FOLIATIONS WITH LOCALLY REDUCTIVE NORMAL BUNDLE

BY

ROBERT A. BLUMENTHAL

1. Introduction

Let M be a connected smooth manifold and let \mathscr{F} be a smooth codimension q foliation of M. Let T(M) be the tangent bundle of M and let $E \subset T(M)$ be the subbundle consisting of vectors tangent to the leaves of \mathscr{F} . Let Q = T(M)/E be the normal bundle of \mathscr{F} and let $\pi: T(M) \to Q$ be the natural projection. We shall denote by $\chi(M)$, $\Gamma(E)$, and $\Gamma(Q)$ the spaces of smooth sections of the vector bundles T(M), E, and Q respectively. Let

$$\nabla\colon \chi(M)\times \Gamma(Q)\to \Gamma(Q)$$

be a connection on Q. Following [10] we say that ∇ is an adapted connection if $\nabla_X Y = \pi([X, \tilde{Y}])$ for all $X \in \Gamma(E)$ and all $Y \in \Gamma(Q)$ where $\tilde{Y} \in \chi(M)$ is any vector field satisfying $\pi(\tilde{Y}) = Y$. Such a connection is called basic in [3] and is characterized by the condition that the parallel translation which it induces along a curve lying in a leaf of \mathscr{F} coincides with the natural parallel translation along the leaves. Let $T: \chi(M) \times \chi(M) \to \Gamma(Q)$ be the torsion of ∇ , that is, $T(X, Y) = \nabla_X(\pi Y) - \nabla_Y(\pi X) - \pi([X, Y])$. Then ∇ is adapted if and only if i(X)T = 0 for all $X \in \Gamma(E)$ where i(X)T denotes the one-form on M with values in Q given by (i(X)T)(Y) = T(X, Y) for $Y \in \chi(M)$. Let

$$R: \chi(M) \times \chi(M) \rightarrow \operatorname{Hom}_{\mathbb{R}}(\Gamma(Q), \Gamma(Q))$$

be the curvature of ∇ , that is, $R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ for $X, Y \in \chi(M), Z \in \Gamma(Q)$. Following [10] we say that the adapted connection ∇ is basic if i(X)R = 0 for all $X \in \Gamma(E)$ where i(X)R denotes the one-form on M with values in the bundle End (Q) given by (i(X)R)(Y) = R(X, Y) for $Y \in \chi(M)$.

In Section 2 we study complete basic connections and prove:

THEOREM 1. Let M and N be connected manifolds and let $f: M \to N$ be a submersion. Let ∇ be a connection on $Q = T(M)/\text{ker}(f_*)$ and $\overline{\nabla}$ a linear connection on N such that $f^{-1}(\overline{\nabla}) = \nabla$. If ∇ is complete, then $f: M \to N$ is a locally trivial fiber bundle and $\overline{\nabla}$ is also complete.

Received

^{© 1984} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

We thank the referee for pointing out that Theorem 1 could also be proved along lines similar to the proof of Theorem 1 in [8]. The context there is Riemannian manifolds instead of affinely connected manifolds, but the geometric content is similar.

We say that \mathscr{F} has a locally reductive normal bundle (a transverse locally reductive structure in the sense of [14]) if its normal bundle admits a basic connection ∇ satisfying $\nabla T = 0$, $\nabla R = 0$. In Section 3 we prove:

THEOREM 2. Let (M, \mathscr{F}, ∇) be a foliated manifold with a complete locally reductive normaa bundle. Let $p: \tilde{M} \to M$ be the universal cover of M. Then there is a simply connected reductive homogeneous space G/H and a locally trivial fiber bundle $F: \tilde{M} \to G/H$ whose fibers are the leaves of $p^{-1}(\mathscr{F})$. Moreover, the lift of ∇ to \tilde{M} agrees with the basic connection obtained by pulling back via F the canonical connection of the second kind on G/H.

When \mathscr{F} is zero-dimensional we obtain from Theorem 2 the theorem of Kobayashi [11] which states that a simply connected manifold with a complete linear connection with parallel torsion and curvature is isomorphic to a reductive homogeneous space with the canonical connection of the second kind.

In Section 4 we apply Theorem 2 to the case where \mathscr{F} is a Riemannian foliation of M, that is, the normal bundle Q of \mathscr{F} admits a smooth metric g such that the natural parallel transport along a curve lying in a leaf of \mathscr{F} is an isometry. There is a unique torsion-free metric-preserving basic connection ∇ on Q (e.g., see [16], [13]). We say that g is complete if ∇ is complete and we say that \mathscr{F} is Riemannian locally symmetric if $\nabla R = 0$. For each $x \in M$ and each two-dimensional subspace \mathscr{A} of Q_x , the (transverse) sectional curvature of \mathscr{A} is defined by

$$K(\not n) = -g(R(\tilde{X}_1, \tilde{X}_2)X_1, X_2)$$

where $\{X_1, X_2\}$ is an orthonormal basis of $\not\approx$ and $\tilde{X}_1, \tilde{X}_2 \in T_x(M)$ satisfy $\pi(\tilde{X}_1) = X_1, \pi(\tilde{X}_2) = X_2$.

THEOREM 3. Let \mathcal{F} be a complete Riemannian locally symmetric foliation of a manifold M. If K > 0, then M/\mathcal{F} is compact. If in addition \mathcal{F} has a compact leaf with finite fundamental group, then M is compact with finite fundamental group.

In Section 5 we give examples of foliations with locally reductive normal bundle. We will observe that a codimension one foliation of a compact manifold defined by a nonsingular closed one-form has a complete locally reductive normal bundle and so we will obtain from Theorem 2, Reeb's structure theorem [19] for such codimension one foliations. More generally, any Lie foliation of a compact manifold has a complete locally reductive normal bundle and we will obtain the structure theorem of Fedida [6]. Also see Molino's structure theory for Riemannian foliations [17].

2. Complete basic connections

Let M be a smooth manifold and let \mathcal{F} be a smooth codimension q foliation of M.

DEFINITION [4]. We say that $Y \in \Gamma(Q)$ is parallel along the leaves of \mathscr{F} if for each pair (U, f) where U is an open set in M and $f: U \to \mathbb{R}^q$ is a smooth submersion constant along the leaves of $\mathscr{F} \mid U$, we have $f_{*p}(Y_p) = f_{*q}(Y_q)$ whenever f(p) = f(q) where $f_*: Q \to T(\mathbb{R}^q)$ is the map induced by $f_*: T(M) \to T(\mathbb{R}^q)$. We say that \mathscr{F} is transversely parallelizable if there exist $Y_1, \ldots, Y_q \in \Gamma(Q)$ which are parallel along the leaves of \mathscr{F} and are linearly independent at each point. We call such Y_1, \ldots, Y_q a transverse *e*-structure for \mathscr{F} .

Given $Y \in \Gamma(Q)$, one can always choose $\tilde{Y} \in \chi(M)$ such that $\pi(\tilde{Y}) = Y$. Then Y is parallel along the leaves of \mathscr{F} if and only if for any open set $U \subset M$, $[X, \tilde{Y}] \in \Gamma(E \mid U)$ for all $X \in \Gamma(E \mid U)$ [4].

DEFINITION. Let $Y \in \Gamma(Q)$. We say Y is complete if there exists a complete vector field $\tilde{Y} \in \chi(M)$ such that $\pi(\tilde{Y}) = Y$.

DEFINITION. Let \mathscr{F} be transversely parallelizable and let $Y_1, \ldots, Y_q \in \Gamma(Q)$ be a transverse *e*-structure. We say this transverse *e*-structure is complete if Y_i is complete for $i = 1, \ldots, q$.

Let ∇ be an adapted connection on Q. Let $\rho: F(Q) \to M$ be the frame bundle of Q, a principal $GL(q, \mathbf{R})$ -bundle and let $H \subset T(F(Q))$ be the horizontal distribution corresponding to ∇ . Let $\{(U_{\alpha}, f_{\alpha}, g_{\alpha\beta})\}_{\alpha,\beta \in A}$ be an \mathbf{R}^{q} -cocycle defining \mathcal{F} . Let $F(\mathbf{R}^{q})$ be the frame bundle of \mathbf{R}^{q} . Then

$$\{(\rho^{-1}(U_{\alpha}), f_{\alpha*}, g_{\alpha\beta*})\}_{\alpha,\beta\in A}$$

is an $F(\mathbf{R}^q)$ -cocycle on F(Q) and hence defines a codimension q(q + 1) foliation \mathscr{F}' of F(Q). Let $E' \subset T(F(Q))$ be the subbundle tangent to \mathscr{F}' . Since ∇ is adapted, we have $E' \subset H$ [15]. We may regard each $u \in F(Q)$ as the vector space isomorphism $u: \mathbf{R}^q \to Q_{\rho(u)}$ which sends the standard basis $\{e_1, \ldots, e_q\}$ of \mathbf{R}^q to the frame u of $Q_{\rho(u)}$. Let Q' = H/E', a q-plane bundle over F(Q). Note that $\rho: F(Q) \to M$ induces $\rho_*: Q' \to Q$, an isomorphism on fibers. Let $h \in \mathbf{R}^q$. For $u \in F(Q)$, let $B(h)_u \in Q'_u$ be the unique element such that $\rho_{*u}(B(h)_u) = u(h)$. Then B(h) is a section of Q'. Note that $Q' \subset T(F(Q))/E' =$ normal bundle of \mathscr{F}' .

DEFINITION. We say ∇ is complete if B(h) is complete for all $h \in \mathbb{R}^{q}$.

Let E_h^k be the $q \times q$ matrix with a 1 in the h^{th} column and k^{th} row and 0 elsewhere and let $\sigma(E_h^k)$ be the corresponding fundamental vector field on

F(Q). Since the vector fields $\sigma(E_h^k)$ project via the maps f_{α} , to the fundamental vector fields on $F(\mathbf{R}^q)$, it follows that

$$\pi(\sigma(E_h^k)) \in \Gamma(T(F(Q))/E')$$

is parallel along the leaves of \mathcal{F}' . Note that it is also complete.

Suppose now that ∇ is basic. Let θ be the \mathbb{R}^{q} -valued one-form on F(Q) defined by $\theta_{u}(Y) = u^{-1}(\pi \rho_{*u}(Y))$ for $u \in F(Q)$, $Y \in T_{u}(F(Q))$. The torsion form of ∇ is the \mathbb{R}^{q} -valued two-form Θ on F(Q) defined by

$$\Theta_u(X, Y) = (d\theta)_u(X_H, Y_H)$$
 for $u \in F(Q)$ and $X, Y \in T_u(F(Q))$.

Since i(X)T = 0 for all $X \in \Gamma(E)$, it follows that $i(X)\Theta = 0$ for all $X \in \Gamma(E')$. Let ω be the connection form of ∇ and let Ω be the curvature form. Since i(X)R = 0 for all $X \in \Gamma(E)$, it follows that $i(X)\Omega = 0$ for all $X \in \Gamma(E')$. For i = 1, ..., q let $E_i = B(e_i)$ and let Y_i be a horizontal vector field on F(Q) satisfying $\pi(Y_i) = E_i$. If $X \in \Gamma(E')$, then

$$0 = (i(X)\Omega)(Y_i) = \Omega(X, Y_i) = d\omega(X_H, Y_{iH}) = d\omega(X, Y_i)$$

= $X\omega(Y_i) - Y_i\omega(X) - \omega([X, Y_i]) = -\omega([X, Y_i])$

and so $[X, Y_i]$ is horizontal. Now

$$0 = (i(X)\Theta)(Y_i) = \Theta(X, Y_i) = d\theta(X_H, Y_{iH}) = d\theta(X, Y_i)$$
$$= X\theta(Y_i) - Y_i\theta(X) - \theta([X, Y_i]) = -\theta([X, Y_i])$$

and so $[X, Y_i] \in \Gamma(E' \oplus V)$ where $V \subset T(F(Q))$ denotes the subbundle consisting of vertical vectors. Hence $[X, Y_i] \in \Gamma(E')$ and so E_i is parallel along the leaves of \mathscr{F}' . Thus $\{E_i, \pi(\sigma(E_h^k)): i, h, k = 1, ..., q\}$ is a transverse *e*-structure for \mathscr{F}' . If ∇ is complete, then this transverse *e*-structure is complete.

We now prove Theorem 1. Let \mathscr{F} be the foliation of M whose leaves are the connected components of the level sets of the submersion $f: M \to N$. Since ∇ is the pull-back via f of a connection on N, it follows that ∇ is a basic connection for \mathscr{F} . Since ∇ is complete, we have from the above discussion that $\{E_i, \pi(\sigma(E_h^k)): i, h, k = 1, ..., q\}$ is a complete transverse *e*structure for \mathscr{F}' . For each i = 1, ..., q let Y_i be a complete horizontal vector field satisfying $\pi(Y_i) = E_i$ and let $\phi^i: \mathbb{R} \times F(Q) \to F(Q)$ be the action of \mathbb{R} on F(Q) generated by Y_i . Let $X_1, ..., X_r$ $(r = q^2)$ be the vertical vector fields $\sigma(E_h^k)$ and for each j = 1, ..., r let $\psi^j: \mathbb{R} \times F(Q) \to F(Q)$ be the action of \mathbb{R} on F(Q) generated by X_j .

Let $u_0 \in F(Q)$ and let L' be the leaf of \mathscr{F}' passing through u_0 . Define

$$\Phi \colon \mathbf{R}^r \times \mathbf{R}^q \times L' \to F(Q)$$

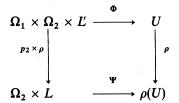
by

$$\Phi(s_1,\ldots,s_r,t_1,\ldots,t_q,u)=\psi_{s_1}^1\circ\cdots\circ\phi_{t_1}^1\circ\cdots\circ\psi_{s_r}^r\circ\phi_{t_q}^q(u).$$

Note that the leaves of \mathcal{F}' are closed since \mathcal{F}' is defined by the submersion

$$f_{\star}: F(Q) \to F(N).$$

Hence by the proof of Proposition 4 in [16] (or the proof of Lemma 1 in Section II. 2 of [17]), there is a neighborhood Ω of 0 in $\mathbb{R}^r \times \mathbb{R}^q = \mathbb{R}^{r+q}$ such that $\Phi: \Omega \times L \to U$ is a diffeomorphism where U is an open saturated set in F(Q). We remark that this fact is closely related to a classical result of Ehresmann [5]. Note that Φ maps the foliation of $\Omega \times L'$ whose leaves are the sets {point} $\times L'$ to \mathscr{F}' and induces on each leaf of $\Omega \times L'$ a diffeomorphism onto a leaf of \mathscr{F}' . We may assume that Ω is of the form $\Omega_1 \times \Omega_2$ where Ω_1 is a neighborhood of 0 in \mathbb{R}^r and Ω_2 is a neighborhood of 0 in \mathbb{R}^q . Note that $\rho: F(Q) \to M$ maps each leaf of \mathscr{F}' diffeomorphically onto a leaf of \mathscr{F} . Let $L = \rho(L) \in \mathscr{F}$. Since X_1, \ldots, X_r are vertical, Φ induces a smooth map $\Psi: \Omega_2 \times L \to M$ such that the diagram



commutes where $p_2: \Omega_1 \times \Omega_2 \to \Omega_2$ is the projection onto the second factor. Then $\rho(U)$ is an open saturated set in M and Ψ is a local diffeomorphism which maps the foliation of $\Omega_2 \times L$ whose leaves are the sets {point} $\times L$ to \mathscr{F} and induces on each leaf of $\Omega_2 \times L$ a diffeomorphism onto a leaf of \mathscr{F} . Let $x_0 = \rho(u_0)$ and consider the composition

$$\Omega_2 \xrightarrow{i_{x_0}} \Omega_2 \times L \xrightarrow{\Psi} \rho(U) \xrightarrow{f} N$$

where $i_{x_0}(y) = (y, x_0)$. Since this composition is a local diffeomorphism we may assume, by shrinking Ω_2 if necessary, that it is a diffeomorphism. Thus

$$\Omega_2 \times L \xrightarrow{\Psi} \rho(U)$$

is one-one and hence is a diffeomorphism. Let K be a compact neighborhood of 0 in R⁴ contained in Ω_2 . Then $\Psi(K \times L)$ is a closed saturated neighborhood of L in M. Hence each point of M/\mathscr{F} has a neighborhood base consisting of closed sets. Since the points of M/\mathscr{F} are closed sets, it follows that M/\mathscr{F} is Hausdorff. Thus M/\mathscr{F} is a smooth Hausdorff manifold and the natural projection $M \to M/\mathscr{F}$ is a locally trivial fiber bundle. Now f induces a local diffeomorphism $\overline{f}: M/\mathscr{F} \to N$ such that the diagram

commutes. Also, ∇ induces a complete linear connection $\tilde{\nabla}$ on M/\mathcal{F} such that $\bar{f}^{-1}(\bar{\nabla}) = \tilde{\nabla}$. Since $\tilde{\nabla}$ is complete and \bar{f} is a connection-preserving local diffeomorphism, it follows that \bar{f} is a covering and $\bar{\nabla}$ is complete [9]. Hence f is a locally trivial fiber bundle.

3. Locally reductive normal bundle

(3.1) PROPOSITION. Let (M, \mathscr{F}, ∇) be a foliated manifold with a locally reductive normal bundle. Let $p: \widetilde{M} \to M$ be the universal cover of M. Then there is a simply connected reductive homogeneous space G/H and a smooth submersion $F: \widetilde{M} \to G/H$ such that the leaves of $p^{-1}(\mathscr{F})$ are the connected components of the sets $F^{-1}\{x\}$, $x \in G/H$. Moreover, the lift of ∇ to \widetilde{M} agrees with the basic connection obtained by pulling back via F the canonical connection of the second kind on G/H.

Proof. Let U be an open set in M such that the leaves of $\mathscr{F} | U$ are the level sets of a smooth submersion $f: U \to V$ where V is an open subset of \mathbb{R}^{q} . Let $\bar{X}, \ \bar{Y} \in \chi(V)$. Let $Y \in \Gamma(Q | U)$ be the unique section of Q | U which is f-related to \bar{Y} and let $X \in \chi(U)$ be any vector field which is f-related to \bar{X} . Let $Z \in \Gamma(E | U)$. Then

$$\nabla_{Z} \nabla_{X} Y = R(Z, X)Y + \nabla_{X} \nabla_{Z} Y + \nabla_{[Z,X]} Y$$
$$= (i(Z)R)(X)(Y) + \nabla_{X} \nabla_{Z} Y + \nabla_{[Z,X]} Y$$
$$= 0$$

since Z, $[Z, X] \in \Gamma(E | U)$. Thus $\nabla_X Y$ is parallel along the leaves of $\mathscr{F} | U$ and hence is *f*-related to a vector field $\nabla_{\overline{X}} \overline{Y}$ on *V*. If $X_1 \in \chi(U)$ is also *f*related to \overline{X} , then $\nabla_X Y - \nabla_{X_1} Y = \nabla_{X-X_1} Y = 0$ since $X - X_1 \in \Gamma(E | U)$ and so $\nabla_{\overline{X}} \overline{Y}$ depends only on \overline{X} and \overline{Y} . Clearly $\overline{\nabla}: \chi(V) \times \chi(V) \to \chi(V)$ defines a linear connection on *V* such that $f^{-1}(\overline{\nabla}) = \nabla$. Moreover, the torsion \overline{T} and curvature \overline{R} of $\overline{\nabla}$ satisfy $\overline{\nabla} \overline{T} = 0$, $\overline{\nabla} \overline{R} = 0$. Hence *V* is locally representable as a reductive homogeneous spaces with the canonical connection of the second kind [18]. Thus, by shrinking *U* if necessary, we may assume that *V* is an open subset of a simply connected reductive homogeneous space G/H and that $\overline{\nabla}$ is the restriction of the canonical connection of the second kind. Hence we can find an open cover $\{U_{\alpha}\}_{\alpha \in A}$ of *M* such that for each $\alpha \in A$ the leaves of $\mathscr{F} | U_{\alpha}$ are the level sets of a smooth submersion $f_{\alpha}: U_{\alpha} \to V_{\alpha}$ where V_{α} is an open subset of a simply connected reductive homogeneous space $(G/H)_{\alpha}$ and $f_{\alpha}^{-1}(\bar{\nabla}_{\alpha}) = \nabla | U_{\alpha}$ where $\bar{\nabla}_{\alpha}$ is the canonical connection of the second kind on $(G/H)_{\alpha}$. For each $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ we have a diffeomorphism

$$g_{\alpha\beta}: f_{\beta}(U_{\alpha} \cap U_{\beta}) \to f_{\alpha}(U_{\alpha} \cap U_{\beta})$$

satisfying $f_{\alpha} = g_{\alpha\beta} \circ f_{\beta}$ on $U_{\alpha} \cap U_{\beta}$. Since

$$f_{\beta}^{-1}(g_{\alpha\beta}^{-1}(\bar{\nabla}_{\alpha})) = (g_{\alpha\beta} \circ f_{\beta})^{-1}(\bar{\nabla}_{\alpha}) = f_{\alpha}^{-1}(\bar{\nabla}_{\alpha}) = \nabla = f_{\beta}^{-1}(\bar{\nabla}_{\beta})$$

on $U_{\alpha} \cap U_{\beta}$ it follows that $g_{\alpha\beta}^{-1}(\bar{\nabla}_{\alpha}) = \bar{\nabla}_{\beta}$ on $f_{\beta}(U_{\alpha} \cap U_{\beta})$ and so $g_{\alpha\beta}$ is an affine transformation.

Let $\alpha \in A$. Since $(G/H)_{\alpha}$ is a reductive homogeneous space and $\overline{\nabla}_{\alpha}$ is the canonical connection of the second kind, we have that $(G/H)_{\alpha}$ is an analytic manifold and $\overline{\nabla}_{\alpha}$ is a complete analytic linear connection [12]. Without loss of generality we may assume that $U_{\alpha} \cap U_{\beta}$ is connected whenever it is nonempty. Hence $g_{\alpha\beta}$ can be uniquely extended to an affine isomorphism from $(G/H)_{\beta}$ to $(G/H)_{\alpha}$ [12]. If $\alpha, \alpha' \in A$ are arbitrary, let $\sigma: [0, 1] \to M$ be a continuous curve with $\sigma(0) \in U_{\alpha}$, $\sigma(1) \in U_{\alpha'}$, and choose a covering of σ by a finite sequence $U_{\alpha_0}, U_{\alpha_1}, \ldots, U_{\alpha_n}$ with $U_{\alpha_0} = U_{\alpha}, U_{\alpha_n} = U_{\alpha'}$ such that $U_{\alpha_i} \cap U_{\alpha_{i+1}} \neq \emptyset$ for $i = 0, 1, \ldots, n-1$. Since $(G/H)_{\alpha_i}$ and $(G/H)_{\alpha_{i+1}}$ are affinely isomorphic for i = 0, 1, ..., n - 1 it follows that $(G/H)_{\alpha}$ and $(G/H)_{\alpha'}$ are afffinely isomorphic. Hence there is a simply connected reductive homogeneous space G/H such that \mathscr{F} is defined by a G/H-cocycle $\{(U_{\alpha}, f_{\alpha}, g_{\alpha\beta})\}_{\alpha,\beta \in A}$ such that $f_{\alpha}^{-1}(\bar{\nabla}) = \nabla | U_{\alpha}$ where $\bar{\nabla}$ is the canonical connection of the second kind on G/H and each $g_{\alpha\beta}$ is the restriction of an affine isomorphism of G/H. Thus \mathscr{F} is transversely homogeneous and so there is a smooth submersion F: $\widetilde{M} \to G/H$ constant along the leaves of $p^{-1}(\mathscr{F})$ [1]. Clearly $F^{-1}(\overline{\nabla}) = p^{-1}(\nabla)$. This completes the proof of the proposition.

Theorem 2 now follows from Proposition (3.1) and Theorem 1.

(3.2) COROLLARY. Let (M, \mathscr{F}) be a foliated manifold and let ∇ be a complete basic connection on the normal bundle of \mathscr{F} . Let $p: \widetilde{M} \to M$ be the universal cover of M.

(a) If T = 0, $\nabla R = 0$, there is a simply connected symmetric space G/H and a locally trivial fiber bundle $F: \tilde{M} \to G/H$ whose fibers are the leaves of $p^{-1}(\mathcal{F})$. Moreover, $p^{-1}(\nabla) = F^{-1}(\bar{\nabla})$ where $\bar{\nabla}$ is the canonical connection on G/H.

(b) If R = 0, $\nabla T = 0$, there is a simply connected Lie group K and a locally trivial fiber bundle $F: \tilde{M} \to K$ whose fibers are the leaves of $p^{-1}(\mathcal{F})$. Moreover, $p^{-1}(\nabla) = F^{-1}(\bar{\nabla})$ where $\bar{\nabla}$ is the linear connection on K whose parallel transport is defined by the left translations of K.

(c) If T = 0, R = 0, then \tilde{M} is diffeomorphic to a product $\tilde{L} \times \mathbb{R}^{q}$ where \tilde{L} is the universal cover of the leaves of \mathcal{F} and $p^{-1}(\mathcal{F})$ is the product foliation.

Moreover, $p^{-1}(\nabla)$ is the basic connection on $\tilde{L} \times \mathbb{R}^q$ determined by the canonical linear connection on \mathbb{R}^q .

4. Riemannian locally symmetric foliations

We prove Theorem 3. Let (M, \mathcal{F}, g) be a complete Riemannian locally symmetric foliation. That is, \mathcal{F} is a foliation of the manifold M and g is a holonomy-invariant metric on the normal bundle Q of \mathcal{F} . Moreover, the unique basic connection ∇ on Q with T = 0, $\nabla q = 0$ is complete and satisfies $\nabla R = 0$. We assume that the (transverse) sectional curvature K of (M, \mathcal{F}, g) is positive. Let $p: \tilde{M} \to M$ be the universal cover of M and let $\tilde{\mathscr{F}} = p^{-1}(\mathscr{F})$. By Theorem 1, the space of leaves $\tilde{M}/\tilde{\mathscr{F}}$ is a smooth Hausdorff manifold and the natural projection $\tilde{M} \to \tilde{M}/\tilde{\mathscr{F}}$ is a locally trivial fiber bundle. The lift of g to the normal bundle of \mathcal{F} projects to a complete Riemannian metric on $\tilde{M}/\tilde{\mathscr{F}}$ with parallel curvature. Thus $\tilde{M}/\tilde{\mathscr{F}}$ is a complete Riemannian locally symmetric space and hence, since it is simply connected, is Riemannian symmetric [12]. Since K > 0, it follows that \tilde{M}/\tilde{F} has positive sectional curvature. Thus $\tilde{M}/\tilde{\mathscr{F}}$ is compact [21]. Now $p: \tilde{M} \to M$ induces a continuous surjection $\tilde{M}/\tilde{\mathscr{F}} \to M/\mathscr{F}$ and so M/\mathscr{F} is compact. If \mathscr{F} has a compact leaf with finite fundamental group, then the fibers of the bundle $\tilde{M} \to \tilde{M}/\tilde{\mathscr{F}}$ are compact. Hence \tilde{M} is compact and so M is compact with finite fundamental group.

5. Applications and examples

(5.1) Application to Fedida's structure theorem [6] for Lie foliations. Let φ be a finite dimensional real Lie algebra. Let M be a compact manifold and suppose ω is a smooth \mathscr{G} -valued one-form of rank q on M satisfying $d\omega + \frac{1}{2}[\omega, \omega] = 0$. Then ω defines a smooth codimension q foliation \mathscr{F} on M which is a Lie foliation modeled on \mathscr{G} [6]. Let X_1, \ldots, X_q be a basis of \mathscr{G} . Then $\omega = \sum_{i=1}^{q} \omega_i X_i$ where $\omega_1, \ldots, \omega_q$ are smooth linearly independent one-forms on M satisfying

$$d\omega_i = \sum_{1 \le j \le k \le q} c^i_{jk} \omega_j \wedge \omega_k \text{ where } c^i_{jk} \in \mathbf{R}.$$

Let $\tilde{Y}_1, \ldots, \tilde{Y}_q \in \chi(M)$ be such that $\omega_i(\tilde{Y}_j) = \delta_{ij}$. For each $i = 1, \ldots, q$ let

$$Y_i = \pi(\tilde{Y}_i) \in \Gamma(Q).$$

Define a connection ∇ on Q by requiring $\nabla_X Y_i = 0, i = 1, ..., q$ for all $X \in \chi(M)$.

LEMMA. ∇ is adapted.

Proof. Let $X \in \Gamma(E)$, $Y \in \Gamma(Q)$. Write $Y = \sum_{i=1}^{q} f_i Y_i$ where the f_i are smooth functions on M. Then

$$\nabla_X Y = \nabla_X (\sum f_i Y_i)$$

= $\sum \nabla_X f_i Y_i$
= $\sum (f_i \nabla_X Y_i + (Xf_i)Y_i)$
= $\sum (Xf_i)Y_i$
= $\sum \pi((Xf_i)\tilde{Y}_i)$
= $\sum \pi([X, f_i \tilde{Y}_i]) - f_i[X, \tilde{Y}_i])$
= $\pi(\sum [X, f_i \tilde{Y}_i]) - \sum f_i \pi([X, \tilde{Y}_i])$.

But for $i, l = 1, \ldots, q$ we have

$$0 = \sum_{1 \le j < k \le q} c_{jk}^{i} \omega_{j} \wedge \omega_{k}(X, \tilde{Y}_{l})$$

= $d\omega_{i}(X, \tilde{Y}_{l})$
= $X\omega_{i}(\tilde{Y}_{l}) - \tilde{Y}_{l} \omega_{i}(X) - \omega_{i}([X, \tilde{Y}_{l}])$
= $-\omega_{i}([X, \tilde{Y}_{l}])$

and so $[X, \tilde{Y}_i] \in \Gamma(E)$. Thus $\nabla_X Y = \pi(\sum [X, f_i \tilde{Y}_i]) = \pi([X, \sum f_i \tilde{Y}_i])$.

LEMMA. $\nabla T = 0$.

Proof. For i, l,
$$r = 1, ..., q$$
 we have

$$-\omega_i([\tilde{Y}_l, \tilde{Y}_r]) = \tilde{Y}_l \omega_i(\tilde{Y}_r) - \tilde{Y}_r \omega_i(\tilde{Y}_l) - \omega_i([\tilde{Y}_l, \tilde{Y}_r])$$

$$= d\omega_i(\tilde{Y}_l, \tilde{Y}_r)$$

$$= \sum_{1 \le j < k \le q} c^i_{jk} \omega_j \wedge \omega_k(\tilde{Y}_l, \tilde{Y}_r)$$

$$= \sum_{1 \le j < k \le q} c^i_{jk} (\delta_{jl} \delta_{kr} - \delta_{jr} \delta_{kl})$$

$$= -b^i_{lr} \in \mathbf{R}.$$

Thus $[\tilde{Y}_l, \tilde{Y}_r] = X + \sum_{i=1}^q b_{ir}^i \tilde{Y}_i$ where $X \in \Gamma(E)$ and so

$$\pi([\tilde{Y}_l, \tilde{Y}_r]) = \sum_{i=1}^q b_{ir}^i Y_i.$$

Hence

$$T(\widetilde{Y}_l, \widetilde{Y}_r) = \nabla_{\widetilde{Y}_l} Y_r - \nabla_{\widetilde{Y}_r} Y_l - \pi([\widetilde{Y}_l, \widetilde{Y}_r]) = -\sum_{i=1}^q b_{ir}^i Y_i$$

which shows that T is parallel.

Clearly, R = 0. In particular ∇ is basic. Since M is compact, we have that $\tilde{Y}_1, \ldots, \tilde{Y}_q$ are complete and so ∇ is complete. Hence, by Corollary 3.2 (b), the leaves of the lift of \mathscr{F} to the universal cover \tilde{M} of M are the fibers of a locally trivial fiber bundle $\tilde{M} \to K$ where K is a simply connected Lie group which is Fedida's result. Of course, K is the simply connected Lie group whose Lie algebra is \mathscr{G} .

(5.2) Application to Reeb's structure theorem [19] for codimension one foliations defined by a closed one-form. Let M be a compact manifold and let \mathscr{F} be a codimension one foliation of M defined by a nonsingular one-form ω on M satisfying $d\omega = 0$. Then \mathscr{F} is Riemannian and hence the canonical torsion-free connection is curvature-free. Hence, by Corollary 3.2 (c), \widetilde{M} is a product $\widetilde{L} \times \mathbf{R}$ and $p^{-1}(\mathscr{F})$ is the product foliation which is Reeb's result.

(5.3) Example. Let M be a manifold and let ω be a smooth nonsingular one-form on M satisfying $d\omega = \omega \wedge \omega_1$, $d\omega_1 = 0$. Then ω defines a smooth codimension one foliation \mathscr{F} of M which is transversely affine and which can be defined by an **R**-cocycle

$$\{(U_{\alpha}, f_{\alpha}, g_{\alpha\beta})\}_{\alpha,\beta \in A}$$

where each $g_{\alpha\beta}$ is of the form $g_{\alpha\beta}(t) = a_{\alpha\beta}t + b_{\alpha\beta}$ [7], [20]. The canonical linear connection on **R** induces a basic connection ∇ on the normal bundle of \mathscr{F} satisfying T = 0, R = 0. If M is compact and ∇ is complete, then \mathscr{F} has no exceptional minimal sets [2].

(5.4) Example. This example is a special case of (5.3). Let $F: \mathbb{R}^2 \to \mathbb{R}$ be the smooth submersion given by $F(x, y) = e^y \sin 2\pi x$. Then F defines a codimension one foliation \mathscr{F} of \mathbb{R}^2 which passes to a codimension one transversely affine foliation \mathscr{F} of the two-dimensional torus T^2 . The basic connection on the normal bundle of \mathscr{F} induced by the canonical linear connection on \mathbb{R} is not complete. Observe that $F: \mathbb{R}^2 \to \mathbb{R}$ is not a locally trivial fiber bundle.

(5.5) Example. Let

$$K = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b, \in \mathbf{R}, a > 0 \right\},$$

a two-dimensional Lie group. Let $\tilde{M} = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}$ and let $F: \tilde{M} \to K$ be the smooth submersion given by

$$F(x, y, z) = \begin{pmatrix} z & e^y \sin 2\pi x \\ 0 & 1 \end{pmatrix}.$$

Then F defines a codimension two foliation \mathscr{F} of \widetilde{M} . Define a left action of $Z \times Z$ on \widetilde{M} by $((n, m), (x, y, z)) \mapsto (x + n, y + m, z)$. Then \mathscr{F} passes to a codimension two foliation \mathscr{F} of $(Z \times Z) \setminus \widetilde{M} = T^2 \times \mathbb{R}^+$ which can be defined

by a K-cocycle $\{(U_{\alpha}, f_{\alpha}, g_{\alpha\beta})\}_{\alpha,\beta \in A}$ where each $g_{\alpha\beta}$ is of the form $g_{\alpha\beta}(k) = a_{\alpha\beta} k a_{\alpha\beta}^{-1}$. The linear connection on K whose parallel transport is given by left translations of K induces a basic connection ∇ on the normal bundle of \mathscr{F} satisfying R = 0, $\nabla T = 0$, $T \neq 0$.

(5.6) Example. Let G/H be a reductive homogeneous space. That is, the Lie algebra g of G may be decomposed as $g = k \oplus m$ where k is the Lie algebra of k and m is an ad (H)-invariant subspace of g. Let $\overline{\nabla}$ be the canonical connection of the second kind on G/H. Then $\overline{\nabla}$ is a complete G-invariant linear connection on G/H satisfying $\overline{\nabla}\overline{T} = 0$, $\overline{\nabla}\overline{R} = 0$. Let Γ be a discrete subgroup of G. The foliation of G whose leaves are the left cosets gH of H induces on $M = \Gamma \setminus G$ a foliation \mathscr{F} with a complete locally reductive normal bundle.

(5.7) *Example.* Define a left action of $\pi_1(T^2) = Z \times Z$ on S^2 by

$$(1, 0) \mapsto \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in O(3),$$
$$(0, 1) \mapsto \begin{pmatrix} \cos 2\pi\alpha & \sin 2\pi\alpha & 0 \\ -\sin 2\pi\alpha & \cos 2\pi\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \in O(3)$$

where $0 < \alpha < 1$ is irrational. Let $M = \mathbf{R}^2 \times_{(Z \times Z)} S^2$ be the associated bundle over T^2 with fiber S^2 . The foliation of $\mathbf{R}^2 \times S^2$ whose leaves are the sets $\mathbf{R}^2 \times \{x\}, x \in S^2$ induces on M a complete Riemannian locally symmetric foliation \mathscr{F} with (transverse) sectional curvature $K \equiv 1$.

REFERENCES

- R. A. BLUMENTHAL, Transversely homogeneous foliations, Ann. Inst. Fourier (Grenoble), vol. 29 (1979), pp. 143–158.
- Foliated manifolds with flat basic connection, J. Differential Geometry, vol. 16 (1981), pp. 401-406.
- R. BOTT, Lectures on characteristic classes and foliations, Lecture Notes in Math., no. 279, Springer-Verlag, New York, 1972, pp. 1–80.
- L. CONLON, Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc., vol. 194 (1974), pp. 79–102.
- 5. C. EHRESMANN, Structures feuilletées, Proceedings of the Fifth Canadian Mathematical Congress, Montreal, 1961, pp. 109–172.
- E. FÉDIDA, Sur la théorie des feuilletages associée au repère mobile: cas des feuilletages de Lie, Lecture Notes in Math., no. 652, Springer-Verlag, Berlin, 1976, pp. 183–195.
- E. FÉDIDA and P. M. D. FURNESS, Transversally affine foliations, Glasgow Math. J., vol. 17 (1976), pp. 106–111.
- R. HERMANN, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc., vol. 11 (1960), pp. 236–242.
- 9. N. HICKS, A theorem on affine connections, Illinois J. Math., vol. 3 (1959), pp. 242-254.

- 10. F. W. KAMBER and P. TONDEUR, *Foliated bundles and characteristic classes*, Lecture Notes in Math, no. 493, Springer-Verlag, Berlin, 1975.
- 11. S. KOBAYASHI, Espaces à connexions affines et riemanniens symmétriques, Nagoya Math, J., vol. 9 (1955), pp. 25–37.
- 12. S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry, vol. I, II, Interscience Tracts in Pure and Appl. Math., vol. 15, Interscience, New York, 1963.
- 13. C. LAZAROV and J. PASTERNACK, Secondary characteristic classes for Riemannian foliations, J. Differential Geometry, vol. 11 (1976), pp. 365–385.
- 14. P. LIBERMANN, "Pfaffian systems and transverse differential geometry" in Differential geometry and relativity, D. Reidel, Dordrecht, Holland, 1976, pp. 107-126.
- P. MOLINO, Feuilletages et classes caractéristiques, Symposia Mathematica, vol. X (1972), pp, 199-209.
- 16. ——, Etude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup., vol. 10 (1977), pp. 289–307.
- 17. ——, Géométrie globale des feuilletages riemanniens, Proc. Kon. Ned. Akad. V. Wet., vol. A85 (1982), pp. 45–76.
- K. NOMIZU, Invariant affine connections on homogeneous spaces, Amer. J. Math., vol. 76 (1954), pp. 33–65.
- 19. G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., no. 1183, Hermann, Paris, 1952.
- 20. B. SEKE, Sur les structures transversalement affines des feuilletages de codimension un, Ann. Inst. Fourier (Grenoble), vol. 30 (1980), pp. 1–29.
- 21. J. WOLF, Spaces of constant curvature, McGraw-Hill, New York, 1967.

SAINT LOUIS UNIVERSITY ST. LOUIS, MISSOURI