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N-DIMENSIONAL SUBMANIFOLDS OF RN + AND sN+ 2

BY

A. C. ASPERTI AND IV[. DAJCZER2

1. Introduction

(1.1) Let x" Mn--, Q/ be an immersion of a differentiable manifold Mn

into a (n + q)-dimensional Riemannian manifold of constant curvature c and
let "-T,M x T,M--, (T,M) be the second fundamental form of x at p M;
here T,M is the tangent space of M at p and (T,M)+/- is the orthogonal
eomp!ement of dxt,(T,M) in To,)Qc. We say that U, c T,M is an umbilie
subspace of x at p if ((X, Y), ) 2(X, Y), 2 a constant, for all X U,, all
Y TM and all (TM)+/-, where ( ) denotes both the Riemannian
metric on Q and the Riemannian metric on M induced by x. Recently, it
was shown (ef. [1]) that if M can be isometrically immersed in both
and (+, > c, q _< n 3, then for each p M there exists an umbili sub-
space U, T,M of both immersions with dim U > n- q. The set of Rie-
mannian metrics which admit locally isometric immersions as above is very
large, even if one assumes that the second immersion has flat normal bundle,
i.e., the curvature tensor R+/- of the normal connection vanishes. Namely, it is
known (ef. [2]) that non-flat eonformally flat hypersurfaees of R"+ x, n >_ 4,
can always be locally isometrically immersed into the sphere St x, for some
c. The question that served as a starting point of this paper was to describe
new examples of hypersurfaees of R+ which can be immersed into
with R= 0. As we found out, this question is related to the concept of
envelopes of a p-parameter family of spheres. To state our results, we need
some terminology.

(1.2) Let x" M"--, Q’+ be an isometric immersion and assume here and
in the sequel that M is connected and orientable with a given orientation.
Choose a unit normal vector / and denote by A the self adjoint map of
tangent spaces corresponding to the second fundamental form of x along r/,
and by kx, k, the eigenvalues of A. in the case that Q+ R"+t, we
denote by N the unit normal to x which gives the orientation of M. We say
that x" Mn--, R+ is a p-parameter envelope of n-spheres, p <_ n- 2, (briefly,
p-PES) if at each point of M,

k="’--k,_,=24=0 and kj42 ifn-p+l<_j<_n.
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Classically, a p-PES is locally a solution

x x(u,..., up, t,..., t,_p)
in R + of the system below:

(a) x 0
2 r2,

(1.3)
(b) x-9, =-r j=l,...,p,

where 0" L’--’R"+I is an isometric immersion, 0=0(u1,..., up), and
r C(L) is a non-vanishing function. Geometrically it means that x is the
envelope of the p-parameter family of n-spheres given by (a): the limit of the
intersection of neighboring spheres that approach each other are (n- p)-
spheres that generate the envelope.

(1.4) Let # and r be as above and let l, tn_t, be orthogonal par-
ameters of the unit (n- p)-sphere centered at the origin of an euclidean
(n- p + 1)-space. Set

x(u, u, t, t._,) 9 rVr- r x//1 -I Vrl2b(t, t._),
where Vr is the gradient of r and the vector has origin at the point

9- rVr and describes a unit sphere in the affine (n-p + 1)-plane
through ), orthogonal to 0.

(1.5) THEOREM. The hypersurface given by (1.4) satisfies the system (1.3)
and is (away from singular points) a p-PES. Conversely, every p-PES satisfies
system (1.3) and is locally of the form (1.4), for r 1/2.

(1.6) Let x: M"---, R"+ be a p-PES and let Da be the smooth distribution
defined by taking at each q M the (n- p)-dimensional eigenspace of As
corresponding to the eigenvalue 2. We say that x is a special p-parameter
envelope of spheres (briefly, p-SPES) if the distribution D is integrable.
Now, for each q L, let B(q) c TL be the relative nullity subspace of the

immersion 0: L--, R+ (given by Theo. (1.5)) defined by

B(q) {X TL: o(X, Y)= 0 for all Y TL},
where a stands for the second fundamental form of 0.

(1.7) THEOREM. Let x: M"--, R"+t be a p-PES. Then x is a p-SPES if
and only if O: Lp--, R"+ has flat normal bundle and Vr(q) e B(q) for all q L,
where r 1/2.

The proofs of Theorems (1.5) and (1.7) are presented in Section 2. The
main result of this section, Theorem (2.14), has the following consequence:
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(1.8) THeOReM. Let x" M-- R+ x, n _> 5, be a p-PES and assume that
M can be isometrically immersed in St%, 2 < q < n- p, with flat normal
bundle. Then x is a p-SPES.

(1.9) In Section 3 we restrict ourselves to n-dimensional 2-PES, n > 5,
which can be isometrically immersed into St% 2 with R+/---_ 0. Notice that the
condition of Theorem (1.8) holds and so x is a 2-SPES. Now, assume that
the index of relative nullity of g: L2---, Rn+ x, defined by #(q)= dim B(q), is
constant. By Theorem (1.7), if Vr(q) :/: O, then #(q) : 0, which implies that the
Gaussian curvature K.(q) is zero. On the other hand, if # 0 then Vr 0
and so r must be constant. Therefore x(M) must be a hypersurface of Rn+ of
one of the following types:

Type I. A normal bundle of spheres with radius r a constant over a
surface with/ 0 (or KL :/: 0 at every point) in R"+ x.
Type II. A 2-SPES where g(L2) is a flat ruled surface in R"+x without

umbilic points (see (3.22)).

Type III. A 2-SPES where g(L2) is part of a 2-plane in R"+ .
(1.10) THEOREM. Let Xo" M--, R"+ x, n _> 5, be a simply connected hyper-

surface of type I or II, and let xx" M--, St% 2 be an isometric immersion with
R+/- =-O. Then there exists an isometric homotopy

:" [0, 1] x M-, R + 3

between Yo io Xo and Yx ix x x, where

io" R"+ __, R.+ 3 and ix" S(nc 2__ Rn+ 3

are the standard inclusions.

Theorem (1.10) shows that if a 2-SPES of type I or II admits an isometric
immersion into S% 2 with R+/-= 0, then some kind of weak rigidity (see [4-1,
[7]) remains and the immersion cannot be too complicated. For 2-SPES of
type I we were able to obtain a general result, Theorem (3.9), which in par-
ticular implies the following"

(1.11) THEOREM. Let x" M--, Rn+x, n > 5, be a normal bundle of spheres
with radius r a constant over a surface g" L2---, R+ of one of the following
types"

(a) a rotation surface in Ra;
(b) a cone in R+1"

(c) a product of curves in R+ x.
Then M can be locally isometrically immersed in St% 2 with R+/-= O, for
0 < c < (l/r)2.
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Finally, for 2-SPES of type II, we obtain the following result:

(1.12) TrmoaM. Let x: Mn--- Rn+l, n >_ 5, be a 2-SPES of type II. Then
M can be locally isometrically immersed into St 2 with R-= O, for some
c > O, if and only if L2 is part of a cone or a generalized cylinder in R+ 1.

During the preparation of this paper the authors were on leave of absence
at SUNY at Stony Brook. It is a pleasure to acknowledge the hospitality and
kindness of the people of the Stony Brook Mathematics Department.

2. Proofs of Theorems (1.5), (1.7) and (1.8)

(2.1) Proof of Theorem (1.5). Assume that x is given by (1.4). Equation
(1.3) (a) is easily verified. To prove (1.3) (b) we rewrite x as follows:

n-p+l

(2.2) x 0 rVr rx//1 -IVrl2 dp(tl, t.-v)k(Ul, U,),
k=l

where 1, .-v+ is an orthonormal frame normal to 0 and

is an orthogonal parametrization of S-(1)= R-+. A short computation
shows that the unit vector field N (- x)/r is normal to x. By differentia-
tion of (1.3)(a), we obtain

r x g,
du du/

x-g,

which proves (1.3) (b).
To prove that x is a p-PES, we set

dx dx

Then (e, e) 6o and

dx ON dx 1 dx 1

At some point, take an orthonormal basis of eigenvectors e, e_v,
T, Tv, of A with

j 1,..., v.
We have to show that 6 4 2, for all j. Let us write

Ox n-v v
(2.3)

du ,a,e, +b.
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On the other hand,

where Vf denotes the projection on T of O0/Oui. Then

,2.4, As(0) (0_
Since {, ei) 0, we have s span { T, T, N} so we can write

By substituting (2.3) and (2.5) into (2.4), we obtain

(2.6) 2c b(2 6), 1 j, k p

Notice that the regularity of x implies that IVrl < 1; thus

N Vr + 1 -lVrl2 # span {Vx, }.
It follows that the vectors V -dr/u N are linearly independent.
Therefore, we cannot have 6 2, for some k; otherwise form (2.6) we would
obtain c 0, j 1, p, which is a contradiction.
Now assume that x is a p-PES. Then it is well known (cf. [5], p. 372) that

the distribution Dx is differentiable and involutive, and that 2 is constant
along each leaf Ex of Da. Moreover, each Ex is an (n- p)-umbilic sub-
manifold of M" and R"+ 1. This implies that Ex is part of a (n- p)-sphere
contained in some ane subspace R"-+ = R"+ 1. Choose local coordinates

(u, u, t,

for x such that, for each (ux, u) fixed, the coordinates (t, t_) para-
metrize a leaf of Dx. Consider the focal set of x relative to 2 given by
# x + rN, where r 1/2 and N is a unit vector field normal to x. Since
r r(ul,..., Up), we obtain

Ox
Oti

that is, g g(ut, u,).

+ r
Ot Ot +

r - =0,

The fact that g is a submanifold of Rn+l follows from [3]. Equations (1.3)
are now easily verified. In particular, (1.3) (b) implies that the component Nr

of N tangent to satisfies Nr Vr. Thus, we can write

N Vr + x/1 -IVr 12,

where is some unit vector in the normal space of g, and the proof follows
easily.
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(2.7) Proof of Theorem (1.7). Suppose that x is a p-SPES. Since Dx and
D are integrable, we can choose local coordinates

(Ul lp tl tn_p)

such that (tx, t._p) are orthogonal coordinates for the unit (n- p)-sphere
S"-’(1) and (u x, u,) are coordinates for the leaves of D, and put

n-p+1

x 0 rVr rx/1 -IVrlz .
k=l

For convenience, we choose here the following standard coordinate system
for S-(1) R-’+ :

4(t, t_) sin t,

b2(t, t_)= cos t sin t2,

n-p+l(tl,..., tn_p COS COS t2... COS tn_.
On one hand, we have

where we use the fact that

On the other hand,

It follows that

1 <i<n-p, 1 <j<p,

0 O
(x--g),x--g r

v, E o,(2.8)
k Ot OU =

for all 1,..., n- p,j 1,..., p.
Take 4k=sintk, bt=cos tk for l<k<l<n-p+l and bm=0 if

m k, I. Then (2.8) becomes

cost\-u,rVr -sint\u,rVr +rx/1-1Vr \u, C =0’

which implies that

(2.9)
(i)

(ii)

uu, Vr =0

u-u, -0, 1 <k,l<n-p+ 1.
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Equation (2.9) (i) is equivalent to Vr(q)e B(q) for all q L, while equation
(2.9) (ii) means that the vector fields 1, ,-p+ are parallel in the normal
connection of 9, i.e., (Vz k) 0 for all Z TL and k 1, n p + 1. We
conclude that the normal bundle of must be fiat.
For the converse, since has fiat normal bundle, we may choose parallel

vector fields 1, ,-p+l in (2.2). We already know from Theorem (1.5)
that 2 1/r is an eigenvalue of AN with multiplicity exactly n p with corre-
sponding eigenvectors

Now using the facts that

one can easily verify that

-1 (X

dt"

and Vr c B,

<Ou,o>=0, l<i<n-p,l<j<p.

It follows that D is (locally) generated by

which is obviously integrable. This completes the proof of (1.7).

(2.10) Now we start to prepare for the proof of Theorem (1.8). Assume
that M can be isometrically immersed in both Q+I and +q, 7: > c,
1 < q < n 3. We already know that for each p e M, there exists an umbilic
subspace Up TpM for both immersions with l= dim Up > n- q. Assume
that the sectional curvature of M at p is not constant and denote by TM+/-,
TMl the normal bundles of the immersions in Q/I and (+q respectively.

(2.11) PROPOSITION. There exists an orthonormal basis, E.} of
TpM and orthonormal bases (N} of TpM+/- and {11, q,} of

; such that

(i) hN

"2
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(ii)

(iii)

(iv)

where

hrll

N//,2 -]- --
26i+ c- l <_j <n-l,

/c

and B’ is an (n l) x (n l) matrix oiven by B’ (fl[j).

Proof The existence of the orthonormal bases satisfying (i) and (ii) above
is a consequence of (2.2) of [1]. Now (iii) follows from the Gauss equation.
Notice that 22+ c- ?: 4: 0, otherwise from the Gauss equation again, we
have AN 2I, that is, M has constant curvature at p. Finally, (iv) means that
the common umbilic subspace contained in the proper space of AN corre-
sponding to 2 has dimension I.

(2.12) COROLLARY.

is unique.

The common umbilic subspace

Un span {El,..., Et}

Proofi Assume that E+ 1, E+ 2 belong to a common umbilic subspace of
both immersions, i.e., fit 62 =/: 2 (so # #2), fl flz2, fl 0, fl2 0,
for 2 _< _< q and (i, j):/= (2, 1). Then the left-hand side of (2.11) (iii) becomes
nonnegative while the right-hand side becomes negative, a contradiction.

(2.13) Under the same assumptions and terminology of (2.11), let us
denote by V the (proper) subspace of TM which corresponds to the eigen-
value of AN, that is,

{x M; ,4.(x)
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(2.14) THEOREM. Suppose that Mn can be isometrically immersed in both
Q,+x and (+, ? > c, 1 <_ q <- n-3. Assume that the second immersion

satisfies I+/-= 0 and that dim Vp is constant. Then the distribution p-- V
is inteorable.

Proof. Denote by the second fundamental form of the immersion into
.+. On each open subset of M in which U, has constant dimension, the
unit vector field defined by

span {qx(P)} span {i(X, X); X U,}
is differentiable. Thus we can choose normal vectors fields r/2, r/ such
that q,..., r/ is a differentiable orthonormal frame. By using the fact that
/+/- 0 together with Proposition (2.11), it is easy to see that there exists an
open and dense subset B of M such that, in each connected component of B,
there is a tangent orthonormal frame Ex,..., Et, Tx,..., T_t, which diago-
nalizes , V, Span {Ex, E} and

(i) As 6j 2, 1 <_j <_n-l;

x/22 +c-

x/22 + c-
26._ + c-
x//22 +c-

(2.15)

2<_t<q;
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. (c )(x @(x )
(iii) (a) fltfl,= 22 l<j#k<n-l"

q

(b) 7ff=0, 1 <i<l, 1

q

(ct 2I)=0, iel.

By the Codazzi equation for the hypersurface, we have

from which we obtain

(2.16) (gk 2)<VrT, Ei> (6j 2)<Vr,T, Ei>.
Similarly for the other immersion, we have

(2.17) (fl, )<Vr, E,> (fl )<Vr, E,> for 2.

We claim that (Vr, E)= 0, if j k. In fact, if (VT, Ei) 0 then
(Vr,, Ei) 0 by (2.16). Now, from (2.15) (iii) and (2.17) it follows quickly
that

(2.18) (?])2(<Vr, E,> <Vr,, E,>) 0,
t=2

and
q

(2.19) (fl)2<VTjTk Ei> (12 X,, (/.- k)
t=2

First suppose that, at some point, Etq=2 ()2 0. From (2.17), we have

Hence
q

y//<V,T,, e,><V,T, ,> _> 0.
t=2

By using (2.15) (iii), we get

(2.20)
(c 7:)(2 di1)(2 6k)

,2 -- C
<VrTk, E><VrT, Ei> > O.

On the other hand, (2.16) says that

( @(, 6,)<vrr, E,><VrT, > > O,

which contradicts (2.20), since
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Now, suppose that =2 (y)2 =p 0. From (2.16) and (2.18), we obtain

<VrjTk, E> <VrT, E>
and (2- 6j)(2- 6k)> 0, which contradicts (2.19). This proves the claim and
completes the proof of Theorem (2.14).

(2.21) Proof of Theorem (1.8). At a point r e M we have that

ka=’"=k,-n=# and kj##, n-p+ l <j<n.

Let W {X T, M; AN(X) =/X}. Since U, c V and q < n p, we have

dim V,>dimU,>n-q>p,

so V W # 0. It follows that V, W, for all r e M and the theorem follows
from Theorem (2.14).

3. Proofs of Theorems (1.10), (1.11) and (1.12)

(3.1) LEMMA. Let x" M"-, R"+ a, n _> 5, be a 2-SPES whose second funda-
mentalform has eioenvalues

k kn_ 2 2, 2n_ dia, An 62, 61 =: 62

Then M can be locally isometrically immersed in S+2(c) with R+/-= 0, for
some 0 < c </],2,/f and only if the following conditions hold"

(3.2) E \2 6j]
O, 1 <i<n-2, 1 <j<2;

(3.3) There exist functions ca, c2 C(M) such that

C
(i) cac2 i2 C

(ii) E(c) O, l < < n 2,1<j < 2;

(iii) T(fl;)
(fir fig) (26 c)fl

T(2),, r(69 + (,2 c)(, ,)

for 1 < j =p k < 2, where flj c(2 6)

( C2 T2(/) C2 T2()
Tl(2)<iv) T \x2S _-- ,,/ (12 11)N//2 --C

T2 \x/22 c,/ (6a a2)N//2 C
T2( 1),
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where El,..., En-2, TI, T2 is an orthonormal frame field for TM such that
AN(E) 2E, AN(T) 6i T, 1 <_ <_ n 2, 1 < j <_ 2, and N is unit vector

field normal to x(M).

Proofi
equations

(3.4)

(1)

(2)

(3)

(4)

(5)

(6)

The Codazzi equation for x is equivalent to the following set of

E(2)=0, l<i<n-2,

<VE, Ej, Tk)=O, li#j<n-2,1<_k<_2,

T(2) (2 6k)(Ve, E,, Tk>, 1 _< k _< 2, 1 _< _< n 2;

E(6g) (6 2)(VrTs, E,) 1 < < n 2, 1 < j _< 2;

(6i -gi)(Vg,T, Tk) (fig- 2)(VrTk, E,) 1 <_ j k <_ 2;

T(gik) (6- 6k)(VrT, Tk), 1 < j k <_ 2.

Suppose there exists an immersion y" Mn---} S+ 2(c) with R+/- 0. It follows
easily from Proposition (2.11) that there exists an orthonormal frame
normal to y such that

N//,2 C

26 c

where

0

A2 0

-c( 6)( 62)
2 C

Then, the Codazzi equation for y is equivalent to (3.4) from (1) to (5) and

[ c,,(1) (Vrtl,rl.)= T\v/._c/- x/._,c

1 <_kj2;
(2) (V,r/2, r/) 0;

(3.5) (3) fl(V,,E,, T) N//2 -c(V..il2 I1)"

(4) Efl) fl<VrT, E,>;
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(5) (flj- flk)(Vg,T, Tk> flk(VrTk, E,5, 1 j k 2;

]--C (Vk2, 11), J k.(6) r(flj) (ilk fl)(VrT, T) +
x/22 c

We will begin by checking conditions (3.3). Define

flJ j= 1,2,(3.6) c

in a way that c l, c2 satisfy (3.3) (i). From equations (3.4) (4) and (3.5) (4), we
hFI

which with (3.6) and Ei(2)= 0, gives (3.3) (ii). By substituting equations (3.4)
(3), (3.4) (6) and (3.5) (3) into (3.5) (6), we obtain (3.3) (iii). A straightforward
computation using the Codazzi equation shows that

R-I-(T1 T2)i/2 IZl c2 Z2(,,) clTl()
k%//2’’ C] T2 kN//,2 C]

(2 1)N//2 C
(Cl TI(,,)T2(tI) c2 T2()TI(2))] ?/1,

which with the Ricci equation gives (3.3) (iv).
Finally, a similar procedure shows that

0 R+/-(Ei, T)2 Ci(EiT(2)_Ei(tSg),

which immediately gives (3.2).
Now suppose that (3.2) and (3.3) hold and let

flj=c(2-6), j=1,2.

Let P be a 2-dimensional vector bundle over M with a Riemannian metric,
say , ,>, where each fiber is generated by an orhtonormal frame r/l,

r/2. Define in P a connection ’, compatible with , ,>, by

(3.7)

E,r/=0, l<i<n-2,

,C1,, T)(2)r/2=
c

1<j2,

j= 1,2.
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Let / be the curvature tensor of and be the symmetric section of the
bundle Hom (TM TM, P) given by

(Ei, Ej) 6iN Cl’] 1, 1 <_ i, j n 2,

(3.8) (, ) 6j
k2 C

1 + flj2 1 j, k 2,

(E,)=0, lin-2, 1j2.

By a direct computation we can see that satisfies the Gauss equation for
an immersion into S"+2(c). Equations (3.5) from (1) to (5) also hold and (3.5)
(6) is a consequence of (3.3) (iii). Then the Codazzi equation is also verified
by. and . By using equations (3.2) and (3.3) (iv), we can see that K van-
ishes. Since is diagonalized by E, E,_ 2, T, T2, we conclude that the
Ricci equation holds. Hence by the fundamental theorem of submanifolds
(see [6], p. 80), there exists a local isometric immersion y: M" S"+ 2(c) such
that we may identify the normal bundle of y with P. Also the metric induced
on the normal bundle of y coincides with the metric of P, and the second
fundamental form as well as the normal connection of y coincide with and
9, respectively. This completes the proof of the lemma.

(3.9) TOREU. Let x: M" R"+ , n 5, be a normal bundle of spheres
with radius r a constant over an umbilic free su(ace 9" L2 R"+ with R O.
Then M" can be locally isometrically immersed into S"+2(c), 0 < c < (l/r)2,
with R 0 and only there exist smooth functions a(ux) and b(u2) such that

(3.10) a(u)G(u, u2) + b(u2)E(u, u2) a(u)b(u2),

where (ux, u2) are principal coordinates for O and E, F O, G are the coeffi-
cients of the first fundamental form of O.

Proof:

where

By the results of Section 2, we can write x as

x(ux, u2, tx, tn_2)= #(u, u2)- rN(u:, u2 t,

n-1

N dp(tx, tn-2)(Ux, U2)
k=l

and ,
_

are parallel orthonormal fields normal to . We have

-/ )Ox
1 + ((v, N) 1 2,vg, j=,

(3.11) 0= .x ok
Ot r=, i=l,...,n-2,

ON 1

Ou O ((v, v), N)v,
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where a E, /12 G, vj Og/Ouj and a is the second fundamental form of
0. It follows easily from (3.11) that (ua, u2, ta,..., t,-2) are orthonormal
coordinates which diagonalize the second fundamental form of x. Therefore

ON

2=-=1 Oti =1, n- 2,
r 0X 2

Ou’ ,<%, % iv>(J OX 2 I[#j -I- r<a(oj, Oj), N>’ j= 1,2.

Notice that if 6a 62, it follows that

(3.13) /a(va’ va) a(D2O2"--’)) /E G
,N =0,

which means that 9 has umbilic points. Then 6a # 6 and Lemma (3.11)
applies. Since 2 is constant, we only have to determine under what conditions
there exist ca, c which satisfy equations (3.3) (i), (ii) and (iii). Taking

-I OX

equation (3.3) (iii) becomes

(3.14)
(2 6k)

(Ck Cl), j @ k.

But by (3.12), we have

and

2 6j
r(j + r<aj, N>)’

Ou
(j 4" r<aj, N>)2

where as a(v, v). It follows that

(3.15)
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By the Codazzi equation for g, we have

V- 2<Vv, v) h -<Vv, v> &- Vv, v

from which we get

<V v, v)

for any vector normal to 0. Then we can rewrite (3.15) as

2 gik 1
(3.16)

(2 6j)(dik dij) (Vvv, vk)

=l(v,Vvkvg)_ 1 dffi
Cj 2 CUk’

From (3.16), equation (3.14) is equivalent to

t3c 1 dE C2 1 tG
(c,. c), (c c2).U2 2E u2 u 2G tgu

Now, by using cxc2 -el(,,2 -C), we obtain

(3.17)
(1)

1 c3E 1 (c+2,c_-)2E cu c

tC 1 tG c(,2-C) (c2 + 22c )(2)
Ou2 2G Ou c c

The solutions of (3.17) (1) and (2) are of the types

(3.18) c E 22 -c

and

C b(u2)G
(3.19) c (2 C) (1 bT(ue)G)’

respectively, where fi(u), /(u2) are arbitrary functions. By comparing (3.18)
and (3.19) and taking

a

we obtain (3.10), which completes the proof of (3.9).
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(3.20) Remark.
that

Take E(0, 0)= G(0, 0)= 1. A short computation shows

d(ux, 0) d6(0,
(3.21) a(ul)

d G(ul, 0)’ b(tt2)
d (d 1)E(0, /’/2)’

where d > 1 is a constant such that a > 1, b > 1.

(3.22) At this point it is convenient to review some definitions.

(1) A ruled surface : L---, R+ with no umbilic points can be given by
#(s, t)= c(s)+ tv(s), where c(s) is a curve in R+x and v is a normal vector
field with I1 vl 1 (here d/ds). The condition that L2 is fiat is equiva-
lent to the existence of a function if(s) such that / ,/:; i.e., v is parallel
along c.

(2) By a product of curves in Rn+ we mean a surface

g(s, t) (r(s), 4,(0)

where y(s) and b(t) are curves in R and R-+ respectively, with
R x Rn- + R + 1.

(3) A generalized cylinder is a particular case of a product of curves,
namely when one of the curves is a straight line.

(3.23) Proof of Theorem (1.11). (a)
(u l, u2) by

Let g be given in principal coordinates

COS /’/2’ X(Ul) sin

where x 0 and (x’)2 + (y,)2 1. Let e3 be an unit vector normal to # in
Rac R+1 and let e,, e+l be constant orthonormal vector fields in
R,+ 1, normal to ff and e3.
By (3.12), we have

6j-l +rlk
j= l’2’

where kl, k2 denote the principal curvatures of g in R3. Thus gi 62 if and
only if kx k2. We have two cases to consider.

First case. Suppose that 0 has no open subset of umbilic points. Taking

bob(u2)=bo>l and a(ul)=
bo x(ul)2’

where bo is constant, one can easily see that (3.10) holds on an open and
dense subset of L2. By continuity it holds everywhere. Thus, the proof follows
from Theorem (3.9).
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Second case. Suppose that g(L2) is a (piece of a) sphere, say S2(1) c R3:

g(ut, u2) (cos Ul cos u2, cos u sin u2, sin u), -r/2 < u < n/2.
The frame

cx cx cx cx
Ei= ct--.’ Tj-- uj Uj

l<i<n 2, l<j<2,

arising from (3.11) gives As(E) 2E, As(T) 6 T, where

_1 c1 62
qbl

r’ 1 +rb1"

Let d > 1 be a constant and define fl cj(2 6), where

cos2 ul k c
c2 and k-22(cl(ul))2 k

d cos2 ul cl c

By an argument similar to that of the second part of Lemma (3.1), it is not
difficult to conclude that the claimed immersion in S+ 2(c) exists.

(b) A cone in R"+x is a flat ruled surface g(s, t)= c(s)+ tv(s) such that
if(s) defined by / fib is a non-zero constant. Clearly (s, t) are principal
coordinates and E (1 + tff)2, F 0, G 1.

If the curvature k(s) of c(s) does not vanish in an open interval, we proceed
as in the first case of (a), just taking

a(s) ao > (1 + tff)2, b(t) ao
ao--(l+t)2"

If k 0, we proceed analogously to the second case of (a).

(c) A similar argument as in (a) and (b) above.

This completes the proof of Theorem (1.11).

(3.24) Remark. Let x: M" Rn+ 1, n > 5, be a normal bundle of spheres
with radius r over a flat ruled surface O(s, t)= c(s)+ tv(s) without umbilic
points. Suppose that there exists an isometric immersion y" M"---} St 2 with
R+/- 0. Then ff must be constant. In fact, in this case by Theorem (3.9) there
exist functions a(s), b(s) such that

a(s) + b(t)(1 + t(s))2 a(s)b(t).

By doing 0 in the above equation, we see that a is constant. Thus

(1 + a(b(t)- 1)
b(t)

from which it follows that ff must be a constant. Observe that the case 0
is included in part (c) of Theorem (1.11).
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(3.25) Proof of Theorem (1.12). Since the case of r constant follows from
Theorem (1.11) and Remark (3.24), we will assume here that Vr does not
vanish on an open subset.
By assumption, we have

(3.26) Va 0O
Os -(l + tq)b’ V2 OOOt

so (V1, V2) 0. Equation (2.9) (i) says that

0, =0,

which is equivalent to

But ()+/- never vanishes because O is umbilic free, so r r(t). Then (2.2)
becomes

n-I

(3.27) x c + (t rr’)v r x/1 (r’)2 ckkk,
k=l

where r’= dr and x, ,-x are parallel in the normal connection of 0.
By (3.26) the tangent planes to 0 are constant along the rulings, therefore we
can choose k in such a way that k (s), k 1, n- 1. Thus

Os

Ox
Ot

(1 + (r rr’)qJ r v/1 -(r’)2n),

n-1

(t rr’)’- (r /1 -(r’)2) b,
k=l

where

ta(s, t, t,-2)= ,
So,

On the other hand
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since d2x/ds dt is parallel to and
n-1

’ + /1 ’) E
k=l

is orthogonal to 6.
Now, a direct computation shows that

6 62
1 + rr r1 (r’)2 1 (r’)2 rr""

Ntie that annt vanish on an open subset f M, otherwise ()
Therefore, sine 62 62(0, there exists an open and dense subset U f
where 6x 62 and 6 does not vanish n U.
Now suppose that there exists an ismetri immersion f M, int S+ 2(c)

with R 0. We want t shw that is nstant. For this it is suient to
show that is nstant in U where Lemma (3.1) applies. By equation (3.3)
(iii), we have that

c2 A’.(3.28)
62 6t 0t 0t

(Cx(A 6x)) 2 c

A straightforward computation shows that

(3.29) 06 i (r’)2 r’
(1 (r’)2 rr")(1 2).

Since A, 2 and IlOx/Otll depend only on t, and r’ is not identically zero on
an open subset, it follows from (3.3) (iv) that c2 c2(t). Thus, from (3.3) (i) we
have that c ct(t). This remark jointly with equations (3.28) and (3.29)

1 Cr’Y r’n
(3.30)

1 (r)2(1 (r)2 @ (1 (r’)2 rr")

1 + ’ 1
where

CC2/’ B Ar (c2 c), A l/r.A (cx)’ + A2 c’ r

Equation (3.30) is equivalent to

(3.31)

+ Ar(1 (r’)2)l// d- x/1 (r’)2 (c c2) 62 (rr" + (r’)2 1)

Br’ A(1 + t rr’)]
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It is not hard to verify that the coefficient of f in (3.31) is identically zero.
So, since /1 -(r’)2 :/: 0, we get

(Ct--C2)(- $2)(rr" + (r’)2 1) Br’k A(1 + t rr’$) O.

By substituting the values of 2 and B in the above equation, we obtain

(3.32) ((c2 --ct)- tAr)= At.

Notice that (c2- ct)- tA, =/= 0 if is small. Since $ $(s), r r(t), cj
cj(t) and A A(t), then (3.32) says that , must be constant, which proves the
first part of the theorem.
Suppose now that " L2--, R"+t is part of a cone or a cylinder and let us

check conditions (3.2) and (3.3).
By equation (3.4) (3), we have

-2

=0

and

so equation (3.2) holds.
In the present case, equation (3.3) reduces to

(3.33)
2 dt + 2’+1 -c\22-c 1

where we set

--c
2 c)

in (3.28).
Equation (3.33) can be explicitly solved by the change of variable

Z 22(1 + tk)2C.
The solution is

c 0o+22-c 22(1+t,)2’
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where 0o is a constant such that the term under the root sign is positive. By
Lemma (3.1), we have a 1-parameter family of isometric immersions of M
into S"+ 2(e) with R+/- 0. This completes the proof of Theorem (1.12).

(3.34) Let Xo" M"---, R" /k, xl" M"---’ R" /, 1 < k < l, be isometric immer-
sions. An isometric homotopy xt between Xo and xl is a continuous map
x" [0, 1] x M"---, R" / which satisfies the following conditions"

(i) x(0, q)= xo(q), for all q 6 M;
(ii) x(1, q) xl(q), for all q 6 M;
(iii) for each 6 [0, 1], the mapping xt" M--, Rn+t given by xt(q) x(t, q)

is an isometric immersion.

(3.35) Proof of Theorem (1.10). For each point p in M, we know (cf.
Section 2) that we can choose an orthonormal basis {El, E,-2, T1, T2} of

TM and orthonormal bases {N} and {r/l, 2} for the normal spaces of Xo
and xl at p respective.y such that

Av= 2

Z6 c

0

A2 0

2

/2 C

Notice that if gi 62, then 12 < 0, SO 1 f12" It follows that the
above choices can be performed in a differentiable way on M.
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Let r/3 denote a unit normal to il and define an orthonormal flame normal
to 1 by

(2 N///2 C

It follows that

A;1 As, A2

0

v/(fi 2)
A;3 An2.

For each [0, 1], let us define a Riemannian connection on the
normal bundle TM+/- of 1 and a section A7 of the bundle

by

Hom (TM x TM+/-, TM)

Xi-" t(Vf(i, ’1)’1 + (V(i, (j)j, 2 <_ :pj <_ 3,
(3.36)

1 At,
A;= tA;, 2<_i<_3,

where V denotes the Riemannian connection of TM+/-.

(3.37) Assertion. For each [0, 1], we have:

(i) and , satisfy the Gauss and the Codazzi equations;
(ii) and satisfy the Ricci equation if and only if

Tl(2)T2(2) 0.

To prove (i), we first observe that for j 2, 3,

xo(Y) tAvo(Y), (Vx,o)(Y) t(Vx Ao)(Y).
Thus,

(Vx ,o)(Y)- +/-xo(Y)= t[(Vx AoXY)- Argo(Y)],
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and the result follows from the Codazzi equation for 1. When j 1, we
proceed as follows. From the Codazzi equation for x0, we have

(Vx ,zi;)(Y) (Vr ;t)(X).
Then, from the Codazzi equation for 1, we obtain

Avxt(Y) Avr.;,(X).
So

OI(Y) t2Avxt(Y)= t2Avr,(X)= Ir,(X),
since V(, has only components on (, and (2. This proves (i).

Observe that and satisfy the Ricci equation if and only if 0. But

(X, Y)( tRX(X, Y)( O,

since R 0. So, to prove (ii), it is enough to verify under what conditions
((X, r)(2, (3) 0.
A long but not dicult computation shows that

<(X, Y)(2, (s> t2 1)[<V# (2, (t><V](, (> <V](2, (><V# (,

But, since V( 0, we may assume that X T, Y T2.
From

we obtain

and

Therefore

( )

"/q
(c2 c,)r(,)r2(,),((r,, r);,. )

/ c

and then/ 0 iff Ta(2)T2(2) 0. This completes the proof of the assertion.

(3.38) Now assume that Tt(2)T2(2)= 0. Then (cf. [7]) for each [0, 1],
there exists an isometric immersion ft: Mn---’ Rn+a whose normal bundle is
identified with the normal bundle of , and whose normal connection and
second fundamental form are identified with ’ and &, respectively. Further-
more, the mapping (t, P)-ft(P) is a continuous map from [0, 1] x M into
R+ a. For 1, we have f 1 (up to a rigid motion of R+3). For 0,
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(3.36) shows that the normal space of fo has constant dimension one and is
parallel. Therefore, fo(M) is contained in some (n + 1)-dimensional affine sub-
space of Rn/ 3. It then follows that fo 0 (up to a rigid motion of Rn+ 3). To
conclude the proof of (1.10), we only have to observe that the hypersurfaces
of Type I or II satisfy Tl(2)T2(2) 0.
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