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N-DIMENSIONAL SUBMANIFOLDS OF R¥*! AND §V*2

BY
A. C. ASPERTI! AND M. DaJczER?

1. Introduction

(1.1) Let x: M"— Q"*? be an immersion of a differentiable manifold M"
into a (n + g)-dimensional Riemannian manifold of constant curvature ¢ and
let o: T,M x T,M— (T, M)* be the second fundamental form of x at p € M;
here T, M is the tangent space of M at p and (T,M)" is the orthogonal
complement of dx,(T,M) in T,,Q.. We say that U, < T,M is an umbilic
subspace of x at p if <a(X, Y), £) = A(X, Y), 4 a constant, for all X e U, all
Y e T,M and all ¢ e (T,M)*, where { , ) denotes both the Riemannian
metric on Q. and the Riemannian metric on M induced by x. Recently, it
was shown (cf. [1]) that if M" can be isometrically immersed in both Q"*!
and Qg*q, ¢ >c, g <n—3, then for each p € M there exists an umbilic sub-
space U, c T,M of both immersions with dim U, > n — q. The set of Rie-
mannian metrics which admit locally isometric immersions as above is very
large, even if one assumes that the second immersion has flat normal bundle,
i.e., the curvature tensor R* of the normal connection vanishes. Namely, it is
known (cf. [2]) that non-flat conformally flat hypersurfaces of R"*!, n > 4,
can always be locally isometrically immersed into the sphere Sf,; !, for some
c. The question that served as a starting point of this paper was to describe
new examples of hypersurfaces of R"*! which can be immersed into Si;!
with Rt =0. As we found out, this question is related to the concept of
envelopes of a p-parameter family of spheres. To state our results, we need
some terminology.

(1.2) Let x: M"— Q"% be an isometric immersion and assume here and
in the sequel that M" is connected and orientable with a given orientation.
Choose a unit normal vector n and denote by A, the self adjoint map of
tangent spaces corresponding to the second fundamental form of x along #,
and by ky, ..., k, the eigenvalues of 4,. In the case that QI*?=R"*"!, we
denote by N the unit normal to x which gives the orientation of M. We say
that x: M"— R"*! is a p-parameter envelope of n-spheres, p < n — 2, (briefly,
p-PES) if at each point of M,

ky=-=k, ,=4%#0 and k;#1 ifn—p+1<j<n
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Classically, a p-PES is locally a solution
X =X(Ugy ooy Upy Lyyenns b))
in R"*1 of the system below:

@ lx—gl*=r?

(1.3) dg or
b -9 5 )= "r=, .=15'-'a s
(b) <x g au,.> r o, J p
where g: I’—R"*! is an isometric immersion, g =g(u,,...,u,), and

r € C®(L) is a non-vanishing function. Geometrically it means that x is the
envelope of the p-parameter family of n-spheres given by (a): the limit of the
intersection of neighboring spheres that approach each other are (n — p)-
spheres that generate the envelope.

(1.4) Let g and r be as above and let ¢,,...,t,_, be orthogonal par-
ameters of the unit (n — p)-sphere centered at the origin of an euclidean
(n — p + 1)-space. Set

XU, ooy Upy byy s by ) =g — 1VF =1 /1 — | VP2P(ty, ..., by ),

where Vr is the gradient of r and the vector ¢ has origin at the point
y =g —rVr and describes a unit sphere in the affine (n — p + 1)-plane
through y orthogonal to g.

(1.5) THEOREM. The hypersurface given by (1.4) satisfies the system (1.3)
and is (away from singular points) a p-PES. Conversely, every p-PES satisfies
system (1.3) and is locally of the form (1.4), for r = 1/A.

(1.6) Let x: M"— R"*! be a p-PES and let D, be the smooth distribution
defined by taking at each g € M the (n — p)-dimensional eigenspace of Ay
corresponding to the eigenvalue A. We say that x is a special p-parameter
envelope of spheres (briefly, p-SPES) if the distribution Dy is integrable.

Now, for each q € L, let B(q) = T, L be the relative nullity subspace of the
immersion g: L— R"*! (given by Theo. (1.5)) defined by

Blg)={XeT,L: X, Y)=0 forall Y e T,L},
where a stands for the second fundamental form of g.
(1.7) THeorReEM. Let x: M"— R"*! be a p-PES. Then x is a p-SPES if

and only if g: I’ — R"*! has flat normal bundle and Vr(q) € B(q) for all g € L,
where r = 1/A.

The proofs of Theorems (1.5) and (1.7) are presented in Section 2. The
main result of this section, Theorem (2.14), has the following consequence:
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(1.8) THEOREM. Let x: M*—>R"*! n>5, be a p-PES and assume that
M" can be isometrically immersed in Siy4 2 <gq <n— p, with flat normal
bundle. Then x is a p-SPES.

(1.9) In Section 3 we restrict ourselves to n-dimensional 2-PES, n > 5,
which can be isometrically immersed into Si; ? with R* = 0. Notice that the
condition of Theorem (1.8) holds and so x is a 2-SPES. Now, assume that
the index of relative nullity of g: I?— R"*1, defined by u(g) = dim B(q), is
constant. By Theorem (1.7), if Vr(q) # 0, then u(q) # 0, which implies that the
Gaussian curvature K;(q) is zero. On the other hand, if u =0 then Vr=0
and so r must be constant. Therefore x(M) must be a hypersurface of R"*! of

one of the following types:

Type I. A normal bundle of spheres with radius r a constant over a
surface with u = 0 (or K, # 0 at every point) in R"*1,

Type II. A 2-SPES where g(I?) is a flat ruled surface in R"*! without
umbilic points (see (3.22)).

Type III. A 2-SPES where g(I?) is part of a 2-plane in R**1,

(1.10) THEOREM. Let xo: M"— R"*1 n > 5, be a simply connected hyper-
surface of type I or II, and let x,: M"— S{;? be an isometric immersion with

R = 0. Then there exists an isometric homotopy
%:[0,1] x M—R"*3
between %o = ig o Xo and X = iy o xy, where
io: R R"3 and i,: Siy2—>R"3

are the standard inclusions.

Theorem (1.10) shows that if a 2-SPES of type I or II admits an isometric
immersion into Sf; % with R* = 0, then some kind of weak rigidity (see [4],
[7]) remains and the immersion cannot be too complicated. For 2-SPES of
type I we were able to obtain a general result, Theorem (3.9), which in par-

ticular implies the following:

(1.11) THEOREM. Let x: M"— R"*!, n > 5, be a normal bundle of spheres
with radius r a constant over a surface g: 2 — R"*! of one of the following
types:

(@) a rotation surface in R?;
(b) a conein R"*1;
(c) a product of curves in R**1,

Then M" can be locally isometrically immersed in Siy % with R* =0, for
0<c<(/r
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Finally, for 2-SPES of type I, we obtain the following result:

(1.12) THEOREM. Let x: M"— R"*!, n > 5, be a 2-SPES of type 11. Then
M" can be locally isometrically immersed into Sty * with R* =0, for some
¢ > 0, if and only if I? is part of a cone or a generalized cylinder in R"*1.

During the preparation of this paper the authors were on leave of absence
at SUNY at Stony Brook. It is a pleasure to acknowledge the hospitality and
kindness of the people of the Stony Brook Mathematics Department.

2. Proofs of Theorems (1.5), (1.7) and (1.8)

(2.1) Proof of Theorem (1.5). Assume that x is given by (1.4). Equation
(1.3) (a) is easily verified. To prove (1.3) (b) we rewrite x as follows:

n—p+1

(22) x=g—rVr—r1=|Vr? Y @Mty ..., ta-)eluy, ..., u,),
k=1
where &, ..., &,_p+, is an orthonormal frame normal to g and

(¢l, ey ¢n—p+l)

is an orthogonal parametrization of " ?(1) « R""?*! A short computation
shows that the unit vector field N = (g — x)/r is normal to x. By differentia-
tion of (1.3) (a), we obtain

which proves (1.3) (b).
To prove that x is a p-PES, we set
ox||~t ox
e =||= ol
ot, ot;
Then <e,, ej> = 5ij and
ox||~! ON ox||7* 1 ox 1
AN(ei)—— 5; 'a—t;— 'a;i ;b?i—-/lei, l—-—;, 1-1,...,n—p.

At some point, take an orthonormal basis of eigenvectors ey, ..., e,_,,
T, ..., T,, of Ay with

ANT) =6;T;, j=1,...,p.
We have to show that §; # A, for all j. Let us write
ox "2 P

2.3 —= Yaze+ ) b, T.
(2.3) au, :Z:l ji €i & ik Lk
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On the other hand,

0x or ON - 0x
ou, = N T = +rA"< >

where VT denotes the projection on Ty, of ¥; = dg/du;. Then

24) Ay ((‘;:) A(ij - Vj)

Since (V}, e;> = 0, we have V; € span {Ty, ..., T,, N} so we can write
2.5) V,T+—aa—r—N Zc,,‘n+§jN

By substituting (2.3) and (2.5) into (2.4), we obtain

(2.6) A =bu(A—96y), 1<j,k<p

Notice that the regularity of x implies that | Vr| < 1, thus

N=Vr+./1—|Vr|*¢ ¢ span {V,, ..., V,}.

It follows that the vectors V] =V, — dr/du; N are linearly independent.
Therefore, we cannot have §, = 4, for some k; otherwise form (2.6) we would
obtain ¢y =0, j = 1, ..., p, which is a contradiction.

Now assume that x is a p-PES. Then it is well known (cf. [5], p. 372) that
the distribution D, is differentiable and involutive, and that A is constant
along each leaf £, of D,. Moreover, each X, is an (n — p)-umbilic sub-
manifold of M" and R"*!. This implies that X, is part of a (n — p)-sphere
contained in some affine subspace R""?*! = R"*!. Choose local coordinates

(ul’ AR} upa tl, LR ] tn—p)

for x such that, for each (uy, ..., u,) fixed, the coordinates (t,, ..., t,_,) para-
metrize a leaf of D,. Consider the focal set of x relative to A given by
g =x + rN, where r =1/ and N is a unit vector field normal to x. Since
r=r(uy, ..., u,), we obtain

dg Ox 6N ax 0x
a, o, "o ot (_/1 at,) =0

that is, g = g(u, ..., u,).

The fact that g is a submanifold of R"*! follows from [3]. Equations (1.3)
are now easily verified. In particular, (1.3) (b) implies that the component NT
of N tangent to g satisfies N7 = Vr. Thus, we can write

N=Vr+./1—|Vr|%$,

where ¢ is some unit vector in the normal space of g, and the proof follows
easily.
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(2.7) Proof of Theorem (1.7). Suppose that x is a p-SPES. Since D, and
Dj are integrable, we can choose local coordinates

Uy oo Uy, by oy Ly )p)

such that (¢, ..., t,_,) are orthogonal coordinates for the unit (n — p)-sphere
S"~2(1) and (uy, ..., u,) are coordinates for the leaves of D}, and put

n—p+1

x=g—rVr—r/1 —|Vr]? Z P,

For convenience, we choose here the following standard coordinate system
for S""P(1) c R*P*1;

¢(tys .. s ty_p) =sin ty,
¢ty ..., t,_,) =cos t, sint,,
@ Pty ..., b,_,) =COS ty COS ty ... COS b,_,

On one hand, we have

2
i ix_'g)’x'—g = d (x—g),x—g, lslsn"l’,lslﬁp,
ot; \Ou; Ot; Ou;

where we use the fact that
ax ox\ _ [og ax\ _
6u ot; ou;’ o,
On the other hand,
o /0 0 or
a—t.-<a,"‘ ")”“g>‘ati(au> °'

n—p+1 k n—p+1
(2.8) < Y 68‘1’ 25",rVr+r L—|vr? Z ¢“ék>
k=1 j

foralli=1,...,n—p,j=1,...,p.
Take ¢* =sint,, ¢'=cos t, for 1<k<l<n—p+1 and ¢"=0 if
m # k, I. Then (2.8) becomes

cos t, <%, rVr> —sin t, <€é, rVr> r1—|Vr)? <aé", é>
Ou; Ou;
which implies that
o /0%
® <6 u; v > 0

(ii) <%,c,>=o, 1<kl<n—p+1

Ou;

It follows that

29)
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Equation (2.9) (i) is equivalent to Vr(q) € B(q) for all q € L, while equation
(2.9) (ii) means that the vector fields ¢, ..., £, ., are parallel in the normal
connection of g, ie., (Vz;&)=0forall Ze TLand k=1,...,n—p+ 1. We
conclude that the normal bundle of g must be flat.

For the converse, since g has flat normal bundle, we may choose parallel
vector fields &, ..., {,_,+, in (2.2). We already know from Theorem (1.5)
that A = 1/r is an eigenvalue of Ay with multiplicity exactly n — p with corre-
sponding eigenvectors

ot;’

ox
ot;

e; =

Now using the facts that
s
(-‘?-6-5> =0 and VrcB,
3uj
one can easily verify that
Ox Ox
—,—)=0, 1<i<n—-p 1<j<p.
<au, at,.> 0 e
It follows that Dy is (locally) generated by

o
ou,” " ou,)’

which is obviously integrable. This completes the proof of (1.7).

(2.10) Now we start to prepare for the proof of Theorem (1.8). Assume
that M" can be isometrically immersed in both Q"*! and J2%%, >,
1 < g < n— 3. We already know that for each p € M, there exists an umbilic
subspace U, = T,M for both immersions with | = dim U, > n — q. Assume
that the sectional curvature of M at p is not constant and denote by TM*,
TM* the normal bundles of the immersions in Q"** and J%*7 respectively.

_(2.11) ProPoSITION. There exists an orthonormal basis R E,} of
T M and orthonormal bases {N} of T, M* and {ny, ..., n,} of T, such that
g -
. A
@) Ay = 5, ;
L 6”_1_
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[ /A2y c—¢ ]
(ii) A, = S rc—¢ ,

30

L Un—1]

0 0
A'h’_"[o Bt]’ 2StSq;

2 (c =0 — o)A — 5)
(iii) =Z LB — )2] - 12+cl 2.
q n-—l
(iv) Y YB)+0. 1<isn—1
t=2 j=1
where
p=2utet iy
P +c—¢

and B’ is an (n — I) x (n — l) matrix given by B' = (B;)).

Proof. The existence of the orthonormal bases satisfying (i) and (ii) above
is a consequence of (2.2) of [1]. Now (iii) follows from the Gauss equation.
Notice that A% + ¢ — & # 0, otherwise from the Gauss equation again, we
have Ay = I, that is, M has constant curvature at p. Finally, (iv) means that
the common umbilic subspace contained in the proper space of Ay corre-
sponding to A has dimension [.

(2.12) COROLLARY. The common umbilic subspace
U, =span {E,, ..., E}

is unique.

Proof. Assume that E,,,, E;,, belong to a common umbilic subspace of
both immersions, ie., §; =8, # 4 (s0 uy = u,), iy = P52, B1;=0, Bi, =0,
for 2 <t < q and (i, j) # (2, 1). Then the left-hand side of (2.11) (iii) becomes
nonnegative while the right-hand side becomes negative, a contradiction.

(2.13) Under the same assumptions and terminology of (2.11), let us
denote by V, the (proper) subspace of T, M which corresponds to the eigen-
value A of Ay, that is,

={X e T,M; A\(X) = AX}.
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(2.14) THEOREM. Suppose that M" can be isometrically immersed in both
Q'+t and Q%9 E>c, 1 <q<n-—3. Assume that the second immersion
satisfies R* = 0 and that dim V, =l is constant. Then the distribution p—V;
is integrable.

Proof. Denote by & the second fundamental form of the immersion into
J2%4. On each open subset of M in which U, has constant dimension, the
unit vector field defined by

span {n,(p)} = span {#X, X); X € U,}

is differentiable. Thus we can choose normal vectors fields #,, ..., n, such
that 5y, ..., n, is a differentiable orthonormal frame. By using the fact that
R* = 0 together with Proposition (2.11), it is easy to see that there exists an
open and dense subset B of M such that, in each connected component of B,
there is a tangent orthonormal frame E,, ..., E,, Ty, ..., T,_,, which diago-
nalizes & V, = Span {E,, ..., E;} and

[+ '

i) Ay= ! ) L A l<j<n—1
1

AP 4+c—2¢

AM+c—2¢
VA +c—¢
).5,,_,+c—?:

i JP+c—¢

(2.15)

A, = B , 2<t<gq;

t
- n—l-
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P +c—2¢

(i) @ ¥ BB= L l<jtk<n—l;
t=2

q
(b) Yyifi=0 1<i<ll<j<n—1
t=2
q
© Yyv=0 1<i#j<l
t=2

By the Codazzi equation for the hypersurface, we have

<(VTj AN)TI‘C’ Ei> = <(VTk AN)T}o Ei)a

from which we obtain

(2.16) Ok — AV, T, E = (6; — AKXV, T;, Ep.
Similarly for the other immersion, we have
(2.17) (B — vKVr, T, E = (B; — y)XVr, T, E) fort>2.

We claim that <V, T, E) =0, if j # k. In fact, if <V, T;, E;> # 0 then
{V1,T;, E;> # 0 by (2.16). Now, from (2.15) (iii) and (2.17) it follows quickly
that

(.19) > 00V T B = VT, E) =0,

and

@19 360, £y = E=I0 00

P +c—28

VT, Ep.

First suppose that, at some point, Y ¢_, ()* = 0. From (2.17), we have

ﬂKVT,Tk, E)= B;(VT;,T}, Ep>.
Hence

q
z ﬁiﬁ;(vnn’ Ei><VTk’1:‘is Ei> = 0'
t=2

By using (2.15) (iii), we get
A+c—-¢
On the other hand, (2.16) says that

(2.20)

<VTj’I;’ Ei><VTkT}9 E1> > 0‘

(A = )4 — 6KV, Tis ED<Vr,Tj, E) >0,
which contradicts (2.20), since

c—2¢

—_—< 0.
P+ce—20
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Now, suppose that Y 2_, (y)? # 0. From (2.16) and (2.18), we obtain
Vi, Ti, E;) =<V, T;, E

and (4 — 9,04 — d,) > 0, which contradicts (2.19). This proves the claim and
completes the proof of Theorem (2.14).

(2.21) Proof of Theorem (1.8). At a point r € M we have that
ky=-"=k,_,=p and k;¥pu, n—p+1<j<n
Let W, = {X € T, M; Af(X) = uX}. Since U, = V, and g < n — p, we have
dim V, > dim U, > n—q > p,

so V. n W, # 0. It follows that V, = W, for all r € M and the theorem follows
from Theorem (2.14).

3. Proofs of Theorems (1.10), (1.11) and (1.12)

(3.1) LeMMA. Let x: M"—> R"*!, n > 5, be a 2-SPES whose second funda-
mental form has eigenvalues

kl="‘=kn—2=/1,'1n—1=51,}~n=52a51#52~

Then M™ can be locally isometrically immersed in S"*?(c) with R+ =0, for
some 0 < ¢ < A2, if and only if the following conditions hold:

3.2) Ei(#%)=0, 1<i<n—-21<j<2;
—9
(3.3) There exist functions c,, c, € C*(M) such that
. c
) Ci€2=—73_
(ii) Efc)=0, 1<i<n-—-2,1<j<2;
_(B—8) (36, = OBy
for 1 <j# k<2, where B; = c{A —95));
. ¢z T,(4) ) ¢; T,(4)
iv) T, - Ty(6
(iv) 1< o) 6,00 /P 1(6,)

_ ¢ () i)

- ’(Jaz —c>_(61 —6,) /i —¢c

T2(5 l)’
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where E,, ..., E,_,, Ty, T, is an orthonormal frame field for TM such that
AME) = 2E;, AT)=6;T;, 1<i<n-—2, 1<j<2, and N is unit vector
field normal to x(M).

Proof. The Codazzi equation for x is equivalent to the following set of
equations

(1) E()=0, 1<i<n-—2,
@) (VgE;, T)=0, 1<itj<n—21<k<2,
B) TN =(G-06)VeE, Ty, 1<sk<21<i<n-—2;
BG4 @ EB)=0,-WVpT,E) l<isn—21<j<2;
(9 (6, —6)XVeT;, > = (0 — KV, T, E) 1<j#k<2;
© TH6) =~ 8)XVeT, T, 1<j#k<2.

Suppose there exists an immersion y: M"— §"*?(c) with R* = 0. It follows
easily from Proposition (2.11) that there exists an orthonormal frame 7, 7,
normal to y such that

A2 —c
A2 —c
A'”= 151—6 )
A2 —c
Aéz""C
| VA —c |
0
A'IZ= 0 ’
B1
B
where o — )0 — 3,)
_TOA = O M — 0,
Biby =~ 2,

Then, the Codazzi equation for y is equivalent to (3.4) from (1) to (5) and

Ay—c\ Mo —9)
1) ﬂj<v#k"1a'72>=7;¢<\/;2_c>_\/;2_::

<VTj'1-;¢’ T))»

1<k#j<2;
(2 <(Ving,n)=0;

(3.5) ) BLVgE:, T) = /A2 — (V12,115
@ Ei(ﬂj) = ﬂj<vT,Ti9 E);
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(%) B;—BXVeT, i) = BV, Tk, ED, 1<j#Fk<2;

© T8 = (o= B)Vr T T+ TS Thoma ), ek

We will begin by checking conditions (3.3). Define

./
(3'6) Cj }» _ 6; J la 29

in a way that ¢y, c, satisfy (3.3) (i). From equations (3.4) (4) and (3.5) (4), we

have

E@) _ Ei5)
B &= A

which with (3.6) and E,(4) = 0, gives (3.3) (ii). By substituting equations (3.4)

(3), (3.4) (6) and (3.5) (3) into (3.5) (6), we obtain (3.3) (iii). A straightforward
computation using the Codazzi equation shows that

¢, Th(A) ¢, Ti(A)
RAT,, Tons = I:Tl (« /2/122— c> ~h (« /1/121— c)

- 61)‘ = ) — ¢ Tz(zm(az»] o

which with the Ricci equation gives (3.3) (iv).
Finally, a similar procedure shows that

0 = RYE;, Tin, = ——— (E, 1) - T2 T,(l))m,

=

which immediately gives (3.2).
Now suppose that (3.2) and (3.3) hold and let

ﬂj=cj(}'—_6])’ j= 1, 2.
Let P be a 2-dimensional vector bundle over M with a Riemannian metric,
say € , >, where each fiber is generated by an orhtonormal frame 7,

1, . Define in P a connection ¥, compatible with < , >, by

Ven=0, 1<i<n-2, 1<j<2

C
Veni=-— —\/}—;"f TMn,, j=1,2

(3.7
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Let R be the curvature tensor of ¥V and & be the symmetric section of the
bundle Hom (TM x TM, P) given by

#E;, E) = 6;j5/A* —cny, 1<i, j<n—2,

. Ad;—c .
(3.8) AT;, T,) = oy (‘—lﬁ N + ﬂj'l2>’ 1<j, k<2,

E;, T)=0, 1<i<n-2 1<j<2

By a direct computation we can see that & satisfies the Gauss equation for
an immersion into S"*?(c). Equations (3.5) from (1) to (5) also hold and (3.5)
(6) is a consequence of (3.3) (iii). Then the Codazzi equation is also verified
by. V and & By using equations (3.2) and (3.3) (iv), we can see that R van-
ishes. Since & is diagonalized by E,, ..., E,_,, T;, T,, we conclude that the
Ricci equation holds. Hence by the fundamental theorem of submanifolds
(see [6], p. 80), there exists a local isometric immersion y: M"— S"*2(c) such
that we may identify the normal bundle of y with P. Also the metric induced
on the normal bundle of y coincides with the metric of P, and the second
fundamental form as well as the normal connection of y coincide with & and
¥, respectively. This completes the proof of the lemma.

(3.9) THEOREM. Let x: M"—R"*! n > 5, be a normal bundle of spheres
with radius r a constant over an umbilic free surface g: I>— R"*! with R; = 0.
Then M" can be locally isometrically immersed into S"**(c), 0 < ¢ < (1/r)%,
with R* = 0 if and only if there exist smooth functions a(u,) and b(u,) such that

(3.10) a(u;)G(uy, uy) + b(uy)E(uy, uy) = a(uy)b(uy),

where (u,, u,) are principal coordinates for g and E, F =0, G are the coeffi-
cients of the first fundamental form of g.

Proof: By the results of Section 2, we can write x as

x(ul, U, tl, ceey t”_z) = g(ul, uz) - rN(ul, u2 tl? coey t”_z)

where
n—1
N= kz ¢k(t1’ ey tn—Z)ék(ula u2)
=1
and &, ..., &,_, are parallel orthonormal fields normal to g. We have
Ox r
—=|(1 - , N , J=12,
ou, ( + v {a(v;, v)) ))vj j=12
Ox n—1 a¢k )
(3.11) 5ti_rk§'1 a, &, i=1,...,n=2,
oN

1
auj = - % <“(Uj, vj)s N>vjs
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where Y, = E, Y, = G, v; = 0g/0u; and « is the second fundamental form of
g. It follows easily from (3.11) that (uy, u,, t,,...,t,—,) are orthonormal
coordinates which diagonalize the second fundamental form of x. Therefore

(2
L1 Now o
r

axlE i=1...,n—=2,

at;

(3.12) < ox a_N>
_ ou;’ Ou;
0=~ 0x

o,

= <“(vj’ vj)’ N> J
2 ‘/’j + r<a(vj’ vj)’ N>’

=1,2

Notice that if 6, = d,, it follows that

“(vla vl) a(st 172) _
(3.13) < R ,N>—0,

which means that g has umbilic points. Then 4, # §, and Lemma (3.11)
applies. Since A is constant, we only have to determine under what conditions
there exist c,, ¢, which satisfy equations (3.3) (i), (ii) and (iii). Taking

||| e o]l e
o)l et U ||ow|| 0w’
equation (3.3) (iii) becomes
T N .
(3.14) G~ O — O)h—3)) o X Tk
But by (3.12), we have
Y
A—by=
T + oy, ND)
and
4
L 2t
@i .//j<vl)j, aj’ N> auk <aj’ N>

w W NP
where a; = «(v;, v;). It follows that
4
Vig — =i
ios oSl N)

(3.15) G —0)0c—3) duy ¥y Yy — Yoy, N
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By the Codazzi equation for g, we have
o o o
Vo — 2V, v;, v;> Jf = —{V,, 0, ) Ei - <V,,jvj, v, ‘//—';>,

from which we get

o
'//k<'/’jV:J;1“j - 6_1 aj, f>

Uy,
Yoy — Y04, &

for any vector £ normal to g. Then we can rewrite (3.15) as

A— 6, 1

(Voy05 0 =

3.16 — =% (v, 0,0
1 1 oy
=— (v, N = i
|//j <U]’ Vvk v;> 2‘//j auk
From (3.16), equation (3.14) is equivalent to
de, 1 GE dc; 196G
ou, ~ 2E 2w, @ By, =26 ou, €1 T
Now, by using c,c, = —c/(A? — c), we obtain
ocy 1 0E 1 [, c
) du,  2E du, c, (Cl T c)’
(3.17)

2—
dc, _ 1 0G ¢y(4* — o) e+
ou, 2G Ou, c

\._/

2 —c

The solutions of (3.17) (1) and (2) are of the types

a(u,) 4
2 = =
(3.18) 1= E T e
and

c b(u,)G
(3.19) ¢ = (1)

(A% = o) (1 — b(uy)G)’

respectively, where a(u,), b(u,) are arbitrary functions. By comparing (3.18)
and (3.19) and taking

we obtain (3.10), which completes the proof of (3.9).
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(3.20) Remark. Take E(0,0)= G(0,0)=1. A short computation shows
that

dE(u,, 0) dG(0, uy)
d — G(uy, 0)’ d —(d — 1)EQ, u;)’

where d > 1 is a constant such thata > 1, b > 1.

(3.21) a(u,) = b(u,) =

(3.22) At this point it is convenient to review some definitions.

(1) A ruled surface g: I?— R"*! with no umbilic points can be given by
g(s, t) = c(s) + tv(s), where c(s) is a curve in R"*! and v is a normal vector
field with |¢| = |v| = 1 (here - = d/ds). The condition that I? is flat is equiva-
lent to the existence of a function y(s) such that o = y¢; ie., v is parallel
along c.

(2) By a product of curves in R"*! we mean a surface

g(s, 1) = (v(s), ¢(2)
where y(s) and ¢(t) are curves in R’ and R"7'*! respectively, with
Rl % Rn—l+1 _ Rn+1.
(3) A generalized cylinder is a particular case of a product of curves,
namely when one of the curves is a straight line.

(3.23) Proof of Theorem (1.11). (a) Let g be given in principal coordinates
(“1, u2) by

g(uy, uy) = (x(uy) cos uy, x(uy) sin u,, &(uy)),

where x # 0 and (x')?> + (') = 1. Let e, be an unit vector normal to g in
R3cR"*! and let e,,...,e,,; be constant orthonormal vector fields in
R"*!, normal to g and e;.

By (3.12), we have

S =_£1_k.L__ j=12
J 1+r¢1kja » “y

where k,, k, denote the principal curvatures of g in R3. Thus J§, = §, if and
only if k; = k,. We have two cases to consider.

First case. Suppose that g has no open subset of umbilic points. Taking

bo
= 1 d = —,
b(u;) =by,>1 and a(u,) be — x(@.)?
where b, is constant, one can easily see that (3.10) holds on an open and
dense subset of I?. By continuity it holds everywhere. Thus, the proof follows
from Theorem (3.9).
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Second case. Suppose that g(I?) is a (piece of a) sphere, say S%(1) = R3:

g(u,, u,) = (Cos u; Cos u,, Cos Uy sin u,, sin u,), —=n/2 <u, < n/2.
The frame
ox ||~ ox ox ||t ox

1 —_— —_— . = — -, 1 S i S - 2, 1 j S ]

: ot o, Ou; ou; r=n sj=2
arising from (3.11) gives AN(E;) = AE;, A\(T) = 6, T;, where

1 ¢!
l—r’ 51_—52_1+r¢"
Let d > 1 be a constant and define §; = c{(4 — §;), where
2o STl LN
)’ =k o u o AZ—c

By an argument similar to that of the second part of Lemma (3.1), it is not
difficult to conclude that the claimed immersion in $"*?(c) exists.

(b) A cone in R"*! is a flat ruled surface g(s, t) = c(s) + tv(s) such that
Y(s) defined by » = ¢ is a non-zero constant. Clearly (s, t) are principal
coordinates and E=(1 + tY)>, F=0,G = 1.

If the curvature k(s) of c(s) does not vanish in an open interval, we proceed
as in the first case of (a), just taking

_ 2 - %

a(s) =a, > (1 + t¥)*, b(2) papyTRTTECE

If k = 0, we proceed analogously to the second case of (a).
(c) A similar argument as in (a) and (b) above.

This completes the proof of Theorem (1.11).

(3.24) Remark. Let x: M"—R"*!, n > 5, be a normal bundle of spheres
with radius r over a flat ruled surface g(s, t) = c(s) + tv(s) without umbilic
points. Suppose that there exists an isometric immersion y: M"— Si,; * with
R = 0. Then  must be constant. In fact, in this case by Theorem (3.9) there
exist functions a(s), b(s) such that

als) + b(eX1 + t(s))* = als)b(r).
By doing ¢ = 0 in the above equation, we see that a is constant. Thus
ab(®) — 1)
bt)

from which it follows that § must be a constant. Observe that the case Y =0
is included in part (c) of Theorem (1.11). ‘

(1 + t(s))* =
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(3.25) Proof of Theorem (1.12). Since the case of r constant follows from
Theorem (1.11) and Remark (3.24), we will assume here that Vr does not
vanish on an open subset.

By assumption, we have

59

(3.26) Vi=—=0+t)), V,= %gt-

=U’

so (V;, V,> = 0. Equation (2.9) (i) says that
0 + 0 L
(-a—s Vr) =0, (55 Vr) =0,

or .1
7 @ =0.

which is equivalent to

But (¢)* never vanishes because g is umbilic free, so r = r(t). Then (2.2)
becomes

(3.27 x=c+({t—rv—rgl—(r)? ”ild)"ék,
k=1

where ' = dr/dt and &, ..., &,_, are parallel in the normal connection of g.
By (3.26) the tangent planes to g are constant along the rulings, therefore we
can choose &, in such a way that & = &s), k=1,...,n— 1. Thus

6 =1+ —rrW —rJ1—()>Qk,
X =y~ ST S

where

n—-1
Q(S’ | ST tn—z) = - <k§1¢kék, C>

So,

On the other hand
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since 8%x/ds ot is parallel to ¢ and

n—1
N=rv+ 1 -1 ¢
k=1
is orthogonal to ¢.
Now, a direct computation shows that

—Q 1 — (r,)z _ r’ll/ _r,,
= ’ 62 = N2 "
1+ ty—ry —rJ1—(F)PQ L— () —rr

Notice that Q cannot vanish on an open subset of M, otherwise (¢)* = 0.
Therefore, since 8, = d,(t), there exists an open and dense subset U of M
where 6, # 6, and &, does not vanish on U.

Now suppose that there exists an isometric immersion of M, into $"*?(c)
with R* = 0. We want to show that ¥ is constant. For this it is sufficient to
show that ¥ is constant in U where Lemma (3.1) applies. By equation (3.3)
(iii), we have that

o

€A — 63) — ¢4(A — 6y) % _ ﬁ _ A6y —¢ /
(3.28) 3, — 9, % = o ci(A—6,) yE— c A
A straightforw('ard computation shows that
— (N2 _ 4
329) U L=OF = ()2 — s, — 8,6,

& = [T+ PQJI- ) —r¥)

Since 4, 6, and ||0x/ot] depend only on t, and r’ is not identically zero on
an open subset, it follows from (3.3) (iv) that ¢, = ¢,(t). Thus, from (3.3) (i) we
have that ¢, = c,(#). This remark jointly with equations (3.28) and (3.29) gives

[ 1—(r)}?—rQ
\/1 - (rl)z(ﬂ \/1 — (r’)2 + r'l/l)
cloea(t ) 5] BT 2

A+ —ry —r /T ()Q)

(3.30)

(1 =7 = ")

£

where

ccy A r
'{22_6, B=Ar—7(c2—cl), A=1/r.

Equation (3.30) is equivalent to

A= (/) +

(3.31) QI:(CZ —¢y) (% - 52> (" + () — 1y — B(1 — ()?)
+ art =P | + TGP [(cl — (3= )+ 07 -

— Br'y — A1 + ty — rr'n//):l =0.
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It is not hard to verify that the coefficient of Q in (3.31) is identically zero.
So, since /1 — () # 0, we get

(cq — cz)<% — 62)(rr” +()? —=1)—Bry — A(l + ty —rr'y) = 0.

By substituting the values of §, and B in the above equation, we obtain
(3.32) Y((cy — ¢y) — tAr) = Ar.

Notice that (c, —c;) —tA4, # 0 if ¢t is small. Since Y = Y(s), r =1(t), ¢; =
cft) and A = A(t), then (3.32) says that  must be constant, which proves the
first part of the theorem.

Suppose now that g: I?— R"*! is part of a cone or a cylinder and let us
check conditions (3.2) and (3.3).

By equation (3.4) (3), we have

Ek( L) ) = EVgE, T,

1_61
-

=0

-2

Ox
at,

ox
Js

o2’ 0s

and

oA\ _
& (1 = 6:) -0
so equation (3.2) holds.

In the present case, equation (3.3) reduces to

f‘.@ ' Gk 2 ¢ ek A _
B3 37 "W rrrw)i T mo e\ e 0

where we set

—C

2= a9

in (3.28).
Equation (3.33) can be explicitly solved by the change of variable

z = Y1 + tp)*ct.

The solution is

_ c 0,
€1 = i\/_AZ-c+,12(1+n//)2’
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where 0, is a constant such that the term under the root sign is positive. By
Lemma (3.1), we have a 1-parameter family of isometric immersions of M"
into S"*?(c) with R* = 0. This completes the proof of Theorem (1.12).

(3.34) Let xo: M"—>R"** x,: M">R"*! 1 <k <, be isometric immer-
sions. An isometric homotopy x, between x, and x, is a continuous map
x: [0, 1] x M"— R"*! which satisfies the following conditions:

(i) x(0, g) = xo(q), for all g € M;
(i) x(1, ) = x,(q), for all g € M;
(iii) for each t e [0, 1], the mapping x,: M"— R"*! given by x(q) = x(t, q)
is an isometric immersion.

(3.35) Proof of Theorem (1.10). For each point p in M, we know (cf.
Section 2) that we can choose an orthonormal basis {E, ..., E,_,, Ty, T} of
T,M and orthonormal bases {N} and {n,, n,} for the normal spaces of x,
and x, at p respective.y such that

A
AN= }. .
0y
J,
Ny 1
A2 —c
A, = Ab; — ¢ s
A2 —c
/152-—0
i JA2—¢
"0 .
—c(A—6, A -9
Ay, = 0 s BiBa= ( P i)(c 2).
B4
| B |

Notice that if 8, = d,, then B, f, <0, so B, # f,. It follows that the
above choices can be performed in a differentiable way on M.
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Let n5 denote a unit normal to i; and define an orthonormal frame normal
to X, by

‘= A2 —c 4
1= 2 M1 p) N3,
c A2 —c
C2=%nl_ l 'ls,
{3=mn,
It follows that
o -
c(6, — A
Ay = Ay, A, = (21 ) s A=Ay,
At —c
c(d,—4)
A2 —c

For each t e [0, 1], let us define a Riemannian connection V on the
normal bundle TM* of %, and a section 4 of the bundle

Hom (TM x TM*, TM)
by
Vil =1Vx¢y,
Vili= V380 08 + (Va8 {pL, 2<i#j<3,
Ay =4,
A, =t4,, 2<i<3,

(3.36)

where V* denotes the Riemannian connection of TM*.

(3.37) Assertion. For each t € [0, 1], we have:

(i) V and A satisfy the Gauss and the Codazzi equations;
(ii) V and A4 satisfy the Ricci equation if and only if

T(AT(A) = 0.
To prove (i), we first observe that for j = 2, 3,
Ay (Y) = tAg,oe(Y), (Vx A )NY) = t(Vx A XY).
Thus,
(Vx ;fcj)(Y) - -%lxc,(Y) = t[(Vx A;,)(Y) - Avxuc,(Y)]a
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and the result follows from the Codazzi equation for X,. When j =1, we
proceed as follows. From the Codazzi equation for x,, we have

(Vx f‘Tgl)( Y) = (VY Zgl)(X )
Then, from the Codazzi equation for X, we obtain
AVthl(Y) = AV)(JJQ(X)'
So
Agues(Y) = P Ay, (V) = P Ay (X) = 4,1, (X),

since Vx{, has only components on {, and {,. This proves (i).
Observe that V and A4 satisfy the Ricci equation if and only if R = 0. But

RX, Y){, = tRY(X, Y){, =0,
since R* = 0. So, to prove (ii), it is enough to verify under what conditions

KR(X, Y),, 3> =0.

A long but not difficult computation shows that

CRIX, Y)a, 83D = (% = DIVE s $0<Va s, §3) = V8o, $<VH Ey, ED)

But, since V,l.;jC ; =0, we may assume that X =T;, Y = T;.
From

VAt - VA —
V1,{ = Tj( c)'h + VT,’11 + 7}<)£>'73,

A A A
we obtain
2 —_ / —_—
V5,8 G = T,( '1/1 c) %E j<>§) ‘- */_ T,(,l)
iy
and
B G
Therefore

<ﬁ(T1’ )2, (30 = \/% (c2 — c) TH(ATA(A),

and then R = 0 iff T,(1)T,(4) = 0. This completes the proof of the assertion.

(3.38) Now assume that T;(1)T5(4) = 0. Then (cf. [7]) for each t € [0, 1],
there exists an isometric immersion f;: M"— R"*3 whose normal bundle is
identified with the normal bundle of %X,, and whose normal connection and
second fundamental form are identified with ¥V and &, respectively. Further-
more, the mapping (¢, p)—f(p) is a continuous map from [0, 1] x M" into
R"*3, For t = 1, we have f; = %, (up to a rigid motion of R"*3). For t = 0,
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(3.36) shows that the normal space of f, has constant dimension one and is
parallel. Therefore, f,(M) is contained in some (n + 1)-dimensional affine sub-
space of R"*3, It then follows that f, = X, (up to a rigid motion of R"*3), To
conclude the proof of (1.10), we only have to observe that the hypersurfaces
of Type I or II satisfy T;(1)T,(4) = 0.
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