This is a contradiction. Thus x 0 and h T is injective.

DEFINITION. The subset X of E is called locally compactoid if every
bounded subset of X is compactoid.

If X is absolutely convex, then X is locally compactoid if and only if
X BI(0) is compactoid.

THEOREM 15. Let T L(E, E) be compact and let h K, h O. Then
N(h T) is a locally compactoid and finite-dimensional linear subspace
orE.

Proof. Let Xl, X Xn, be a t-orthogonal sequence of elements of

N(h T) B(0).

Then the sequence T(x), T(X2) T(xn) is a t-orthogonal sequence of
elements of T(B(O)). Then T(x), T(x2), T(x,,), tends to 0 [6, p. 139].
Hence x, x2, Xn, tends to 0. Hence by A. van Rooij [6, p. 139],
N(h T) B(O) is compactoid and so N(h T) is locally compactoid.
Further, since N(h T) is a closed linear subspace, N(h T) is finite-
dimensional [5, p. 18].

Remark. The above theorem holds even ifK is not spherically complete.
However K is now spherically complete, so N(h T) is c-compact and
spherically complete [5, p. 26].

THEOREM 16. Let T L(E, E) be compact and let h K, h O. Then
R(h T) is closed.

Proof. If E is finite-dimensional, then it is trivial. Hence we may assume
that E is infinite-dimensional. Suppose that R(h T) is not closed. Then
there exists a sequence x, x2, Xn, of elements of E such that
(h T)(x) tends to y where y R(h T). Hence we may assume X

N(h T) for any n. Since K is spherically complete and N(h T) is
finite-dimensional, N(h T) has an orthocomplement M0 [6, p. 135]. Hence
there exist y M0 and Zl N(h T) such that

x y + Zl.
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We have y, ff N(h T), IIx, max(llylll, IlZlll) and (h T)(x)
(h T)(yl). Let Nl [Yl] + N(X T). For all n => 2 if it should happen
that x N, then we can conclude that y R(h T). This is a contradiction.
Hence there exists k such that for n => k, x N1. We may assume n
2. Since Nl has an orthocomplement M, there exist y2 M, z2
N(h T) and c K such that

X2 Y2 + olYl + z2.

The elements x and xz of E are linearly independent. Further we set

Nz [y, Yz] + N(h- T).

For all n -> 3, if Xn N2, then there exist fin, Y, K and Zn N(h T)
such that

Xn nYl + T,,Y, + z,,.

From the orthogonality of y and Nl, and the orthogonality of y and
N(X T) where (X T)(xn) (X T)(/3,,y + Y,Y2) tends to y, the
sequences/33,/34,/35, and y3, y4, ys, are Cauchy sequences. Let lim
/n / and lim y y. Then

y (h T)(flyl + YY2).

Hence it follows that y R(h T). This is a contradiction. Therefore we
may assume x3 q N2. By induction, there exist y, Y2, Yn, such that
y, is orthogonal to N, [y, Y2 y,_] / N(h T) and x, N, and
x,+ q N,. We set d, d(x,, N(h T)). Since N( T) is a closed
subspace, the distance d, is posi.tive. Take 7r K, 0 < Izrl < 1. Then we
can choose w, N(h T) such that for each n (n l, 2, 3, ...),

dn <-IlXn Wnll < dn [’n’1-1 < d. [Tr1-2.
The vectors Xl w, x2 w2, Xn Wn are linearly independent.
Suppose that the set {T(xi We); 1, 2 } doesn’t contain infinitely
many linearly independent vectors. Then there would exist a number N
such that T(x Wl) T(X2 W2) T(XN WN) are linearly independent
vectors, and, for any n > N,

T(x,, Wn) [T(x wi), T(x2 w2) T(XN WN)].

Hence we can take an, K (i 1, 2, N) such that

(h T)(x,, Wn) k(X Wn) + aHl T(xI Wl) + + OtnuT(XN- WN).

Since x w, x2 w2, are linearly independent vectors, {Xn Wn}
contains a subsequence {Xn,- Wn,} (i 1, 2 such that T(Xl Wl),
T(xz- wz), T(XN- Wu), Xnl Wnl Xn2- Wn2 Xnk- Wnk
are linearly independent vectors. Therefore there exists a number > 0
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such that

T(Xl Wl), T(x2- w2) T(XN- WN), Xnl- Wnl, Xn2

is a t-orthogonal sequence [6, p. 62]. Since (h T)(Xn,-
for any e > 0 there exists a number M such that ni, nk > M implies

[l()k T)(xni- Wni) --()k- T)(Xnk- w,)ll < .
While

II(X- T)(xn,

Hence

Wni ()k T)(Xnk-

t max(llX(Xn,- Wn)ll, Ilh(Xnk- Wn)ll,
II(an, an)T(x w)ll (n, n)T(XN WN)II)

>= llh(Xn, Wn)ll.

IlXn Wn, < - Ixl-
Therefore x,,- Wni tends to 0 and (h T)(xni- Wni tends to 0. This
contradicts the assumption y - 0. Thus the set {T(x w); 1, 2, ...}
contains infinitely many linearly independent vectors. So we may assume
that the vectors T(x Wl), T(x2 w2), are linearly independent. Hence
there exists a number s > 0 such that the sequence

T(x w), T(x:- w2),

is s-orthogonal. Suppose there is a number a such that for each n,
Ilxn Wnll <= a. It follows that T(xn Wn) T(Bo(O)). Because T(Ba(O)) is
compactoid, T(xn Wn) tends to 0 [6, p. 139]. Since

Xn Wn .-1(() T)(X Wn + T(xn- Wn)),

the sequence x w, x2 w2, tends to h-y. It follows that

y (h T)(h-ly).

This contradicts y R(X T). Thus limllx Wnll . NOW choose mn
such that for each n,

It follows that

an <- IlXn w, < [zrlm"-2 =< an I1 -.
Let On (Tr-)m-:(X W). Then the vectors Vl, v2 are linearly
independent and v B(0). Therefore the sequence T(v), T(v2), tends
to 0. Since (zr-l)m- tends to 0,

(X- Z)(v,,)= (./.-1)mn-2()._ Z)(xn)
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and

v, h-l((h T)(v,) + T(v,)),

the sequence vl, v2, tends to O, while we have the inequality

dn <= IIXn Wnll Izrlm- lit)nil <- dn 17rl -- Iio.11,

It follows that -< IlOnll. This contradicts the fact o, o:, tends to 0.
Hence our assumption that R(h T) is not closed is false. The proof is
completed.

THEOREM 17. If T L(E, F) is compact, then the conjugate T’ of T is
a compact linear map taking the Banach space F’ into the Banach space
g"

Proof. Since T is compact, for every e > 0 there exists a continuous
linear map S taking E into F such that S(E) is finite-dimensional and
liT all =< [6, p. 142]. Because K is spherically complete, it follows that

liT’ S’ll--< .
We now show that S’(F’) is finite-dimensional. Since S(E) is finite-dimensional,
there exist linearly independent vectors e F (i 1, 2, p) such that
for each x E,

S(x) alel + a2e2 + + apep (ai K; 1, 2 p).

We define the elements f (i 1, 2, p) of (S(E))’ as follows. For each
xE,

f.(S(x)) a, (i 1, 2, p).

Since K is spherically complete, each f has an extension fi to F. We can
easily show that S’(f), S’(f2), S’(f",) generate the linear subspace
S’(F’) of E’. Hence S’(F’) is finite-dimensional. Then T’ is compact.

THEOREM 18. Let T L(E, E) be compact and let h K, h O. If
T is injective, then T is surjective.

Proof. Since h T is injective and R(h T) is closed, by Corollary
13, h T’ is surjective. Hence by Theorems 14 and 16, h T’ is injective
and R(h T’) is closed. Therefore h T is surjective.

Further we can obtain the following theorems.

THEOREM 19. Let T L(E, E) be compact and let h K, h O. If
T is injective, then there exists a real number > 0 such that for all

xE,
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Proof. By Corollary 13 and Theorem 16, it is trivial.

THEOREM 20. Let T L(E, E) be compact and let h K, h O. Then
there exists a constant real number c such that for all x E,

d(x) <- cll(h T)(x)ll where d(x) d(x, N(h T)).

Proof. Since N(h T) is finite-dimensional, N(h T) is closed. Then
the quotient space E/N(h T) is a Banach space with the quotient norm

II1. Let p be the quotient map

E E/N(h T).

For x E, let p(x). Then we can define the continuous linear operator
H taking the Banach space E/N(h T) into E by

H() (X T)(x).

Hence R(H) R(X T). Since R(H) is closed and H is injective, by
Corollary 13 there exists a real number t, 0 < =< 1, such that

IIn()ll--> tllll for all E/N(X T).

Then it follows that [l(X Z)(x)ll --> td(x). Set c lit. Then we can conclude
the proof.

COROLLARY 21. Let T L(E, E) be compact and let h K, h O.
Then if y R(h T), there exists an x E such that ( T)(x) y
and Ilxll -< cllyll, where c is the constant of Theorem 20.

Proof. Since y R(h T), there exists an x0 E such that

y (X T)(xo).

Let D be the orthocomplement to N(h T). Then we may choose
yoD and Zo N(h T) such thatx0 Yo + To. It follows thaty
(X T)(yo) and d(xo) Ilyoll. Hence by Theorem 20 we have

Ilyoll cll(h Z)(y0)ll,

Set

and

R(h T) {x’ E’ :x’(x) 0, x R0 T)},
aR(h T’) {x E x’(x) O, x’ R(X T’))

aN(X T’) {x E x’(x) O, x’ N(X T’)}.

Then we can prove the following theorem.
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THEOREM 22. Let T L(E, E) be compact and let h K, h # O. Then
the following equalities hold.

(1) R(h T) N(h T’).
(2) aR(h- r’)= N(h- r).
(3) R(h- T)= aN()k- T’).
(4) R(h- T’)= m(h- T).
Proof. We have

R(X- T)a= N(h- T’), aR(h- T’)= N(X- T),
R(X- T)= aN()k- T’) and R(h- T’)C N(h- T)" [1, p. 285].

By Theorem 16, R(h T) and R(h T’) are closed. Then the equalities
(1), (2), (3) and the inclusion R(h T’) C N(X T) hold. Therefore we
must show that R(h T’) D N(h T)a. Using Corollary 21 and Ingleton’s
version of the Hahn-Banach theorem, we can show this inclusion in the
same way as the Theorem A.7 in [1, p. 398].

The following corollary is the same statement as (3) and (4) of Theorem
22.

COROLLARY 23. Let T L(E, E) be compact and let h K, h O.

(1) The equation (h T)(x) y is solvable if and only if y
aN(h- T’).

(2) Given a y’ in E’ there exists an x’ in E’ such that y’ (h T’)(x’)
if and only if y’ N(X T)a.

LEMMA 24. (1) /f XI, X2, X are linearly independent vectors of E,
then there exist elements g, g2, gm orE’ such that gi(xj) 6ij (i, J
1,2, m).

(2) Iff, f2, fn are linearly independent elements of E’, then there
exist vectors y, Y2, Yn of E such that fi(yj) 6ij (i, j 1, 2, n).

Proof. (1) Let M [Xl, X2, Xm]. We define a functional hi (i 1,
2, m) on M as follows:

hi M---> K, hi(OtlX + + olix + + OlmXm) oli.

Clearly, hi is a continuous linear functional and hi(xj) ij (i, J 1, 2,
m). Since K is spherically complete, h can be extended to a continuous

linear functional gi defined on all of E. These functional g, g2, gm are
desired elements of E’.

(2) As in [1, p. 399], we can prove that

a[fl, f/-,, ft’+ 1, L] C a[f/] (i 1, 2, n)
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implies that f,. is a linear combination offl, f-, f,.+ , fn. From which
the statement follows.

THEOREM 25. Let T L(E, E) be compact and h K, h O. Then

dim N(X T) dim N(X T’).

Proof. Using Theorems 17, 18, 22, Lemma 23, and the fact that a
continuous finite-dimensional linear map is compact [6, p. 142], we can
prove this theorem in the same way as the theorem for a Banach space
over the real field [1, p. 400].
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